水中大肠杆菌的检测办法
- 格式:doc
- 大小:119.00 KB
- 文档页数:7
水中总大肠菌群检测方法
水中总大肠菌群检测一般采用以下方法:
1. 高级培养基方法:将取样的水样加入适当的营养培养基中,培养出细菌,并计数大肠菌群的数量。
常用的培养基有大肠杆菌培养基、MacConkey培养基等。
2. 荧光定量PCR方法:通过PCR技术检测水中大肠菌群的DNA,使用荧光探针结构标记大肠杆菌特异性基因,通过测定荧光信号进行定量分析。
3. 流式细胞仪方法:将水样进行染色,然后通过流式细胞仪分析计数大肠菌群的数量。
常用的染色方法有DAPI染色法、荧光活菌染色法等。
4. 基于微生物生物传感器的方法:利用微生物细胞对特定细菌的识别和响应能力,设计合成生物传感器来监测水中大肠菌群的存在和数量。
以上方法可根据实际需要选择使用,各自具有不同的优缺点。
在进行水环境监测时,可以结合多种方法进行检测,以获得准确和可靠的结果。
5.水中大肠杆菌的检测(多管发酵法)第一篇:5.水中大肠杆菌的检测(多管发酵法)水中大肠杆菌群书的监测(发酵法)一、试验目的:1.了解和学习水中大肠杆菌的测定原理和测定意义。
2.学习和掌握水中大肠杆菌的监测方法。
二、试验原理:水的微生物学的检验,特别是大肠杆菌的检验,在保证饮水安全和控制传染病上有着重要意义,同时也是评价水质状况的重要指标。
国家饮用水的标准规定饮用水中大肠杆菌群书每升中不超过3个,细菌总数每毫升不超过100个。
水中大肠杆菌的检验方法,常用多管发酵发和滤膜法。
多管发酵发可运用于各种水样的检验,但操作繁琐,需要时间长。
滤膜法仅用于自来水和深井水。
操作简洁快速,但不适用于杂质较多,易于阻塞滤孔的水样。
三、试验材料:1.培养基:乳糖蛋白胨培养基,伊红美蓝培养基2.器材:灭菌三角瓶、无菌平皿、无菌吸管、无菌试管等。
四、试验内容第一天:1.水样的采集自来水洗将自来水龙头用酒精灯火焰灼烧灭菌,在开放水龙头取水流5mh,以灭菌山角瓶接水取样以备分析。
2.用发酵法检查大肠杆菌(1)生活饮用水的检验①初步发酵试验:在2个各装有50mh的3倍乳糖蛋白胨培养液的三角瓶中,以无菌操作各自加水样10mh。
摇匀后,37℃培养24h第二天:②平板分离:经24h培养后。
特产酸产气及只产酸的发酵管,分别划线接种于伊红美蓝琼脂平板(EMD培养基上),37℃培养18~24h。
大肠杆菌群在EMD平板上,菌落呈紫黑色,具有或略带或不带有金属光泽,或者呈淡紫红色,仅中心颜色较深,挑取符合上述特征的菌落进行涂片,革兰氏染色,镜检。
第三天:③复发酵试验:将革兰氏阴性无芽孢杆菌的菌落的剩余部分接于单倍乳糖发酵管中,为防止遗漏,每管可接种来自同一初发酵管的平板上同一类型菌群1~3个,37℃培养24h,如果产酸又产气者,即证实有大肠菌群存在。
第四天:④报告:根据证实有大肠菌群存在的复发酵管的阳性管,查附录1或2,报告每升水样品中大肠菌群数(MPN)五、思考题记录试验结果,并对所测样品作出评价。
水中耐热大肠菌群检测方法水中耐热大肠菌群检测是一种用于评估水质和判断水域环境卫生安全的重要方法。
下面是关于水中耐热大肠菌群检测的10条基本信息以及详细描述:1. 流式细胞术:流式细胞术是一种通过将水样中的细菌标记并通过流式细胞仪进行检测和计数的方法。
适用于快速分析水样中的大肠菌群含量。
2. 膜过滤法:膜过滤法通过将水样通过膜滤器,筛选并集落大肠菌群,并在适当的培养基上进行培养,可用于定量检测水样中的大肠杆菌。
3. PCR技术:PCR技术通过引物对大肠菌群的DNA进行扩增,从而快速检测水样中的大肠菌群的数量和种类。
可以利用PCR技术进行快速筛选和检测水质。
4. 培养方法:传统的培养方法通过将水样中的细菌在适当的培养基上进行培养,进行形态和生理特性的观察,并通过计数菌落形成单位(CFU)来评估水样中大肠菌群的含量。
5. 颜色指示法:这种方法通过将水样与专门的指示剂配合使用,观察颜色变化以识别大肠菌群污染。
可以通过比较颜色的深浅程度来估计水样中大肠菌群的含量。
6. 微生物生化方法:利用大肠菌群的特定生化反应,如气体产生、酶反应等来判断水样中是否存在大肠菌群污染。
适合用于水样中大肠菌群含量的快速筛查。
7. 荧光显微镜技术:荧光显微镜技术利用特定的荧光探针标记细菌,通过显微镜观察细菌的形态和分布情况,可以用来定性检测大肠菌群。
8. 免疫学检测方法:免疫学检测方法通过检测水样中的大肠菌群特异性抗原或抗体来判断细菌的存在与否。
可以利用快速免疫层析法或ELISA法进行大肠菌群的快速检测。
9. 流动细胞技术:流动细胞技术将水样通过流动细胞仪,利用荧光标记的细胞特异性探针检测水中的大肠菌群。
可用于快速检测水质中大肠菌群的含量和分布。
10. 分子生物学方法:分子生物学方法可以通过分析水样中的DNA或RNA序列,利用特定的引物对大肠菌群进行特异性检测。
使用16S rRNA基因扩增子测序技术可以鉴定水样中的大肠菌群种类和丰度。
附件水中大肠杆菌群检测方法-多管发酵法NIEA 一、方法概要本方法系用以检测水中革兰氏染色阴性,不产生内生孢子之杆状好氧或兼性厌氧菌,且能在35 ±1 ℃、48 ± 3小时发酵乳糖并产生酸及气体之大肠杆菌群(Coliform group);在不同体积或不同稀释度之水样所产生之结果,以「100 mL水中最大可能数(MPN/100 mL)」表示 100 mL水中存在之大肠杆菌群数目。
二、适用范围本方法适用地面水体、地下水体、废水、污水及水源水质水样中大肠杆菌群之检验。
三、干扰(一) 水样中含有抑制或促进大肠杆菌群细菌生长之物质。
(二) 检测使用的玻璃器皿及设备含有抑制或促进大肠杆菌群细菌生长的物质。
四、设备(一) 量筒:100至1000 mL之量筒。
(二) 吸管:有刻度之10 mL灭菌玻璃吸管或市售无菌塑料吸管,或无菌微量吸管(micropipet)。
(三) 试管:大小约150 × 15 mm之试管或有盖螺旋试管。
(四) 发酵管(fermentation tube):大小约22 × 9 mm之玻璃管。
(五) 稀释瓶:容量约100 mL可灭菌之硼硅玻璃制品。
(六) 锥形瓶:200至2000 mL之可灭菌硼硅玻璃制品。
(七) 采样容器:容量120 mL以上无菌之硼硅玻璃瓶或无菌塑料有盖容器,或市售无菌袋。
(八) 冰箱:温度能保持在4 ± 2℃者。
(九) 天平:待测物重量大于2 g时,须能精秤至 g;待测物重量不大于2 g时,须能精秤至 g。
(十) 培养箱:温度能保持在35 ± 1℃者。
(十一) 高压灭菌釜:温度能维持在121℃(压力约15 lb/in2或 Kg/cm2)灭菌15分钟以上者。
(十二) 高温干热烘箱:如用于玻璃器皿等用具之灭菌,温度须能保持在 160℃达2小时或170℃达1小时以上者。
(十三) 接种环:为白金或镍铬合金制,适用于细菌接种或移植,亦可使用无菌塑料制品。
附件水中大腸桿菌群檢測方法-濾膜法NIEA E202.53B一、方法概要本方法係用濾膜檢測水中好氧或兼性厭氧、革蘭氏染色陰性、不產芽孢之大腸桿菌群(Coliform group)細菌。
該群細菌在含有乳糖的Endo培養基上,於35 ± 1℃ 培養24 ± 2小時會產生紅色色系具金屬光澤菌落。
所有缺乏金屬光澤的菌落,均判定為非大腸桿菌群。
二、適用範圍本方法適用於地面水體、地下水體、廢水、污水及海域水質及水源水質水樣中大腸桿菌群之檢測。
三、干擾(一) 水樣中含有抑制或促進大腸桿菌群細菌生長之物質。
(二) 檢測使用的玻璃器皿及設備含有抑制或促進大腸桿菌群細菌生長的物質。
(三) 濁度過高之水樣易造成濾膜孔隙阻塞,或造成細菌菌落瀰漫生長(spreading)而影響水樣檢驗的觀察及結果的判讀。
四、設備(一) 量筒:100至1000 mL之量筒。
(二) 吸管:有0.1 mL刻度之10 mL之無菌玻璃吸管或無菌塑膠製吸管,或無菌微量吸管(micropipet)。
(三) 稀釋瓶:100至1000 mL可滅菌、具螺旋蓋之硼矽玻璃製品。
(四) 錐形瓶:200至1000 mL可滅菌之硼矽玻璃製品。
(五) 採樣容器:容量100 mL以上無菌之硼矽玻璃或塑膠製有蓋容器,使用市售無菌袋亦可。
(六) 培養皿:硼矽玻璃製或可拋棄式塑膠製培養皿,大小為60 × 15 mm、50 × 12 mm 或其他適當大小。
(七) 過濾裝置:能耐高溫高壓滅菌的玻璃、塑膠、陶瓷或不鏽鋼等材質構成之無縫隙漏斗,以鎖定裝置、磁力或重力固定於底部。
(八) 抽氣幫浦:水壓式或吸氣式,壓力差最好在138至207 kPa者。
(九) 濾膜:使用材質為混合纖維素酯(mixed cellulose esters),直徑47 mm、孔徑0.45 μm且有格子記號的無菌濾膜。
(十) 鑷子:前端平滑、內側無波紋,使用前浸泡於95% 酒精再以火燄燃燒滅菌。
饮用水中大肠杆菌标准1. 检测方法大肠杆菌的检测采用国家标准方法(GB 5750.10-2006)。
检测大肠杆菌的仪器和试剂包括显微镜、培养基、加热设备、无菌采样器等。
检测步骤包括采样、培养、显微镜观察和计数等。
2. 卫生指标饮用水中的大肠杆菌数量是反映水质卫生状况的重要指标。
根据国家标准(GB 5749-2006),生活饮用水中的大肠杆菌数量应不超过100 CFU/mL。
如超过此标准,表明水质存在污染,需要采取相应措施。
3. 水质标准根据国家相关法规和标准,饮用水水质应满足以下要求:(1)水质清澈,无异臭、异味;(2)水中不含病原体,如大肠杆菌、病毒等;(3)水中营养物质含量符合要求;(4)水质稳定,不易受外界污染。
4. 水处理过程为了保证饮用水的水质,需要进行水处理。
水处理过程包括沉淀、过滤、消毒等步骤。
沉淀过程去除水中的悬浮物和沉淀物;过滤过程去除更小的颗粒物和微生物;消毒过程杀死病原体,保证出水水质符合标准。
5. 监测计划为了保证饮用水的水质,需要制定监测计划。
监测计划包括采样点、采样频率、采样方法、检测方法等内容。
采样点应覆盖整个供水区域,采样频率应根据季节和污染情况进行调整。
检测结果应及时向公众公开,同时存档备查。
6. 违规处罚对于违反饮用水大肠杆菌标准的单位或个人,应进行相应的违规处罚。
违规处罚的方式包括罚款、责令停产整改、吊销证照等。
同时,应加强对违规行为的监督和管理,确保处罚的有效执行。
7. 信息公开政府和相关部门应定期公开饮用水水质信息,包括大肠杆菌数量等指标,以便公众了解水质状况。
信息公开应通过官方网站、媒体等多渠道进行传播,确保公众能够及时获取相关信息。
信息公开不仅可以保障公众的知情权,还可以促进社会的监督和共同参与,提高饮用水水质。
8. 科学研究为了更好地保障饮用水水质,需要对大肠杆菌标准和监测技术进行持续的深入研究。
科学研究可以包括新型检测方法的研究、水质标准的研究、水处理工艺的研究等。
水中耐热大肠菌群检测方法水中耐热大肠菌群是指在水体中生存繁殖的耐热性强的大肠杆菌及其近缘菌种。
这些菌群可以引起水污染,可能对人类健康造成潜在风险。
因此,水中耐热大肠菌群的检测对于水质评估和公众健康至关重要。
本文将介绍一种常用的水中耐热大肠菌群检测方法。
传统方法:1.涂标法:将水样涂于大肠杆菌选择性琼脂培养基的表面,培养并检测菌落形成。
2.溶解法:将水样固体沉淀后,培养在大肠杆菌选择性琼脂培养基中,培养并检测菌落形成。
这些传统方法的主要优点在于简单易行,但也存在着一些缺点,如操作时间长,对菌种的选择性不够明确,容易产生假阳性和假阴性结果等。
随着生物技术的不断发展,现代分子生物学技术的应用广泛,水中耐热大肠菌群的检测方法也得到了很大的改进和完善。
现代方法:1.PCR法:PCR(聚合酶链式反应)是一种高灵敏度的核酸检测方法,可以直接从水样中检测到耐热大肠菌的DNA。
通过PCR扩增特定的基因序列,如16SrRNA基因序列,来进行耐热大肠菌的检测。
这种方法具有高度的特异性和灵敏度,可以快速准确地检测到耐热大肠菌的存在。
2.荧光原位杂交法:荧光原位杂交(FISH)是一种直接在原位上检测特定细菌群落的方法。
通过标记具有亲缘关系的细菌的特定DNA序列,然后在水样中进行原位杂交,通过荧光显微镜观察,并计数特定菌群的数量。
这种方法不仅可以定量,还可以确定细菌群落的分布情况。
3.基于纳米技术的检测方法:近年来,基于纳米技术的检测方法也得到了广泛的应用。
例如,通过使用有特定响应于耐热大肠菌存在的纳米材料,如金纳米颗粒,可以实现对耐热大肠菌的快速检测和定量,并且具有高灵敏度和良好的选择性。
综上所述,水中耐热大肠菌群的检测是十分重要的,可以通过传统方法如涂标法和溶解法,也可以通过现代方法如PCR法、荧光原位杂交法和基于纳米技术的检测方法来进行。
这些方法各有优缺点,需要根据实际需要来选择合适的检测方法。
随着技术的发展和进步,相信将会有更多更高效的水中耐热大肠菌群检测方法被开发出来,为水质监测和公众健康保护提供更好的支持。
纯净水大肠杆菌检测方法纯净水是一种用于饮用和工业用途的水,在生产和配送过程中,可能会暴露于各种潜在的微生物污染源,其中包括大肠杆菌。
大肠杆菌是一种常见的肠道细菌,它可以被用来作为环境卫生和水质卫生的指标微生物。
因此,检测纯净水中的大肠杆菌含量是必要的,以确保水质符合国家标准和消费者的安全需求。
纯净水大肠杆菌检测方法包括传统培养和分子生物学技术两种方法。
下面将详细介绍这两种方法的原理和应用。
1. 传统培养法传统培养法是一种基于培养大肠杆菌菌落的定量和质量检测方法。
该方法是最常用的水质检测方法之一,可以检测出细菌数量较低的水样品,并且相对简单易行,分析成本较低。
传统培养法的原理是将样品接种到肉汤或营养琼脂培养基中,然后在恰当的条件下孵育,使大肠杆菌繁殖形成典型的圆形、平坦、有光泽、直径约为2mm的蓝色或暗紫色菌落,最终通过计数菌落的数量来确定样品中大肠杆菌的含量。
该方法的优势在于其简单、直观、可重复,并且可以根据环境状况进行某些微生物特定测试。
但是,此测试方法需要培养菌落,所以需要较长时间,必须在8-24小时内进行读数,这可能会影响检测的准确性和效率,尤其是当仅检测少量样品时。
2. 分子生物学技术分子生物学技术是一种基于DNA分析的方法,可以检测到细胞和病毒等微生物的DNA序列。
作为一种新型的检测技术,分子生物学技术的优点在于其高灵敏度、快速性和精确性,它可以解决传统培养法缺点,提高检测灵敏度和准确性。
此外,分子生物学技术还有助于检测未能在传统培养法中检测到的微生物。
分子生物学技术主要包括聚合酶链式反应(PCR)、即时PCR、荧光定量PCR、基因芯片技术等,这些方法可以测量纯净水中微生物或微生物DNA的含量,从而确定大肠杆菌是存在于样品中,其数量的多寡、菌株的种类和亚型、具体DNA 分布等相关信息。
此外,为了提高检测的准确性,还可以使用核苷酸序列分析、基因测序等进一步验证检测结果。
总结在纯净水生产和配送前,进行大肠杆菌检测是必要的。
水质大肠杆菌检测标准水质大肠杆菌是一种常见的水污染指标微生物,其存在往往代表着水体受到了粪便污染,可能存在病原微生物,对人体健康构成潜在威胁。
因此,对水质中的大肠杆菌进行检测具有重要意义。
本文将介绍水质大肠杆菌检测的标准及相关内容。
一、样品采集。
1. 采样地点。
样品采集应根据实际情况选择合适的采样点,通常应选择水流平缓、水深适中的采样点,避免选择有明显污染源的地方进行采样。
2. 采样容器。
采样容器应为无菌容器,避免使用含有抗菌剂的容器,避免对样品造成影响。
3. 采样方法。
在采样时,应尽量避免接触手部或其他物体,避免污染样品。
采样时应尽量避开表层水体,直接将容器浸入水中采集样品。
二、样品保存与运输。
1. 样品保存。
采集后的样品应尽快送至实验室进行检测,若无法立即送检,应在4℃条件下保存,避免样品中微生物的生长。
2. 样品运输。
样品在运输过程中应避免剧烈晃动和温度变化,以免对样品造成影响。
三、检测方法。
1. 培养法。
培养法是一种常见的大肠杆菌检测方法,通过在含有培养基的平板上培养样品中的微生物,并通过特定的培养条件,观察培养基上是否有大肠杆菌的生长。
2. PCR法。
PCR法是一种分子生物学方法,通过特定的引物扩增样品中的DNA,再通过特定的检测手段,判断样品中是否存在大肠杆菌。
四、检测标准。
根据《水质污染物排放标准》(GB 3838-2002)的规定,水体中大肠杆菌的限量标准为每100毫升不得超过500个。
若水样中大肠杆菌数量超过此标准,则代表水质受到了污染。
五、检测结果的解读。
当检测结果显示水样中的大肠杆菌数量超过标准限量时,应立即采取相应的水质改善措施,避免对周围环境和人体健康造成潜在威胁。
同时,应对水源进行全面排查,找出污染源并进行治理。
六、结论。
水质大肠杆菌的检测标准对于保障水质安全具有重要意义,正确的采样和检测方法能够有效地保障水质的监测工作。
同时,检测结果的解读和后续处理也是非常重要的环节,需要引起足够的重视和关注。
1. 掌握水中大肠杆菌检测的基本原理和方法。
2. 了解水中大肠杆菌污染的严重性及预防措施。
3. 培养实验操作技能,提高对水质监测的认识。
二、实验原理大肠杆菌(Escherichia coli)是一种条件致病菌,广泛存在于人和动物的肠道中。
在水质监测中,大肠杆菌常作为粪便污染的指示菌。
本实验采用伊红美蓝培养基进行大肠杆菌的检测,通过观察菌落特征,确定水中大肠杆菌的存在。
三、实验材料1. 实验器材:无菌试管、移液器、培养箱、酒精灯、无菌棉签、试管架、培养皿、显微镜等。
2. 实验试剂:伊红美蓝培养基、无菌水、水样、氯化钠、磷酸氢二钠、磷酸二氢钠等。
四、实验步骤1. 水样采集:采集待检测水样,用无菌容器盛装,避免污染。
2. 水样稀释:将水样进行适当的稀释,以便在培养基上形成单菌落。
3. 接种:取适量稀释后的水样,用无菌棉签均匀涂布于伊红美蓝培养基表面。
4. 培养:将接种后的培养基放入培养箱中,在37℃条件下培养24小时。
5. 观察:观察培养基上的菌落特征,如菌落大小、形状、颜色等,判断是否存在大肠杆菌。
6. 鉴定:对疑似大肠杆菌的菌落进行进一步的鉴定,如革兰氏染色、生化试验等。
五、实验结果与分析1. 菌落观察:在伊红美蓝培养基上,大肠杆菌菌落呈深紫色(黑色),边缘整齐,有金属光泽。
2. 鉴定结果:经革兰氏染色和生化试验,证实所观察到的菌落为大肠杆菌。
1. 大肠杆菌是水质监测中的重要指标,其存在表明水质可能受到粪便污染,存在健康风险。
2. 本实验采用伊红美蓝培养基进行大肠杆菌检测,操作简便,结果准确。
3. 在实际水质监测中,还需结合其他指标,如粪大肠菌群、耐热大肠菌群等,全面评估水质状况。
七、实验总结1. 本实验成功检测了水中大肠杆菌,掌握了水中大肠杆菌检测的基本原理和方法。
2. 通过实验,提高了对水质监测的认识,增强了环保意识。
3. 在今后的学习和工作中,将继续关注水质问题,为保护水资源、保障人民群众健康贡献力量。
附件水中大肠杆菌群检测方法-多管发酵法
NIEA E201.54B 一、方法概要
本方法系用以检测水中革兰氏染色阴性,不产生内生孢子之杆状好氧或兼性厌氧菌,且能在35 ± 1 ℃、48 ± 3小时发酵乳糖并产生酸及气体之大肠杆菌群(Coliform group);在不同体积或不同稀释度之水样所产生之结果,
二、
三、
(一)
(二)
四、
(一)
(二)
(三)
(四)
(五)
(六) 锥形瓶:200至2000 mL之可灭菌硼硅玻璃制品。
(七) 采样容器:容量120 mL以上无菌之硼硅玻璃瓶或无菌塑料有盖容器,或市售无菌袋。
(八) 冰箱:温度能保持在4 ± 2℃者。
(九) 天平:待测物重量大于2 g时,须能精秤至0.01 g;待测物重量不大于2 g时,须能精秤至0.001 g。
(十) 培养箱:温度能保持在35 ± 1℃者。
(十一) 高压灭菌釜:温度能维持在121℃(压力约15 lb/in2或 1.1 Kg/cm2)灭菌15分钟以上者。
(十二) 高温干热烘箱:如用于玻璃器皿等用具之灭菌,温度须能保持在160℃达2小时或170℃达1小时以上者。
(十三) 接种环:为白金或镍铬合金制,适用于细菌接种或移植,亦可使用无菌塑料制品。
(十四) pH计:精确度达0.1 pH单位。
五、试剂
(一) 试剂水:蒸馏水或去离子水,导电度在25 ℃时小于2 μ mho / cm(μS / cm)。
(二)
5.0g
2.75g
2.75g
配成2倍浓度(取71.2 g LST培养基粉末溶于1 L试剂水),完全溶解后,分取10 mL注入装有倒置发酵管之试管内,经121℃灭菌15分钟,冷却后备用,灭菌后培养基之pH值应在 6.8 ± 0.2。
灭菌后培养基若未当日使用,应保存在4 ± 2℃,保存期限为14天。
可根据检验需求量,依配方配制培养基。
2、煌绿乳糖胆汁培养基(Brilliant green lactose bile broth,简称BGLB)
1公升的BGLB 培养基中含有下列成份:
蛋白胨(Peptone)10.0g
乳糖(Lactose)10.0g
牛胆粉(Oxgall Powder)20.0g
煌绿色试剂(Brilliant Green)
0.0133g
试剂水
1L
取40 g BGLB培养基粉末溶于1 L试剂水,完全溶解后,分取5至10 mL注入装有倒置发酵管之试管内,
4 ± 2℃,
(三)
pH
100 mL,灭
3个月。
分
六、采样与保存
?(一) 盛装水样检验微生物之容器,应使用清洁并经灭菌之玻璃瓶或无菌塑料容器或市售无菌采样袋,且于采样时应避免受到污染。
水样若含有余氯时,无菌容器中应加入适量之无菌硫代硫酸钠(采取加氯之废水时,每100 mL水样中加入0.1 mL、10%硫代硫酸钠可还原15 mg/L余氯。
采取含氯之饮用水水样时,每100 mL之水样如加入0.1 mL之3%硫代硫酸钠,可中和之余氯量约为5 mg / L。
)。
(二) 采样前应清洁手部,再行采水样,所采水样应具有代表性。
(三) 运送时水样温度应维持在小于10 ℃且不得冻结,而实验室内保存温度应维持在4 ± 2 ℃。
(四) 水样应于采样后24小时内完成推定实验之水样添加步骤(七、步骤(一)4、),并置入培养箱中培养。
(五) 水样量须以能做完所需检验为度,但不得少于120 mL。
七、步骤
试验分两阶段进行。
首先进行推定试验,若推定试验结果为阳性反应,则继续进行第二阶段之确定试验,如结果仍是阳性反应则显示有大肠杆菌群存在。
各试验步骤如下述:
(一) 推定试验
形
、1000、10000
5支,小心混
(二)
4、在48 ± 3小时内,BGLB 培养基试管如有气体产生,则确定试验为阳性反应。
八、结果处理
(一) 经确定试验确认BGLB试管为阳性反应后,应以「100 mL水中最大可能数(MPN/100 mL)」计算及记录。
5
支发酵管连续三种稀释度之MPN可查表一。
(二) 表一所示接种之水样量为10 mL、1.0 mL 及0.1 mL,若所用之稀释度有三种以上时,采用最具意义之三种稀释
度,查表后再计算100 mL水中大肠杆菌群最大可能数。
稀释度之选取方式如下:
1、先选取5管均呈阳性反应的最高稀释度(此时稀释度较低之各组试管必须全部呈阳性反应),再选取下两个稀释度(如表二水样别a)。
2、如果稀释度最低的一组并非5管均呈阳性反应,则选取稀释度最低的一组,再选取下两个稀释度(如表二水样别b、c)。
3、如果依据上述原则(1、及2、)选取3个稀释度后,下一稀释度试管组仍有阳性反应试管,则舍弃原先3组中稀释度最低的一组,纳入下一稀释度的数据(如表二水样别d)。
4、如果依据上述原则(1、至3、)选取3个稀释度后,更高稀释度之试管组仍有阳性反应试管,则把更高稀释度之阳性反应试管数加至原先3组中稀释度最高的一组(如表二水样别e)。
(三)
(四)
九、
(一)
(二)
(三)
?(四) Citrobacter
(五)
(六)
十、精密度及准确度
略
十一、参考数据
?(一) APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 21st Edition, Section 9221. American Public Health Association, Washington, D.C.
?(二) Difco & BBL Manual: Manual of Microbiological Culture Media. 2003. BD Diagnostic Systems.
注1:水样如须稀释,建议于稀释后30分钟内完成检测步骤,以免造成细菌死亡或增生,影响实验结果。
图一水样稀释步骤
表一
三连续稀释度(10 mL、1 mL、0.1 mL)五试管重复测试时,阳性结果组合之MPN指数及95%信赖区间。