大学物理学第15章作业题
- 格式:doc
- 大小:286.50 KB
- 文档页数:10
第十五章习题15.1 解:介质中的折射率为n ,加入厚度为d 的薄膜,光程的改变为()19n d λ-=所以可以得到:1039958901011 1.530.0110n d λ--⨯⨯=+=+=⨯ 15.2 解:已知条件:6000A λ=,4m D =,垂直入射,两第五级明条纹中心之间的距离为4cm 。
2551022410m D D x d dλλ-=⨯==⨯ 双缝之间的距离:10325101046000100.610m=0.6mm 2410D d x λ---⨯⨯⨯===⨯⨯ 15.3 解:⑴ 双缝之间的距离为:0.2mm d =,缝与屏之间的距离为:1m D = 亮条纹距离零级明条纹中心的位置:D k x d λ=d xk D λ⇒=因为:4000A 8000A λ≤≤,所以可得:115d x k D λ==, 222.5d xk D λ==,即2.55k ≤≤ 第三级明纹:3310.21010106667A 13dx Dk λ--⨯⨯⨯===⨯第四级明纹:3320.21010105000A 14dx Dk λ--⨯⨯⨯===⨯ 第五级明纹:3330.21010104000A 15dx Dk λ--⨯⨯⨯===⨯ ⑵ 20mm x =,可以得到:dxk D λ=,510k ≤≤ 15k =, 33110.21020108000A 15dx Dk λ--⨯⨯⨯===⨯ 26k =,33220.21020106667A 16dx Dk λ--⨯⨯⨯===⨯ 37k =,33320.21020105714A 17dx Dk λ--⨯⨯⨯===⨯ 48k =,33440.21020105000A 18dx Dk λ--⨯⨯⨯===⨯59k =,33550.21020104444A 19dx Dk λ--⨯⨯⨯===⨯ 610k =,33660.21020104000A 110dx Dk λ--⨯⨯⨯===⨯ 15.4 解:设空气的折射率为1n ,氯气的折射率为2n ,两条光路的几何路程分别为:12,r r 。
第15章 磁介质的磁化15.1 一均匀磁化的磁介质棒,直径为25mm ,长为75mm ,其总磁矩为12000A·m 2.求棒的磁化强度M 为多少?[解答]介质棒的面积为S = πr 2,体积为 V = Sl = πr 2l ,磁矩为p m = 12000A·m 2,磁化强度为m m p p M V V ∑==∆32312000(2510/2)7510π--=⨯⨯⨯=3.26×108(A·m -1).15.2一铁环中心线的周长为30cm ,横截面积为1.0cm 2,在环上密绕线圈共300匝,当通有电流32mA 时,通过环的磁通量为2.0×10-6Wb ,求:(1)环内磁感应强度B 的值和磁场强度H 的值;(2)铁的磁导率μ、磁化率χm 和磁化强度M .[解答](1)根据公式B = Φ/S 得磁感应强度为642.0101.010B --⨯=⨯= 0.02(T).根据磁场的安培环路定理∑⎰=⋅,d I L l H由于B 与d l 的方向相同,得磁场强度为3230032103010NI H l --⨯⨯==⨯= 32(A·m -1).(2)根据公式B = μH ,得铁的磁导率为0.0232B H μ=== 6.25×10-4(Wb·A -1·m -1).由于μ = μr μ0,其中μ0 = 4π×10-7为真空磁导率,而相对磁导率为μr = 1 + χm ,所以磁化率为470 6.251011496.4410m μχμπ--⨯=-=-=⨯.磁化强度为M = χm H = 496.4×32 = 1.59×104(A·m -1).15.3一螺绕环中心周长l = 10cm ,线圈匝数N = 200匝,线圈中通有电流I = 100mA .求:(1)管内磁感应强度B 0和磁场强度H 0为多少?(2)设管内充满相对磁导率μr = 4200的铁磁质,管内的B 和H 是多少?(3)磁介质内部由传导电流产生的B 0和由磁化电流产生的B`各是多少?[解答](1)管内的磁场强度为302200100101010NI H l --⨯⨯==⨯= 200(A·m -1).磁感应强度为B = μ0H 0 = 4π×10-7×200 = 2.5×10-4(T).(2)当管内充满铁磁质之后,磁场强度不变H = H 0 =200(A·m -1).磁感应强度为B = μH = μr μ0H= 4200×4π×10-7×200 = 1.056(T).(3)由传导电流产生的B 0为2.5×10-4T .由于B = B 0 + B`,所以磁化电流产生的磁感应强度为B` = B - B 0 ≈1.056(T).15.4一根无限长的直圆柱形铜导线,外包一层相对磁导率为μr 的圆筒形磁介质,导线半径为R 1,磁介质外半径为R 2,导线内有电流I 通过(I 均匀分布),求:(1)磁介质内、外的磁场强度H 和磁感应强度B 的分布,画H-r ,B-r 曲线说明之(r 是磁场中某点到圆柱轴线的距离);(2)磁能密度分布.[解答](1)导线的横截面积为S 0 = πR 12,导线内的电流密度为 δ = I/S 0 = I/πR 12.在导线内以轴线的点为圆心作一半径为r 的圆,其面积为 S =πr 2,通过的电流为 ΣI = δS = Ir 2/R 12.根据磁场中的安培环路定理∑⎰=⋅,d I L l H环路的周长为l = 2πr ,由于B 与d l 的方向相同,得磁场强度为 212I Ir H l R π∑==,(0≦r ≦R 1).在介质之中和介质之外同样作一半径为r 的环路,其周长为l = 2πr ,包围的电流为I ,可得磁场强度为2I I H l r π∑==,(r ≧R 1).导线之内的磁感应强度为00121,(0)2Ir B H r R R μμπ==≤≤;介质之内的磁感应强度为0012,()2r r I B H H R r R r μμμμμπ===≤≤;介质之外的磁感应强度为002,()2I B H r R r μμπ==≥. (2)导线之内的磁能密度为200001122m w H μ=⋅=B H 2201241,(0)8I r r R R μπ=≤≤;介质之中的磁能密度为220111222m r w H H μμμ=⋅==B H201222,()8r I R r R r μμπ=≤≤;介质之外的磁感应强度为220022211,()228m I w H r R r μμπ=⋅==≥B H .15.5一根磁棒的矫顽力为H c = 4.0×103A·m -1,把它放在每厘米上绕5匝的线圈的长螺线管中退磁,求导线中至少需通入多大的电流?[解答]螺线管能过电流I 时,产生的磁感应强度为 B = μ0nI . 根据题意,螺线管产生的磁场强度至少要与磁棒的矫顽力大小相等,但方向相反,因此 B = μ0H c ,所以电流强度为I = H c /n = 4.0×103/500 = 8(A).15.6 同轴电缆由两个同轴导体组成.内层是半径为R 1的圆柱,外层是半径分别为R 2和R 3的圆筒,如图所示.两导体间充满相对磁导率为μr 2的均匀不导电的磁介质.设电流强度由内筒流入由外筒流出,均匀分布是横截面上,导体的相对磁导率为μr 1.求H 和B 的分布以及i m 为多少?[解答](1)导体圆柱的横截面积为S 0 = πR 12,圆柱体内的电流密度为δ = I/S 0 = I/πR 12.在圆柱体内以轴线的点为圆心作一半径为r 的圆,其面积为 S = πr 2,通过的电流为 ΣI = δS = Ir 2/R 12.根据磁场中的安培环路定理∑⎰=⋅,d I L l H环路的周长为l = 2πr ,由于B 与d l 的方向相同,得磁场强度为图15.6212I Ir H l R π∑==,(0≦r ≦R 1).磁感应强度为1010212r r IrB H R μμμμπ==,(0≦r ≦R 1).(2)在介质之中同样作一半径为r 的环路,其周长为l = 2πr ,包围的电流为I ,可得磁场强度为2I I H l r π∑==,(R 1≦r ≦R 2).磁感应强度为20202r r IB H r μμμμπ==,(R 1≦r ≦R 2).磁化强度为220(1)(1)2r r I BM H H r μμμπ-=-=-=.磁化面电流的线密度为 i m = M ×n 0,n 0是介质表面的法向单位矢量.在介质的两个圆形表面,由于M 与n 0垂直,i m = |M ×n 0| = M .在介质的内表面,由于r = R 1,所以磁化电流为21(1)2r m Ii R μπ-=.在介质的外表面,由于r = R 2,所以22(1)2r m Ii R μπ-=.(3)导体圆筒的横截面积为S` = π(R 32 - R 22),圆筒内的电流密度为δ` = I/S`.在圆筒内以作一半径为r 的圆,其面积为 S = π(r 2 - R 22), 圆所包围的电流为``SI I S I I S δ=-=-∑22223222223232(1)R r r R I I R R R R --=-=--, 根据安培环路定理∑⎰=⋅,d I L l H 得磁场强度为 2232232()22()I R r I H r R R r ππ-∑==-,(R 2≦r ≦R 3).磁感应强度为22103102232()2()r r I R r B H R R r μμμμπ-==-,(R 2≦r ≦R 3).(4)在圆筒之外作一圆,由于包围的电流为零,所以磁场强度和磁感应强度都为零.15.7在平均半径r = 0.1m ,横截面积S = 6×10-4m 2铸钢环上,均匀密绕N = 200匝线圈,当线圈内通有I 1 = 0.63安的电流时,钢环中的磁通量Φ1 = 3.24×10-4Wb .当电流增大到I 2 = 4.7安时,磁通量Φ2 =6.18×10-4Wb ,求两种情况下钢环的绝对磁导率.[解答]钢环中的磁感应强度为 B = Φ/S ;根据安培环路定理∑⎰=⋅,d I L l H 得磁场强度为H = NI /2πr .根据公式B = μH ,得绝对磁导率为2B r H NIS πΦμ==.(1)在第一种情况下4420.1 3.24102000.63610πμ--⨯⨯⨯=⨯⨯⨯= 2.69×10-3(H·m -1) .(2)在第二种情况下4420.1 6.1810200 4.7610πμ--⨯⨯⨯=⨯⨯⨯= 6.88×10-4(H·m -1) .15.8 一矩磁材料,如图所示.反向磁场一超过矫顽力H c ,磁化方向立即翻转.用矩磁材料制造的电子计算机中存储元件的环形磁芯,其外径为0.8mm ,内径为0.5mm ,高为0.3mm .若磁芯原来已被磁化,方向如图所示,现在需使磁芯从内到外的磁化方向全部翻转,导线中脉冲电流I 的峰值至少需要多大?设磁性材料的矫顽力H c 12π=⨯103(A·m -1).[解答]直线电流I 产生磁感应强度为B = μ0I /2πr ,产生的磁场为 H = B/μ0 = I /2πr .为了磁芯从内到外的磁化方向全部翻转,电流在磁芯外侧r = 0.4mm 处产生的磁场应该为 H = H c ,即 H c =I /2πr ,图15.8所以,脉冲电流为I = 2πrH c33120.410100.4(A)2ππ-=⨯⨯⨯=。
第15章 光的衍射 习题解答1.为什么声波的衍射比光波的衍射更加显著?解:因为声波的波长远远大于光的波长,所以声波衍射比光波显著。
2.衍射的本质是什么?衍射和干涉有什么联系和区别? 解:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.3.什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第三级明条纹和第四级暗条纹,单缝处波阵面各可分成几个半波带?解:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第三级明条纹和第四级暗条纹,单缝处波阵面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a4.在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 解:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.5.若把单缝衍射实验装置全部浸入水中,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin Λ=+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin nk λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).6.单缝衍射暗纹条件与双缝干涉明纹的条件在形式上类似,两者是否矛盾?怎样说明? 解:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.7.光栅衍射与单缝衍射有何区别?为何光栅衍射的明纹特别明亮而暗区很宽?解:光栅衍射是多缝干涉和单缝衍射的总效果.其明条纹主要取决于多缝干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.8. 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明纹缺级? (1)2a b a +=;(2)3a b a +=;(3)4a b a +=解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )(ΛΛk k a k k b a λϕλϕ 可知,当k aba k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级; (3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.9.若以白光垂直入射光栅,不同波长的光将会有不同的衍射角。
第十五章 机械振动15-1 已知一简谐振动的振幅m 1022-⨯=A ,周期T =0.5s, 初相4/πϕ=.试写出振动方程;并作出该振动的x-t ,v -t ,a-t 曲线.分析 振动方程的基本形式为)cos(ϕω+=t A x .通过作曲线, 进一步了解v 、a表达式的意义以及x 、v 、a 间的相位关系.解 rad/s 4 rad/s 5.022πππω===T振动方程为m)4/4cos(1022ππ+⨯=-t xx15-2 一弹簧支持的椅子构成在太空测量人体失重状态下质量的装置——人体称重器.飞船进入空间轨道时,宇航员坐在椅子上测出振动周期.(1)如m '为宇航员的质量,m 为人体称重器中的有效质量(如椅子等),试证明mkT m -='224π其中T 是振动周期,k 是弹簧的劲度系数;(2)现k =605.6 N/m ,椅子空着时的振动周期T =0.9015 s, 求有效质量m ;(3)在太空,宇航员坐在椅子上, 测出振动周期为2.299s, 求宇航员在失重状态下的质量.分析 当宇宙飞船在空间轨道上绕地球旋转自由运行时,地球对飞船及飞船上所有物体的引力就是使它们作圆周轨道运动的向心力,于是飞船及飞船上所有物体如果处于相对静止状态,相互之间就不存在作用力,就不能用地面上通常使用的质量或重量测量仪器进行测量.考虑到无外力作用时,弹簧振子振动周期决定于弹簧劲度系数以及物体质量,如果已知弹簧劲度系数,通过测量振动周期可测出物体质量.解 (1) 弹簧振子系统振动周期为km m T +'=π2 (1)宇航员的质量为 m kT m -='224π(2) 椅子空着时,0='m ,由(1)式得kg 66.12kg 6.605142.349015.042222=⨯⨯==πkT m(3) kg 50.68kg 66.12kg 142.34299.26.60542222=-⨯⨯=-='m kT m π15-3 一质量为0.20kg 的质点作简谐振动,其振动方程为 x =0.60cos(5t -π/2), 其中x 以m 为单位, t 以s 为单位.求:(1)质点的初速度;(2)质点在正向位移一半处所受的力.分析 物体振动速度tx d d =v , 物体所受恢复力x m ma F 2ω-==,方向指向平衡位置.解 (1)据已知)2/5(60.0π-=t x ,得t t t A tx 5cos 3)2/5sin(560.0)sin(d d =-⨯-=+-==πϕωωv当t=0时,得 v 0=3 m/s(2) 正向最大位移一半处,x =0.30 m ,所受的力为N 5.1N 3.052.022-=⨯⨯-=-==x m ma F ω方向指向平衡位置.15-4 一物体沿x 轴作简谐振动,振幅为0.12m ,周期为2s ,当t =0时,位移为0.06m ,且向x 轴正方向运动.求(1)该物体的振动方程;(2)t =0.5s 时,物体的位置、速度、加速度;(3)在x =-0.06m 处,且向x 轴负方向运动时,物体的速度、加速度,以及物体从这一位置回到平衡位置所需的时间.分析 求解振动方程的难点是确定振动物体的初相ϕ.初相取决于计时起点t =0时物体的位置和速度.确定初相可用三角函数法或旋转矢量法.解 (1) 已知振幅为A = 0.12 m ,角频率为πππω===222Trad/s ,t = 0时初始位置和初速度分别为x 0=A cos ϕ =0.06 (1)v 0=ϕωsin A - >0 (2)从(1)式得2112.006.0cos 0===Ax ϕ得 33ππϕ或-=从(2)式得0sin <ϕ,所以应取3/πϕ-=此外,由t = 0时初始位置和初速度可以确定其旋转矢量如图15-4所示,即3/πϕ-=.振动方程为m)3/cos(12.0ππ-=t x(2) t =0.5s 时, x =)3/cos(12.0ππ-t =0.104 mv m/s188.0)3/sin(12.0-=--=πππt22m/s03.1)3/cos(12.0-=--=πππt a(3) 在1x =-0.06 m 处,物体向x 轴负向运动时,设1t t =,则06.0)3/cos(11-=-=ππt A x m (3)v 1)3/sin(1ππω--=t A < 0 (4)从(3)式得 2112.006.0)3/cos(11-=-==-Ax t ππ解得 ππππππn n t 2322323/1+-+=-或 (n =0,1,2…)又从(4)式得 0)3/sin(1>-ππt 应取 ππππn t 2323/1+=- (n =0,1,2…)故 )12(1+=n tm/s 592.0 m/s 326.0211=-= a v设回到平衡位置时2t t =,则0)3/cos(22=-=ππt A x (5)v 2)3/sin(2ππω--=t A >0 (6)从(5)式得 ππππn t 2233/2+=-或ππππn t 223/2+=- (n =1,2…)从(6)式得 )3/sin(2ππ-t <0 应取 ππππn t 2233/2+=- (n =1,2…)65)12(2++=n t回到平衡位置所需时间 s 83.0s 6512==-=t t t ∆15-5 一个质点作简谐振动,其振动方程为x =0.24cos(πt /2+π/3)m ,其中x 以m 计, t 以s 计.试用旋转矢量法求出质点由初始状态运动到 x =-0.12m, v <0状态所需的最短时间.分析 根据振动方程,当0t =0时旋转矢量A 与Ox 于x =-0.12m, v <0状态时,A 32π,如图15-5所示.因此,从0t 位置转到新位置偏转3/π解 如图15-5所示, t '时刻的相位为πϕ32=A 沿逆时针方向从0t 位置转过角度3/π所需的时间为s 32231=÷ππ15-6 作简谐振动的单摆在一个周期内的几个运动状态如图15-6所示.(1)若以(a )图所示的状态为计时起点;(2)若以(b )图所示的状态为计时起点,问单摆的初相位和其它各图所示状态的相位各为何值?分析 应从本题得出的结论是: 初相与计时起点(即初始条件)有关; 相位与与计时起点无关而与振动物体的瞬时状态有关.解 (1)以图(a )状态为计时起点,t =0时m m cos θϕθθ==得0=ϕ,因此对图(b)有0)cos(=+=ϕωθθt m (1)0)sin(d d <+-=ϕωωθθt tm(2)从(1)式得 2πϕω±=+t从(2)式得 )s i n (ϕω+t >0 所以图(b)的相位应取 2)(πϕω=+t同理,对图(c) πϕω=+)(t 对图(d)3)(πϕω=+t0cos ==ϕθθm (3)0sin d d <-=ϕωθθm t(4)(3)式(4)式联立,解得 2πϕ=同理,对图(c) πϕω=+)(t 对图(d) 23)(πϕω=+t对图(a) 0)(=+ϕωt15-7 一物块在水平面上作简谐振动,振幅为0.1m ,在距平衡位置0.06m 处速度为0.4m/s ,(1)求振动周期;(2)当速度为±0.12m/s 时,位移为多少?(3)若有另一物体置于该振动物块之上,当物块运动至端点时正好滑动,问摩擦系数μ为多大?分析 当所讨论问题涉及物体正好要滑动的条件时,由于物体尚未滑动,所受摩擦力仍为静摩擦力,静摩擦力方向与物体运动趋势方向相反.解 (1)设物块的振动方程为)cos(1.0ϕω+=t x物块位于06.01=x m 时, 速度v 1= 0.4m/s, 即x 1=A )cos(ϕω+t =0.06 m (1) v 1=)sin(ϕωω+-t A =0.4 m/s (2)以上两式平方相加, 代入A =0.1m ,解得 5=ωrad/s 26.12==ωπT s(2)由 v 2=)sin(ϕωω+-t A =±0.12 得 24.0)sin( =+ϕωt971.0)(sin 1)cos(2±=+-±=+ϕωϕωt t 则位移为x 2=0.1)cos(ϕω+t =±9.7×10-2m(3)物块运动至端点时正好物体开始滑动,即最大恢复力等于最大静摩擦力,物块受力如图15-7所示,因最大静摩擦力mg F μ=f ,最大恢复力A m F 2max ω=,得mg A m μω=226.08.91.05 22=⨯==gA ωμ15-8 一个轻弹簧在60N 的拉力作用下可伸长30cm , 将一物体悬挂在弹簧下端,并在它上面放一小物体,它们的总质量为4kg , 待其静止后再把物体向下拉10cm , 然后释放. 问(1)此小物体是停在振动物体上还是离开它? (2)如果使放在振动物体上的小物体与振动物体分离, 则振幅A 需满足什么条件? 二者在何位置开始分离?分析 根据胡克定律,由弹簧在外力作用下的形变量可以求出弹簧的劲度系数.当两物体脱离接触时,它们之间的正压力等于零,以此为条件可以判断小物体是否停在振动物体上. 解 (1) 根据胡克定律,得N/m 200N/m 3.060Δ===lF k由定义得 rad/s50rad/s 4200===mk ω弹簧、物体和小物体组成一个弹簧振子系统,把物体下拉10cm 后释放,故该弹簧振子的振幅为A =0.1m .设小物体质量为m ,小物体随系统一起运动,最大加速度为A a 2ω=,小物体受力情况如图15-8所示,当达最高点时,所受物体的正压力有最小值,即Am ma F mg N 2ω==+ (1)当A =0.1m 时,得 N 2.192=-=-=kA mg A m mg F N ω 即F N > 0 ,因而小物体仍停留在振动物体上.(2) 两物体脱离接触条件为0N =F ,代入(1)式得m196.0m 508.92==='ωgA即振幅大于0.196m ,两物体将在平衡位置上方分离,分离的位置即在0.196m 处.15-9 如图15-9(a )所示,在一个倾角为θ的光滑斜面上,固连一原长为L ,劲度系数为k ,质量忽略不计的弹簧,弹簧与质量为m 的重物相连,求重物作简谐振动的平衡位置和周期.分析 平衡位置是系统所受合外力为零的位置. 在建立振动方程时,一般都把取平衡位置为坐标原点.放在斜面上的弹簧振子处于静止状态时,物体所受弹簧的弹性力与重力沿斜面向下的分量大小相等,方向相反.解 弹簧和物体组成一个弹簧振子系统.物体受力情况如图15-9(b )所示.设在平衡位置弹簧的伸长量为0x ,有0sin 0=-kx mg θ 解得 k mg x θsin 0=即处于平衡位置时弹簧长度为0x L +. 根据定义,弹簧振子系统作简谐振动的角频率为mk =ω周期为 km T π2=15-10 如图15-10(a)所示,密度计玻璃管的直径为d ,浮在密度为ρ的液体中.若在竖直方向轻轻推一下,任其自由振动,试证明:若不计液体的沾滞阻力,密度计的运动是简谐振动;设密度计的质量为m , 试求振动周期.分析 若物体运动为简谐振动,应该具有如下特征:物体所受合外力与位移成正比而方向相反,即加速度与位移成正比而方向相反;或者位移是时间的余弦F F(a) (b)图15-9函数或正弦函数.解 密度计受力分析如图15-10(b)所示.设密度计截面积为S , 当处于平衡状态时,设浸入水中部分高度为h , 浮力则为ghS F ρ=B ,有0=-ghS mg ρ(1) 取平衡位置为坐标原点,向下为x 轴正向,当密度计向下位移为x 时,有22d d )(t xm S x h g mg =+-ρ (2) 由(1)和(2)式得gxS t x m ρ-=22d d 即加速度与位移成正比而方向相反,因此运动为简谐振动,且有g m dT mg d mgS ρππρρω4 2===15-11 如图15-11,劲度系数为k 的轻弹簧上端与质量为m 的平板相连,下端与地固连.另一质量为m '的物体,从h 高处自由落下,与平板发生完全非弹性碰撞后一起运动. 若以平板开始运动为计时起点,取向下为坐标正向,求振动的周期,振幅和初相位.分析 m '与m 发生完全非弹性碰撞后一起运动,与轻弹簧组成振动系统, 平衡位置是(m '+ m )所受合外力为零的位置,并选取为坐标原点.以发生碰撞后平板开始运动为计时起点,此时平板m 的坐标就是系统的初位移0x ,碰后(m '+ m )的共同速度v 0就是系统的初速度,而且可以依据碰撞中动量守恒求出.解 m '自由下落, 以gh 2的速度与m 发生完全非弹性碰撞,设碰后m '+ m 的共同速度为v 0,方向向下,应用动量守恒定律,得)(2m m gh m +'='v 0v 0mm gh m +''=2m '、m和弹簧组成振动系统,设m '+m 所受合外力为零时,弹簧的压缩量为x ∆,此位置是系统的平衡位置,则有0Δ)(=-+'x k g m m (1)取系统的平衡位置为坐标原点,向下为x 轴正向,当m '+m 位移为x 时,有d d )()()(22tx m m x x k g m m +'=+-+'∆ (2)由(1)和(2)式得0d d 22=+'+x mm k t x且有 km m T mm k +'=+'=πω2取m '与m 相碰的瞬间为振动的初始时刻t =0,有mm gh m kmg x +''=-=2 00v即 kmg A x -==ϕcos 0 (3)mm gh m A +''=-=2sin 0ϕωv (4)(3)与(4)式联立,得振动的周期和初相位分别为)(212020gm m kh kg m x A +'+'=⎪⎭⎫ ⎝⎛+=ωvgm m kh mm x )(2tan 0+''=-=ωϕv又因ϕ , 0 , 000><v x 在第三象限,则)(2 tanarc πϕ++''=gm m kh mm15-12 弹簧下端挂一物体后,弹簧伸长量为2108.9-⨯m , 若令物体上下振动,(1)求振动周期;(2)使其在平衡位置上方0.1m 处由静止开始运动,求振幅、初相及振动方程.(3)使其在平衡位置以0.8m/s 向上的初速度开始运动,求振幅、初相及振动方程.分析 计算结果表明,同一系统在不同初始条件下的振动方程不同. 解 (1)设挂上物体达平衡时弹簧的伸长量为x ∆, 根据胡克定律和平衡条件有mgx k =∆由定义得 10===xgmk ∆ω rad/s 63.02==gx T ∆πs(2)如图15-12所示,取平衡位置为坐标原点, 向上为x 轴正向.初始条件为: t =0时, x 0=0.1m v 0=0,即1.0cos 0==ϕA x (1)0sin 0=-=ϕωA v (2) 由(1)和(2)式联立解得m 1.01.022020==⎪⎭⎫ ⎝⎛+=ωv x A0=ϕ振动方程为 t x 10cos 1.0= m(3) 初始条件为:t =0时,x 0=0 v 0=0.8,即cos 0==ϕA x (3)08.0sin 0>=-=ϕωA v (4)由(3)和(4)式联立解得A =2020⎪⎭⎫ ⎝⎛+ωv x 0.08m从(3)式得 2πϕ=或 23πϕ=从(4)式得 0sin <ϕ 所以取 23πϕ=振动方程为 )2310cos(08.0π+=t x m15-13 如图15-13(a )所示的弹簧,其一端固定在天花板上,另一端挂着质量都是1.0kg 的两个物体A 和B .当物体静止时,弹簧伸长量为2108.9-⨯m , 如果物体B 突然脱落掉下,不计弹簧质量,(1)求物体A 的振动周期;(2)若从物体B 脱落时开始计时,求物体A 的振幅、初相和振动方程.分析 虽然弹簧下悬挂着两物体,但由于物体B 脱落,振动系统实为弹簧和 物体A 组成. 据题意, 物体B 脱落之时t=0,因此物体A 的位置为系统的初始位置,且物体B 从静止状态脱落,系统初速度为0.解 物体B 脱落之前,两个物体A 和B 处于重力和弹簧的弹性力作用下的平衡状态,弹簧伸长量为m 108.9Δ2-⨯=l ,则l k mg Δ2=N/m200N/m 108.98.912Δ22=⨯⨯⨯==-lmg k物体B 脱落后,物体A 和弹簧组成弹簧振子系统,设平衡位置处弹簧伸长量为0l ,则 00=-kl mg (1) 取平衡位置为坐标原点,向下为x 轴正向,如图15-13(b )所示,当物体A 位移x 时,应用牛顿第二定律,得220d d )(tx ml x k mg =-- (2)由(1)和(2)式得22d d tx mkx =-由定义得 rad/s2100.1200===mk ω s44.02==ωπT0=t 时,物体B 脱落,有m 109.4ΔΔ200-⨯==-=-=kmg kmg l l l x即 m 109.4cos 20-⨯==ϕA x (3) 0sin 0=-=ϕωA v (4)(3)和(4) 式联立解得 2220109.4)(-⨯=+=ωv x A m从(3)式0=ϕ,满足(4)式, 所以 0=ϕ振动方程为 t x 210cos 109.42-⨯= m讨论: (1)我们现在是取向下为x 轴正向,如果取向上为正,则初相为π,振动方程有所不同.这就是解题中强调要给出坐标取向的理由.(2)如果A 、B 质量不等,例如A B m m 2=,会有不同的l Δ值,则初始条件0x 不同,将导致振动特征参量的改变.15-14 如图15-14(a )所示,一质量可忽略的盘挂在劲度系数为k 的轻弹簧之下,一质量为m 的物体自h 高处自由下落至盘中,并与盘粘在一起作简谐振动. 设m =0.1kg ,k =4.9 N/m ,h =0.3m ,若以物体刚落至盘中时为计时起点,求系统的振动方程.解 如图15-14(b), 弹簧、质量为m 的物体和盘组成振动系统.取平衡位置为坐标原点, 向上为x 轴正向.平衡时弹簧伸长为0l l-,平衡方程为)(0=--l l k mg(1)当盘的位移为x 时,应用牛顿第二定律,得220d d )(tx ml x l k mg=-+- (2)由(1)和(2)式,得 22d d tx mkx=-由定义得71.09.4===mk ω rad/s质量为m 的物体与盘相碰时, t =0,弹簧伸长量为m 2.0m 9.48.91.0k0=⨯-=-=mg x相碰时,物体下落速度为gh 2,忽略盘质量,应用动量守恒定律,碰后物与盘的共同速度方向向下,大小为m/s 3.2m/s 3.08.922=⨯⨯==gh v即 x 0=ϕcos A =0.2 m (3)ϕωsin 0A -=v <0 (4)(3)和(4)式联立解得220)(ωv +=x A =0.4 m从(3)式得21cos 0==Ax ϕ,3πϕ±=.从(4)式得0sin >ϕ,所以应取3πϕ=振动方程为 )37cos(4.0π+=t xm15-15 单摆长为l ,小球质量为m ,带有电荷+q ,悬挂在场强大小为E 、方向由左向右的均匀电场中,如图15-15(a )所示.(1)求小球处在平衡位置时悬线与竖直向下方向所成的角;(2)假设单摆对平衡位置的偏角很小,求单摆的周期.分析 由于带电小球受到均匀电场的电场力作用,合外力为零的平衡位置将与铅垂位置有一偏角.解 (1)如图15-15(b )所示, 小球受重力m g 、静电力E q 和张力F T 作用,设平衡位置偏角为0θ,则0cos 0T =-θF mgsin 0T =-qE F θmg qEarctan 0=θ (1) (2)当摆线从平衡位置偏离θ角时,与铅垂位置偏角为)(0θθ+,应用牛顿第二定律,得小球切向运动微分方程为2220200d d d )(d )sin()cos(tmltmlmg qE θθθθθθθ=+=+-+ (2)由(1)式可得0tan θmg qE =代入(2)式,得2200d d ]cos )sin(sin )[cos(cos tmlmg θθθθθθθθ=+-+应用三角函数公式,得θθθsin cos d d 022l g t-=当θ很小时,θθ≈sin,得θωθθθ222cos d d -=-=l g t表明角加速度与角位移成正比,且方向相反,因此小球作简谐振动,并得222222222 cos Eq gm ml T mlEq gm l g +=+==πθω15-16 劲度系数分别为1k 和2k 的两根弹簧串在一起,竖直地悬挂着,下面挂一质量为m 的小球,作成一个在竖直方向振动的弹簧振子.试求其振动周期.分析 这是两根弹簧串联(首尾相连)的问题.处理这类连接体问题仍要用隔离物体法.当两弹簧质量均可忽略时,无论处于运动或静止状态,两弹簧中的弹性力相等,并等于相互作用力. 解 两根串联弹簧和小球组成振动系统. 隔离物体,对小球作受力分析如图15-16所示.取平衡位置为坐标原点,向下为x 轴正向.设平衡时弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,小球受力平衡方程为101=-x k mg (1)两弹簧连接处相互作用力等大而反向,即0202101=-x k x k (2)小球相对于平衡位置下移x 时,设弹簧1伸长量为1x ,弹簧2伸长量为2x ,应用牛顿第二定律,得2211d d tx mx k mg =- (3)两弹簧连接处相互作用力等大而反向,即2211x k x k =,因201021x x x x x ++=+,得 )(20102121x x x k k k x +++=代入(3)式得 22212101d d )(tx mx k k k x k mg =++- (4)由(1)和(4)式,得222121d d tx mx k k k k =+-表明加速度与位移成正比,且方向相反,因此小球作简谐振动,并得)(2 )(21212121k k k k m T k k m k k +=+=πω15-17 两弹簧劲度系数分别为1k =1N/m , 2k =3N/m .在光滑的水平面上将此二弹簧分别连接到质量为m =0.1kg 的物体的两端,弹簧的其余两端分别固定在支柱1P 及2P 上,如图15-17所示.今使物体有一向右初位移m10320-⨯=x ,向右初速度m/s10402-⨯=v ,(1)试证物体作简谐振动;(2)求振动方程(设物体在振动中,两弹簧始终处于被拉伸状态).分析 当物体运动时,两弹簧的形变量大小相同,并等于物体的位移量. 解 以物体为研究对象, 受力如图15-17所示. 设平衡时两弹簧伸长量分别为1l 、2l ,有2211l k l k = (1) 取平衡位置为坐标原点,向右为x轴正向.当物体向右位移为x 时,应用牛顿第二定律,得221122d d )( )(tx mx l k x l k =+-- (2)由(1)和(2)式得2221d d )(-tx mx k k =+由定义,得 r a d /s102rad/s 1.0421==+=mk k ω已知t =0时, m/s 1040 m 1032020--⨯=⨯=v x即 ϕcos 0A x = = m 1032-⨯ (3)v 0= ϕωsin A - >0 (4)(3)和(2)式联立,解得220)(ωv +=x A =2×10-2m从(3)式得23cos 0==Ax ϕ,6πϕ±=,从(4)式得ϕsin <0,则应取6πϕ-=所以振动方程为 m )6102cos(1022π-⨯=-t x15-18 已知某简谐振动的振动曲线如图15-18(a),试求此简谐振动的振动方程.分析 振动曲线是振动物体位移x 与时间t 的关系曲线.从振动曲线上可得出振幅和初始条件.由图15-18(a)可以看出,当t 稍大于零时,物体将向x 轴负向运动,所以物体初速度v 0< 0.由旋转矢量图可以比较容易地确定振动的角频率,即旋转矢量1s 内转过的角度便是角频率.解 由图15-18(a)看出,A = 2 m ,32πϕ=.t =1s 时的位移和速度分别为)cos(1ϕω+=t A x = 0 (1)v 1= )sin(ϕωω+-t A <0 (2)(1)式给出cos )(ϕω+t = 0,得2)(πϕω=+t ,显然满足(2)式,即为1s 时的相位.旋转矢量图如图15-18(b)所示,t =0时的旋转矢量为)0(=t A ,可以看出,1s 内A 沿逆时针方向转过的角度即角频率为rad/s61123ππππω=++=振动方程为 )32611cos(2ππ+=t xm15-19 (1)、(2)两个简谐振动的周期相同,振动曲线如图15-19.求(1)、(2)两个简谐振动的相位差. 分析 根据振动曲线可以判断指定点的相位.若两振动的相位差012>-ϕϕ,通常说,振动2的相位比振动1超前或振动1的相位比振动2落后.解 从图15-19知,振动(1)的初始条件是10cos ϕA x ==0 (1)v 0= 0sin 1>-ϕωA (2)由(1)式得 21πϕ±=由(2)式得 0sin 1<ϕ 则振动(1)的初相应取 21πϕ-=振动(2)的初始条件是20cos ϕA x = =A (3)v 0= 2sin ϕωA -=0 (4)由(3)式得02=ϕ,满足(4)式,即为振动(2)的初相.因两振动的角频率相同, 所以振动(1)与振动(2)相位差为2π-, 且振动(1)比振动(2)相位落后2π.15-20 一质量为0.1kg 的物体作振幅为0.01m 的简谐振动,最大加速度为0.042m/s .试求(1)振动的周期;(2)总的振动能量;(3)物体在何处时,其动能和势能相等?分析 作简谐振动的弹簧振子系统机械能守恒, 动能和势能都随时间周期变化且相互转换,这是系统运动过程中只有重力、弹性力等保守力作功,外力和非保守内力不作功的条件下才成立的.实际的振动系统起码要受到阻力作用, 因而必定有能量的损耗,系统机械能不守恒.解 (1)由A a m 2ω= 得s 14.3s 04.001.022===ππma A T(2)总振动能量为J102J 01.004.01.02121215-m22⨯=⨯⨯⨯===A maAm E ω(3)设动能和势能相等时, 物体距平衡位置x 远, 则 2P 21kx E =又由 mk E E E ===2k P , 21ω得 m 1007.7m 04.01.001.010235--⨯=⨯⨯⨯==mma EA x15-21 质点作简谐振动,已知振动频率为ν, 则振动动能变化的频率为多少?当其位移为振幅的一半时,其动能为总能量的几分之几?分析 只要大致勾画出k E -t 和x-t 曲线轮廓,便可得出动能变化频率与振动频率间关系.解 振动动能为)]2(2cos 1[41 )2(sin 2122222k t A m t A m E πνωπνω-==所以振动动能变化频率为ν2,k E -t 曲线如图15-21所示.当 A x 21=时, 振动势能为)21(41)2(2122p kA A k E ==此时振动动能为)21(43)21(4121222P k kA kA kA E E E =-=-= 即为总能量的3/4.15-22 两同方向简谐振动,其振动方程分别为)4110cos(106, )4310cos(1052221ππ+⨯=+⨯=--t x t x式中x 以m 为单位,t 以s 为单位.(1)求合振动的振幅和初相;(2)若另有一同方向简谐振动)10cos(10723ϕ+⨯=-t x ,问 ϕ为何值时,合振动 31x x +的振幅为最大; 又 ϕ为何值时,合振动 32x x +的振幅为最小?(3)用旋转矢量法表示(1)、(2)的结果.分析 先体会给出的两个振动方程,哪里体现了同方向?哪里体现了同频率?作两个同方向同频率振动合成,最简单的方法是旋转矢量法(不妨也尝试一下解析法),只要画出了合成矢量,简单的几何关系便给出合振动的振幅及初相.本题的另一部分是讨论振动加强减弱条件,这为后面讨论机械波、光波的干涉加强减弱作舖垫.解 (1)如图15-22,两矢量间夹角为2π所以合振动振幅m 107.81 m106522222221--⨯=⨯+=+=A A A合振动初相8484465 tanarc 0'=+=πϕ(2) 合振动A 再与第三个振动合成.据振动叠加条件, πϕϕk 21±=-时合振动有极大值,即ππϕk 243±=(k =0,1,2…)当πϕϕ)12(1+±=-k 时合振动有极小值, 即ππϕ)12(43+±=k (k =0,1,2…)15-23 有两个同方向同频率的简谐振动,其合振动的振幅为0.2m ,相位与第一振动的相位差为π61,若第一振动的振幅为1103-⨯m ,用旋转矢量法求第二振动的振幅及第一、第二两个振动的相位差.分析 本题与上题相反, 为已知合振动求分振动. 解 作旋转矢量如图15-23所示,由几何关系得m1.030cos 212122=︒-+=AA A A A再由)cos(2122122212ϕϕ-++=A A A A A 解得20)cos(1212πϕϕϕϕ=-=-15-24 示波管的电子束受到两个互相垂直的电场的作用,若电子在两个方向上的位移分别为t A x ωcos =和)cos(ϕω+=t A y .求在0=ϕ、30=ϕ、90=ϕ各种情况下,电子在荧光屏上的轨道方程,并分别说明电子沿轨道的运动方向.分析 这是两个频率相同、振动方向相互垂直简谐振动的合成. 解 轨道方程为)(sin )cos(21221221222212ϕϕϕϕ-=--+A A xy Ay Ax因 A A A ===-2112 ϕϕϕϕϕ2222sin cos 2A xy y x =-+当0=ϕ时,得x=y ,为一过原点的直线.说明电子沿直线作往返运动.当 30=ϕ时,得 222413Axy y x =-+为一椭圆,且运动方程为)30cos(cos+==t A y t A x ωω当 90=t ω时,电子位于)21,0(A -处,此后瞬间x <0, y <0,电子位于第三象限内,表明电子顺时针转动.当 90=ϕ时,得 222A y x =+ 为一圆.且运动方程为)90cos(cos+==t A y t A x ωω当0=t ω时, 电子位于)0, (A 处, 此后瞬间x >0, y <0,电子位于第四象限内, 表明电子仍顺时针转动.。
第十五章习题解答1选择题:⑴ B ;⑵ C ;⑶ B ;⑷ B 。
2填空题:⑴ 线偏振光(或完全偏振光,或平面偏振光),光(矢量)振动,偏振化(或透光轴);⑵ 完全偏振光(或线偏振光),垂直; ⑶ ; ⑷ 波动,横波;3计算题:1 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少? 解:(1) max 120131cos 2I I I ==α 又 20max I I =∴ ,601I I = 故 'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α ∴ 'ο221635,32cos ==αα2 投射到起偏器的自然光强度为I 0,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过30°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是I 0的几倍?解:由马吕斯定律有:0o 2018330cos 2I I I ==, 0ο2024145cos 2I I I ==,0ο2038160cos 2I I I == 所以透过检偏器后光的强度分别是I 0的38,14,18倍。
3 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为I 1,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与I 1之比为多少?解:由马吕斯定律:ο20160cos 2I I =80I =,32930cos 30cos 20ο2ο20I I I == ∴ 194 2.25I I == 4 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少? (2)折射角为多少?解:⑴ 0tan 1.401i =,∴ 'ο02854=i⑵ οο'0903532i γ=-=5 自然光从空气中射向介质,测得布儒斯特角058i =.(1)求介质的折射率和折射角.(2)如果实验在水中进行,水的折射率为 1.33n =水,求这种情况下的布儒斯特角.(3)若介质是透明的,当光从介质射向与空气的分界面时,起偏角是多少?(4)若从空气中射向介质的是振动方向在入射面内的偏振光,仍以058i =入射,问反射光是什么性质的光?解:(1)00tan tan 58 1.6n i ===折射角:οο09032i γ=-=(2)0 1.6tan 1.2031.33i ==,ο050.26i = (3)01tan 0.6251.6i ==,ο032i = (4)无反射光。
⼤学物理15章习题15章习题答案15-3求各图中点P 处磁感应强度的⼤⼩和⽅向。
[解] (a) 因为长直导线对空间任⼀点产⽣的磁感应强度为:()210cos cos 4θθπµ-=aIB对于导线1:01=θ,22πθ=,因此aI B πµ401=对于导线2:πθθ==21,因此02=BaIB B B πµ4021p =+= ⽅向垂直纸⾯向外。
(b) 因为长直导线对空间任⼀点产⽣的磁感应强度为:()210cos cos 4θθπµ-=aIB对于导线1:01=θ,22πθ=,因此rI a I B πµπµ44001==,⽅向垂直纸⾯向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πµπµ44002==,⽅向垂直纸⾯向内。
半圆形导线在P 点产⽣的磁场⽅向也是垂直纸⾯向内,⼤⼩为半径相同、电流相同的圆形导线在圆⼼处产⽣的磁感应强度的⼀半,即rIr=,⽅向垂直纸⾯向内。
所以,rIr I r I r I r I B B B B 4244400000321p µπµµπµπµ+=++=++= (c) P 点到三⾓形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产⽣的磁感应强度的⽅向都是垂直纸⾯向内,⼤⼩都是()a I d IB πµπµ23150cos 30cos 400000=-=故P 点总的磁感应强度⼤⼩为aIB B πµ29300==⽅向垂直纸⾯向内。
15-4在半径为R 和r 的两圆周之间,有⼀总匝数为N 的均匀密绕平⾯线圈,通有电流I ,⽅向如图所⽰。
求中⼼O 处的磁感应强度。
[解] 由题意知,均匀密绕平⾯线圈等效于通以 I NI 圆盘,设单位长度线圈匝数为nrR Nn -=建⽴如图坐标,取⼀半径为x 厚度为dx 的圆环,其等效电流为:x r R NIx j I d d d -== )(2d 2d d 000r R x xNI xIB -==µµrR r R NIr R x xNIln)(2)(2d d 0000-=-==?µµ所以⽅向垂直纸⾯向外.15-5电流均匀地流过⼀⽆限长薄壁半圆筒,设电流I =5.0A ,圆筒半径 R =m 100.12?如图所⽰。
第15章 电磁感应15.1 在通有电流I =5 A 的长直导线近旁有一导线段ab ,长l =20 Cm ,离长直导线距离d =10 cm (图15-1)。
当它沿平行于长直导线的方向以速度v =10 m /s 平移时,导线段中的感生电动势多大?a,b哪端的电势高?图15-1解:(如图15-1所示)由于所以a 端电势高。
15.2 平均半径为12 cm 的4×103匝线圈,在强度为0.5G 的地磁场中每秒钟旋转30周,线圈中可产生最大感生电动势为多大?如何旋转和转到何时,才有这样大的电动势?解:线圈绕垂直于磁场的直径旋转,当线圈平面法线与磁场垂直时感生电动势出现此最大值。
15.3 如图15-2所示,长直导线中通有电流l=5.0 A,另一矩形线圈共1×103匝,宽a=10 cm,长L=20 cm,以v=2 m/s的速度向右平动,求当d=10 cm时线圈中的感生电动势。
图15-2解:如图15-2所示,线圈向右平移时,上下两边不产生动生电动势。
因此,整个线圈内的感生电动势为15.4 习题15.3中若线圈不动,而长导线中通有交变电流,线圈内的感生电动势将为多大?解:通过线圈的磁链为15.5 在半径为R的圆柱形体积内,充满磁感应强度为B的均匀磁场。
有一长为L的金属棒放在磁场中,如图15-3所示。
设磁场在增强,并且已知,求棒中的感生电动势,并指出哪端电势高。
图15-3解:方法一如图15-3所示,考虑△Oba。
以S表示其面积,则通过S的磁通量。
当磁通变化时,感应电场的电场线为圆心在O的同心圆。
由法拉第电磁感应定律可得由此得由于,所以,因而b端电势高方法二直接对感应电场积分。
在棒上dl处的感应电场的大小为,方向如图15-3所示由于,所以b 端电势高。
15.6 在50周年国庆盛典上我FBC-1“飞豹”新型超音速歼击轰炸机在天安门上空沿水平方向自东向西呼啸而过。
该机翼展12.705m 。
设北京地磁场的竖直分量为0.42×10-4T ,该机又以最大M 数1.70(M 数即“马赫数”,表示飞机航速相当于声速的倍数)飞行,求该机两翼尖间的电势差。
15 -8 天狼星的温度大约是11 000 ℃.试由维恩位移定律计算其辐射峰值的波长. 解 由维恩位移定律可得天狼星单色辐出度的峰值所对应的波长nm 1057.27-⨯==Tbλm 该波长属紫外区域,所以天狼星呈紫色.15 -9 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球表面上的辐射能量为1.4 ×103 W·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球表面单位面积在单位时间内接受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.解 根据分析有()22π4π4REd T M = (1) ()4T σT M = (2)由式(1)、(2)可得K 58002/122=⎪⎪⎭⎫ ⎝⎛=σR E d T15 -10 钨的逸出功是4.52eV ,钡的逸出功是2.50eV ,分别计算钨和钡的截止频率.哪一种金属可以用作可见光范围内的光电管阴极材料?分析 由光电效应方程W m h +=2v 21v 可知,当入射光频率ν =ν0 (式中ν0=W/h )时,电子刚能逸出金属表面,其初动能02=v 21m .因此ν0 是能产生光电效应的入射光的最低频率(即截止频率),它与材料的种类有关.由于可见光频率处在0.395 ×1015 ~0.75 ×1015Hz 的狭小范围内,因此不是所有的材料都能作为可见光范围内的光电管材料的(指光电管中发射电子用的阴极材料).解 钨的截止频率 Hz 1009.115101⨯==hW v钡的截止频率 Hz 10603.015202⨯==hW v 对照可见光的频率范围可知,钡的截止频率02v 正好处于该范围内,而钨的截止频率01v 大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料.15 -11 钾的截止频率为4.62 ×1014Hz ,今以波长为435.8nm 的光照射,求钾放出的光电子的初速度.解 根据光电效应的爱因斯坦方程W m h +=2v 21v其中 W =hν0 , ν=c/λ 可得电子的初速度1-52/10s m 74.52⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=v v λc m h由于逸出金属的电子的速度v <<c ,故式中m 取电子的静止质量.15 -12 在康普顿效应中,入射光子的波长为3.0 ×10-3nm ,反冲电子的速度为光速的60%,求散射光子的波长及散射角.分析 首先由康普顿效应中的能量守恒关系式2200mc λch c m λc h+=+,可求出散射光子的波长λ, 式中m 为反冲电子的运动质量,即m =m 0(1-v 2/c 2 )-1/2 .再根据康普顿散射公式()θλλλλc cos 1Δ0-=-=,求出散射角θ,式中λC 为康普顿波长(λC =2.43 ×10-12 m).解 根据分析有2200mc λch c m λc h+=+ (1) m =m 0(1-v 2/c 2 )-1/2 (2)()θλλλc cos 10-=- (3)由式(1)和式(2)可得散射光子的波长m 1035.4443000-⨯=-=cm λh λh λ将λ值代入式(3),得散射角6363444.0arccos 1arccos 0'==⎪⎪⎭⎫ ⎝⎛--=oc λλλθθ15 -14 波长为0.10 nm 的辐射,照射在碳上,从而产生康普顿效应.从实验中测量到散射辐射的方向与入射辐射的方向相垂直.求:(1) 散射辐射的波长;(2) 反冲电子的动能和运动方向.解 (1) 由散射公式得()nm 1024.0cos 1Δ0=-=-=θλλλλc(2) 反冲电子的动能等于光子失去的能量,因此有J 66.4110017-10v v ⨯=⎪⎪⎭⎫ ⎝⎛-=-=λλhc h h E k 根据动量守恒的矢量关系(如图所示),可确定反冲电子的方向8144arctan /arctan 00'=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=o λλλh λh15 -16计算氢原子光谱中莱曼系的最短和最长波长,并指出是否为可见光. 分析 氢原子光谱规律为⎥⎥⎦⎤⎢⎢⎣⎡-=22111i f n n R λ 式中n f =1,2,3,…,n i =n f +1,n f +2,….若把氢原子的众多谱线按n f =1,2,3,…归纳为若干谱线系,其中n f =1 为莱曼系,n f =2 就是最早被发现的巴耳末系,所谓莱曼系的最长波长是指n i =2,所对应的光谱线的波长,最短波长是指n i →∞所对应的光谱线的波长,莱曼系的其他谱线均分布在上述波长范围内.式中R 的实验值常取1.097×107m -1 .此外本题也可由频率条件hν =E f -E i 计算. 解 莱曼系的谱线满足⎪⎪⎭⎫ ⎝⎛-=221111i n R λ,n i =2,3,4,… 令n i =2,得该谱系中最长的波长 λmax =121.5nm 令n i →∞,得该谱系中最短的波长 λmin =91.2nm对照可见光波长范围(400 ~760 nm),可知莱曼系中所有的谱线均不是可见光,它们处在紫外线部分.15 -18 如用能量为12.6eV 的电子轰击氢原子,将产生哪些谱线?分析 氢原子可以从对它轰击的高能粒子上吸收能量而使自己从较低能级(一般在不指明情况下均指基态)激发到较高的能级,但吸收的能量并不是任意的,而是必须等于氢原子两个能级间的能量差.据此,可算出被激发氢原子可跃迁到的最高能级为n i =3.但是,激发态都是不稳定的,其后,它又会自发跃迁回基态,如图所示,可以有3→1,3→2和2→1 三种可能的辐射. 解 根据分析有21211Δi ff n E n E E E E -=-= (1) ⎪⎪⎭⎫ ⎝⎛-=22111f i n n R λ (2) 将E 1 =-13.6eV ,n f =1 和ΔE =-12.6eV(这是受激氢原子可以吸收的最多能量)代入式(1),可得n i =3.69,取整n i =3(想一想为什么?),即此时氢原子处于n =3 的状态.由式(2)可得氢原子回到基态过程中的三种可能辐射(见分析)所对应的谱线波长分别为102.6nm 、657.9 nm 和121.6 nm.15 -20 已知α粒子的静质量为6.68×10-27 kg ,求速率为5 000 km·s -1的α粒子的德布罗意波长.分析 在本题及以后几题求解的过程中,如实物粒子运动速率远小于光速(即v <<c )或动能远小于静能(即E k <<E 0 ),均可利用非相对论方法处理,即认为0m m ≈和k E m p 022=.解 由于α粒子运动速率v <<c ,故有0m m = ,则其德布罗意波长为nm 1099.150-⨯===vm h p h λ15 -21 求动能为1.0eV 的电子的德布罗意波的波长.解 由于电子的静能MeV 512.0200==c m E ,而电子动能0E E k <<,故有()2/102k E m p =,则其德布罗意波长为()nm 23.122/10===k E m h p h λ15 -23 若电子和光子的波长均为0.20nm ,则它们的动量和动能各为多少?分析 光子的静止质量m 0 =0,静能E 0 =0,其动能、动量均可由德布罗意关系式E =hν,λhp =求得.而对电子来说,动能pc c m c m c p E E E k <-+=-=20420220.本题中因电子的()()MeV 512.0keV 22.60E pc <<,所以0E E k << ,因而可以不考虑相对论效应,电子的动能可用公式022m p E k =计算.解 由于光子与电子的波长相同,它们的动量均为1-24s m kg 1022.3⋅⋅⨯==-λhp 光子的动能 eV 22.6===pc E E k电子的动能 eV 8.37202==m p E k讨论 用电子束代替可见光做成的显微镜叫电子显微镜.由上述计算可知,对于波长相同的光子与电子来说,电子的动能小于光子的动能.很显然,在分辨率相同的情况下(分辨率∝1/λ),电子束对样品损害较小,这也是电子显微镜优于光学显微镜的一个方面.15 -27 一质量为40 g 的子弹以1.0 ×103 m·s -1 的速率飞行,求:(1)其德布罗意波的波长;(2) 若子弹位置的不确定量为0.10mm ,求其速率的不确定量. 解 (1) 子弹的德布罗意波长为vm h λ==1.66 ×10-35m (2) 由不确定关系式以及x v ΔΔm p x =可得子弹速率的不确定量为xm h m p x ΔΔΔ==v =1.66 ×10-28 m·s -1 讨论 由于h 值极小,其数量级为10-34 ,故不确定关系式只对微观粒子才有实际意义,对于宏观物体,其行为可以精确地预言.15 -30 已知一维运动粒子的波函数为()⎩⎨⎧<≥=-0,00,x x Axe x ψx λ 式中λ>0,试求:(1) 归一化常数A 和归一化波函数;(2) 该粒子位置坐标的概率分布函数(又称概率密度);(3) 在何处找到粒子的概率最大.分析 描述微观粒子运动状态的波函数()x ψ,并不像经典波那样代表什么实在的物理量,而是刻画粒子在空间的概率分布,我们用()2x ψ表示粒子在空间某一点附近单位体积元内出现的概率,又称粒子位置坐标的概率分布函数,由于粒子在空间所有点出现的概率之和恒为1,即()⎰=VV x ψ1d 2(本题为()⎰∞∞-=1d 2x x ψ) ,称为归一化条件.由此可确定波函数中的待定常数A 和被归一化后的波函数,然后针对概率分布函数()2x ψ,采用高等数学中常用的求极值的方法,可求出粒子在空间出现的概率最大或最小的位置. 解 (1) 由归一化条件()⎰∞∞-=1d 2x x ψ,有⎰⎰⎰⎰∞-∞-∞-∞===+03220222022214d d d 0λA x ex A x ex A x xλxλ2/32λA = (注:利用积分公式3022d by e y by =-∞⎰)经归一化后的波函数为()⎩⎨⎧<≥=-0,00,2x x xe λλx ψx λ (2) 粒子的概率分布函数为()⎩⎨⎧<≥=-0,00,2x x xe λλx ψx λ 式中λ>0,试求:(1) 归一化常数A 和归一化波函数;(2) 该粒子位置坐标的概率分布函数(又称概率密度);(3) 在何处找到粒子的概率最大.分析 描述微观粒子运动状态的波函数()x ψ,并不像经典波那样代表什么实在的物理量,而是刻画粒子在空间的概率分布,我们用()2x ψ表示粒子在空间某一点附近单位体积元内出现的概率,又称粒子位置坐标的概率分布函数,由于粒子在空间所有点出现的概率之和恒为1,即()⎰=VV x ψ1d 2(本题为()1d 2=⎰∞∞-x x ψ) ,称为归一化条件.由此可确定波函数中的待定常数A 和被归一化后的波函数,然后针对概率分布函数()2x ψ,采用高等数学中常用的求极值的方法,可求出粒子在空间出现的概率最大或最小的位置. 解 (1) 由归一化条件()1d 2=⎰∞∞-x x ψ,有14d d d 0322202220202===+-∞-∞∞-⎰⎰⎰λA x ex A x ex A x xλxλ2/32λA =(注:利用积分公式322d b y e y by =-∞⎰) 经归一化后的波函数为()⎩⎨⎧<≥=-0,00,2x x xe λλx ψx λ(2) 粒子的概率分布函数为()⎩⎨⎧<≥=-0,00,42232x x e x λx ψx λ(3)令()()0d d 2=xx ψ,有()0224223=---x λx λxe λxe λ,得x =0,λx 1=和x →∞时,函数()2x ψ有极值.由二阶导数()()0d d 12==λx xx ψ可知,在λx 1=处,()2x ψ 有最大值,即粒子在该处出现的概率最大.15 -31 设有一电子在宽为0.20nm 的一维无限深的方势阱中.(1) 计算电子在最低能级的能量;(2) 当电子处于第一激发态(n =2)时,在势阱中何处出现的概率最小,其值为多少?解 (1) 一维无限深势阱中粒子的可能能量mah n E n 822= ,式中a 为势阱宽度,当量子数n =1 时,粒子处于基态,能量最低.因此,电子在最低能级的能量为mah E 821==1.51 ×10-18J =9.43eV(2) 粒子在无限深方势阱中的波函数为()x an a x ψπsin 2=, n =1,2,… 当它处于第一激发态(n =2)时,波函数为()x aa x ψπ2sin 2=, 0≤x ≤a 相应的概率密度函数为()x aa x ψπ2sin 222=, 0≤x ≤a 令()()0d d 2=xx ψ,得0π2cos π2sin π82=ax a x a 在0≤x ≤a 的范围内讨论可得,当a a a x 43,2,4,0=和 a 时,函数()2x ψ取得极值.由()()0d d 2>xx ψ可知,函数在x =0,x =a /2 和x =a (即x =0,0.10 nm ,0.20 nm)处概率最小,其值均为零.15 -33 一电子被限制在宽度为1.0×10-10 m 的一维无限深势阱中运动.(1) 欲使电子从基态跃迁到第一激发态,需给它多少能量? (2) 在基态时,电子处于x 1 =0.090×10-10 m 与x 2 =0.110×10-10 m 之间的概率近似为多少?(3) 在第一激发态时,电子处于x 1′=0 与x 2′=0.25×10-10 m 之间的概率为多少?分析 设一维粒子的波函数为()x ψ,则()2x ψ表示粒子在一维空间内的概率密度,()x x ψd 2则表示粒子在x x x d ~+间隔内出现的概率,而()⎰21d 2x x x x ψ则表示粒子在21~x x 区间内出现的概率.如21~x x 区间的间隔Δx 较小,上述积分可近似用()x x ψΔ2代替,其中()2x ψ取1x 和2x 之间中点位置c 处的概率密度作为上述区间内的平均概率密度.这是一种常用的近似计算的方法.解 (1) 电子从基态(n =1)跃迁到第一激发态(n =2)所需能量为eV 11288Δ2221222212=-=-=ma h n ma h n E E E(2) 当电子处于基态(n =1) 时,电子在势阱中的概率密度为()x aa x ψπsin 22=,所求区间宽度21Δx x x -=,区间的中心位置221x x x c +=,则电子在所求区间的概率近似为 ()()()3122122121108.32πsin 2Δd 21-⨯=-⎥⎦⎤⎢⎣⎡+⋅=≈=⎰x x x x a a x x ψx x ψp x x (3) 同理,电子在第一激发态(n =2)的概率密度为()x aa x ψ2πsin 22=,则电子在所求区间的概率近似为()25.022πsin 2212122='-'⎥⎦⎤⎢⎣⎡'+'⋅=x x x x a a p15 -34 在描述原子内电子状态的量子数n ,l ,m l 中,(1) 当n =5 时,l 的可能值是多少? (2) 当l =5 时,m l 的可能值为多少? (3) 当l =4 时,n 的最小可能值是多少? (4) 当n =3 时,电子可能状态数为多少?分析 微观粒子状态的描述可用能量、角动量、角动量的空间取向、自旋角动量和自旋角动量的空间取向所对应的量子数来表示,即用一组量子数(n ,l ,m l ,s ,ms )表示一种确定状态.由于电子自旋量子数s 恒为1/2,故区别电子状态时只需用4 个量子数即n 、l 、m l 和m s ,其中n 可取大于零的任何整数值,而 l 、m l 和m s 的取值则受到一定的限制,如n 取定后,l 只能为0,l ,…,(n -1),共可取n 个值;l 取定后,m l 只能为0, ±1,…, ±l ,共可取2l +1 个值;而m s 只可取±12 两个值.上述 4 个量子数中只要有一个不同,则表示的状态就不同,因此,对于能量确定(即n 一定)的电子来说,其可能的状态数为2n 2 个. 解 (1) n =5 时,l 的可能值为5 个,它们是l =0,1,2,3,4 (2) l =5时,m l 的可能值为11个,它们是m l =0,±1,±2,±3,±4,±5 (3) l =4 时,因为l 的最大可能值为(n -1),所以n 的最小可能值为5 (4) n =3 时,电子的可能状态数为2n 2 =1815 -35 氢原子中的电子处于n =4、l =3 的状态.问:(1) 该电子角动量L 的值为多少? (2) 这角动量L 在z 轴的分量有哪些可能的值? (3) 角动量L 与z 轴的夹角的可能值为多少?解 (1) n =4、l =3 时,电子角动量()π212π21hh l l L =+= (2) 轨道角动量在z 轴上的分量π2hm L lz =,对于n =4、l =3的电子来说3,2,1,0±±±=l m ,则L z 的可能取值为π23,π22,π2,0hh h ±±±.(3) 角动量L 与z 轴的夹角()1arccos arccos +==l l m L L θθlz ,如图所示,当m l 分别取3,2,1,0,-1,-2,-3 时,相应夹角θ 分别为oooooo150,125,107,73,55,30。