常微分方程习题集
- 格式:docx
- 大小:265.08 KB
- 文档页数:25
《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
习题2.31、验证下列方程是恰当方程,并求出方程的解。
1. 0)2()(2=-++dy y x dx y x 解: 1=∂∂yM,x N ∂∂=1 . 则xNy M ∂∂=∂∂ 所以此方程是恰当方程。
凑微分,0)(22=++-xdy ydx ydy dx x 得 :C y xy x =-+23312. 0)4()3(2=---dy x y dx x y解: 1=∂∂yM,1=∂∂x N . 则xNy M ∂∂=∂∂ . 所以此方程为恰当方程。
凑微分,0432=--+ydy dx x xdy ydx 得 C y xy x =+-2323. 0])(1[]1)([2222=--+--dy y x x y dx xy x y解: 3422)(2)()1)((2)(2y x xyy x y x y y x y y M -=-----=∂∂ 3422)(2)()(2)(2y x xyy x y x x y x x x N -=-----=∂∂ 则yNx M ∂∂=∂∂ .因此此方程是恰当方程。
x y x y x u 1)(22--=∂∂ (1) 22)(1y x x y y u --=∂∂ (2) 对(1)做x 的积分,则)(1)(22y dx x dx y x y u ϕ+--=⎰⎰ =---yx y 2)(ln y x ϕ+ (3) 对(3)做y 的积分,则dy y d y x y y x y y u )()(2)()1(22ϕ+--+---=∂∂ =dy y d y x y xy )()(222ϕ+-+- =22)(1y x x y -- 则11)(21)(2)(1)(2222222-=-+--=-----=y y x y xy x y y x xy y y x x y dy y d ϕ y y dy yy -=-=⎰ln )11()(ϕyx xyx y y x y xy y x y y y x y x y u --=--+-=-+---=ln ln ln ln 222 故此方程的通解为C yx xyx y =-+ln 4、 0)2(3)23(22232=+++dy y y x dx x xy解:xy yM12=∂∂,xy x N 12=∂∂ . xNy M ∂∂=∂∂ . 则此方程为恰当方程。
学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路以上几点请在学其他课程时参考。
数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
第七章 常微分方程第一节 微分方程的基本概念(01)1. 判断题(1)2xy Ce = (C 为任意常数)是2y x ′=的特解。
(2)3()y y ′=是二阶微分方程。
*(3)微分方程的通解包含了所有特解。
(4)若微分方程的解中含有任意常数,则这个解称为通解。
(5)微分方程的通解中任意常数的个数等于微分方程的阶数。
2. 填空题(1)微分方程(6)0x y dx dy −+=的阶数是 。
(2)积分曲线212()xy c c x e =+中满足00x y ==,01x y =′=的曲线是 。
(3)函数221ec x c y +=(21,c c 为任意常数)是微分方程02=−′−′′y y y 的 。
(解、通解、特解)3. 试求以下函数为通解的微分方程。
(1)221C x C y +=(其中21,C C 为任意常数)(2)xx e C eC y 3221+=(其中21,C C 为任意常数)4. 验证函数Cy x=是微分方程0xy y ′+=的通解,并求满足11x y ==的特解。
5. 设平面曲线在点(),M x y 处的切线斜率等于该点横坐标平方的2倍,写出该曲线所满足的微分方程。
6. 确定满足条件001,0x x y y ==′==的函数关系式()312xy C C x e =+中的参数。
第二节 可分离变量的微分方程1. 求微分方程x yy e−′=的通解。
2. 求微分方程22()y xy y y ′′−=+的通解。
3. 求微分方程(1)()0x y dx y xy dy ++−=的通 解。
4. 求微分方程22(1)20x y xy ′−+=满足条件01x y ==的特解。
5. 求微分方程221y x y xy ′=−+−满足条件01x y ==的特解。
6. 求微分方程1xyy x ′=−+满足条件02x y ==的特解。
第三节 齐次方程(02)1. 求微分方程y xy x y′=+的通解。
常微分方程填空题(1)常微分方程习题集(1)(一) . 填空1、当时,方程m(x,y)dx?n(x,y)dy?0称为恰当方程,或称全微分方程。
2.形状如。
3、求阿迪?F(x,y)满足吗?(x0)?y0的解等价于解积分方程DX_____________________;的连续解。
4、设y??(x)是一阶非齐次线性方程于区间i上的任一解,?(x)是其对应齐线性方程于区间i上的一个非零解。
则一阶非齐次线性方程的全部解的共同表达式为:。
5.如果X1(T),X2(T)Xn(T)是n阶齐次线性方程组的n个解,则其线性独立的充要条件是。
6、方程组DX?A(T)u__________________?a(T)x的Dtdx?ax的基本解矩阵,则expatdt是一个基本解群。
7、若?(t)是常系数线性方程组=。
8、方程称为一阶线性方程,它有积分因子,其通解为。
9.设定?1(x),?2(x)与二阶线性方程有关:y a1(x)y??a2(x)y?F (x),对应齐次线性方程的基本解群,则二阶线性方程所有解的共同表达式为:。
这样的方程叫做欧拉方程。
11、若?(t)和?(t)都是dx?a(T)x的基本解矩阵,那么?(t)然后呢?(t)与DT的关系:。
12、若向量函数g(t;y)在域r上,则方程组阿迪?g(t;y),?(t0;t0,y0)?Y0的解决方案?存在和独特。
DT13。
方程y (n)?F(x,y,y?,?,y(n?1))可以转化为包含n个未知函数的一阶微分方程组。
14、方程y4y?0的基本解组是.15.向量函数组Y1(x),Y2(x),?,区间I上YN(x)的线性相关________________条件是在区间i上它们的朗斯基行列式w(x)?0.16.如果?(t)是一个常系数线性方程组dx?a(t)x的基解矩阵,则该方程dt满足初始条件?(t0)??的解?(t)=_____________________17.n阶线性齐次微分方程的所有解构成一个维线性空间。
数学教材推荐2008-12-4 19:58:43 | 转载| 固定链接| 评论(4) | 浏览(948) 学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路以上几点请在学其他课程时参考。
数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
数学专业参考书整理推荐从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路以上几点请在学其他课程时参考。
数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
大学数学怎么学?学好大学数学的8个方法(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!大学数学怎么学?学好大学数学的8个方法进入大学,每个人都应该先做个自我反省,在学习过程中将会出现很多与过去不同的一面,尤其是在数学学习上,本店铺整理了数学学习相关内容,希望能帮助到您。
函数、极限、无穷小、连续性考研真题:专题一:求函数表达式 1.(90)设函数11,()10,x f x x ≤⎧=⎨>⎩则[]()f f x = 12.(92)设函数220()0x x f x x x x≤⎧=⎨>+⎩则()f x -=2200x x xx x<⎧-⎨≥⎩3.(92)设222(1)l n2xf x x -=-且()()ln f x xϕ=则()x dx ϕ=⎰2ln 1x x c+-+4.(97)设()2020xx g x x x -≤⎧=⎨+>⎩,()200x x f x x x<⎧=⎨≥-⎩则(())g f x =20202x x x x<⎧+⎨≥+⎩,5.(01)设()111x f x x ⎧≤⎪=⎨>⎪⎩ 则()(){}f f f x = 1专题二:求数列极限1.(03)设{}n a ,{}n b ,{}n c 均为非负数列,且lim 0,lim 1,lim n n n n n n a b c →∞→∞→∞===∞,则必有:A n n a b <对任意n 成立B n n b c <对任意n 成立C 极限lim n n n a c →∞⋅不存在 D 极限lim n n n b c →∞⋅不存在2.(98)设数列n x 与n y 满足lim 0n n n x y →∞⋅=则下列断言正确的是:A 若n x 发散,则n y 必发散B 若n x 无界,则n y 必有界C 若n x 有界,则n y 必为无穷D 若1nx 为无穷小,则n y 必为无穷小3.(99)对任意给定的()0,1ε∈,总存在正整数N ,当n>N 时,恒有2n x a ε-≤,是数列{}n x 收敛于a 的 充分必要 条件。
4.(93)当0x →,变量211sinxx是:A 无穷小B 无穷大C 有界的,但是不是无穷小D 无界的,但不是无穷大5.(98)求2sin sin sin 2lim 1112n n n n n n n ππππ→∞⎡⎤⎢⎥+++=⎢⎥+⎢⎥++⎣⎦6.(96)设1110,(1,2)n x x n +=== ,试证数列{}n x 极限存在,并求之。
马知恩周义仓编常微分⽅程定性与稳定性⽅法部分习题参考解答第⼀章 基本定理1设有 $$\bex \frac{\rd \bbx}{\rd t}=\bbf(t,\bbx),\quad \bbx(t_0)=\bbx^0,\quad (t_0,\bbx^0)\in \bbR\times \bbR^n. \eex$$试证: 若 $\bbf\in C^1(G)$, 则在 $(t_0,\bbx^0)$ 的领域内, 此 Cauchy 问题的解存在惟⼀.证明: 由 $f\in C^1(G)$ 蕴含 $f\in C(G)$ 且在 $G$ 内适合 Lipschitz 条件知有结论.2试讨论下列⽅程解的存在区间:(1) $\dps{\frac{\rd y}{\rd x}=\frac{1}{x^2+y^2}}$;(2) $\dps{\frac{\rd y}{\rd x}=y(y-1)}$.解答:(1) 由 $\dps{\frac{\rd x}{\rd y}=x^2+y^2}$ 的解的存在区间有限知 $y$ 有界, ⽽由解的延拓定理, 原⽅程解的存在区间为 $\bbR$.(2) 直接求解有 $\dps{y=\frac{1}{1-\frac{y_0-1}{y_0}e^x}}$, ⽽a.当 $0\leq y_0\leq 1$ 时, 原⽅程解的存在区间为 $\bbR$;b.当 $y_0<0$ 时, 原⽅程解的存在区间为 $\dps{\sex{\ln\frac{y_0}{y_0-1},\infty}}$;c.当 $y_0>1$ 时, 原⽅程解的存在区间为 $\dps{\sex{-\infty,\ln\frac{y_0}{y_0-1}}}$.3 设有⼀阶微分⽅程式 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}. \eex$$ 试证: 过任⼀点 $(t_0,x_0)\in\bbR^2$ 的右⾏解的存在区间均为 $[t_0,+\infty)$.证明: 由 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}=\left\{\ba{ll} <0,&x>t,\\ >0,&x<t \ea\right. \eex$$ 知解在 $\sed{x>t}$ 内递减,在 $\sed{x<t}$ 内递增. 当 $x_0>t_0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR, t_0<x<x_0} \eex$$ 内应⽤解的延伸定理知解定与$\sed{x=t}$ 相交, 之后解递增, 在 $$\bex \sed{(t,x);t\in\bbR,x<t} \eex$$ 内应⽤延伸定理及⽐较定理即知结论.4设有⼀阶⽅程 $\dps{\frac{\rd x}{\rd t}=f(x)}$, 若 $f\in C(-\infty,+\infty)$, 且当 $x\neq 0$ 时有 $xf(x)<0$. 求证过 $\forall\(t_0,x_0)\in\bbR^2$, Cauchy 问题的右⾏解均在 $[t_0,+\infty)$ 上存在, 且 $\dps{\lim_{t\to+\infty}x(t)=0}$.证明: 由题意, $$\bex f(x)\left\{\ba{ll} >0,&x<0,\\ <0,&x>0. \ea\right. \eex$$ ⽽由 $f$ 的连续性, $f(0)=0$. 于是当 $x_0=0$ 时,由解的唯⼀性知 $x=0$. 当 $x_0>0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR,0<x<x_0} \eex$$ 内应⽤延伸定理及惟⼀性定理知 $x(t)$ 递减趋于 $0$. 当 $x_0<0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR,x_0<x<0} \eex$$ 内应⽤延伸定理及惟⼀性定理知 $x(t)$ 递增趋于 $0$.5若 $\bbf(t,\bbx)$ 在全空间 $\bbR\times\bbR^n$ 上连续且对 $\bbx$ 满⾜局部 Lipschitz 条件且 $$\bex \sen{\bbf(t,\bbx)}\leq L(r),\quad r=\sqrt{\sum_{i=1}^n x_i^2},\quad \bbx=(x_1,\cdots,x_n)^T, \eex$$ 其中 $L(r)>0, r>0$, 且 $$\bee\label{1.5:1}\int_a^{+\infty}\frac{\rd r}{L(r)}=+\infty,\quad a>0. \eee$$ 试证: 对 $\forall\ (t_0,\bbx^0)\in\bbR\times\bbR^n$, Cauchy 问题的解均可对 $t$ ⽆限延拓.证明: 由解的延伸定理, 仅须证明在任何有限区间 $-\infty<\alpha<t<\beta<+\infty$ 上, $\bbx(t)$ 有界. 为此, 令 $y(t)=\sen{\bbx(t)}$,则 $$\beex \bea \frac{\rd y(t)}{\rd t}&=2\bbx(t)\cdot\frac{\rd \bbx(t)}{\rd t} =2\bbx(t)\cdot \bbf(t,\bbx(t)),\\\sev{\frac{\rd y(t)}{\rd t}} &\leq 2\sqrt{y(t)}\cdot L\sex{\sqrt{y(t)}},\\ \frac{\rd \sqrt{y(t)}}{L\sex{\sqrt{y(t)}}}&\leq \rd t,\\ \int_\alpha^\beta \frac{\rd \sqrt{y(t)}}{L\sex{\sqrt{y(t)}}} &\leq \int_\alpha^\beta \rd t=\beta-\alpha. \eea \eeex$$ 这与\eqref{1.5:1} ⽭盾 (事实上, 当 $\alpha,\beta\gg 1$, $|\alpha-\beta|\ll 1$ 时, 不等式右端可任意⼩, ⽽不等式左端有积分发散知可⼤于某⼀正常数).6设有微分⽅程 $$\bex \frac{\rd \bbx}{\rd t}=\bbf(t,\bbx), \eex$$ $\bbf\in C(G\subset \bbR\times\bbR^n)$, 试证: 若对$\forall\ (t_0,\bbx^0)\in G$, Cauchy 问题的解都存在唯⼀, 则解必对初值连续依赖.证明: 参考[家⾥蹲⼤学数学杂志第134期, 常微分⽅程习题集, 第1600页].7 试在定理 1.1 的假设下, 利⽤ Gronwall 引理直接证明解对初始时刻 $t_0$ 的连续依赖性.证明: 参考定理 1.7 的证明.8 设有⼀阶 Cauchy 问题 $$\bex \frac{\rd y}{\rd x}=x^2+(y+1)^2,\quad y(0)=0. \eex$$ 试利⽤⽐较定理证明, 若设解的右⾏饱和区间为 $[0,\beta)$, 则 $\dps{\frac{\pi}{4}\leq \beta\leq 1}$.证明: 仅须注意到当 $0\leq x\leq 1$ 时, $$\bex (y+1)^2\leq x^2+(y+1)^2\leq 1+(y+1)^2. \eex$$ 再利⽤⽐较定理即知结论.第⼆章 动⼒系统的基本知识1试证明: $\Omega_P=\vno$ 的充要条件是 $L_P^+$ 趋于⽆穷.证明: $\ra$ ⽤反证法. 若 $L_P^+$ 不趋于⽆穷, 则 $$\bex \exists\ M>0, t_n\nearrow +\infty,\st \sen{\mbox{ $\varphi$}(P,t_n)}\leq M. \eex$$ 由 Weierstrass 定理, $$\bex \exists\ \sed{t_n'}\subset \sed{t_n},\st \mbox{ $\varphi$}(P,t_n)\to Q,\eex$$ ⽽ $Q\in \Omega_P$, 这是⼀个⽭盾. $\la$ 亦⽤反证法. 若 $\Omega_P\neq \vno$, ⽽设 $Q\in \Omega_P$, 则 $$\bex\exists\ t_n\nearrow+\infty,\st \mbox{ $\varphi$}(P,t_n)\to Q. \eex$$ 这与 $L_P^+$ 趋于⽆穷⽭盾.2试证明: 若 $\Omega_P$ 仅含惟⼀奇点 $P^*$, 则当 $t\to+\infty$ 时必有 $L_P^+$ 趋向于 $P^*$.证明: ⽤反证法. 设 $$\bee\label{2.2:1} \exists\ \ve_0>0,\ t_n\nearrow+\infty, \st \sen{\mbox{ $\varphi$}(P,t_n)-P^*}\geq\ve_0. \eee$$ 则(1)若 $\sed{t_n}$ 有有界的⼦列, 则适当抽取⼦列 $\sed{t_n'}$ 后有 $$\bex \mbox{ $\varphi$}(P,t_n')\to Q. \eex$$ 于是 $Q\in\Omega_P=\sed{P^*}$. 这与 \eqref{2.2:1} ⽭盾.(2)若 $\sed{t_n}$ ⽆有界的⼦列, 则 $\dps{\lim_{n\to\infty}\mbox{ $\varphi$}(P,t_n)=\infty}$, ⽽ $\infty\in\Omega_P=\sed{P^*}$, ⼜是⼀个⽭盾.3试证明: 若 $\Omega_P$ 有界且 $\Omega_P$ ⾮闭轨, 则 $\forall\ R\in \Omega_P$, $\Omega_R$ 与 $A_R$ 必均为奇点.证明: ⽤反证法证明 $\Omega_R$ 为奇点集, $A_R$ 为奇点集类似可证. 设 $\Omega_R$ 含有常点. 由 $R\in \Omega_P$ 及$\Omega_P$ 为不变集知 $L_R\subset \Omega_Q$. 于是按引理 2.3, $L_R$ 为闭轨线, $L_R=\Omega_R\subset \Omega_P$. 这与 $\Omega_P$ ⾮闭轨⽭盾.4试证明: ⼀系统的圈闭奇点的集合是⼀闭集.证明: 全体奇点的集合为 $$\bex \sed{\bbx^*\in G; \bbf(\bbx^*)=\mbox{ $0$}}. \eex$$ 由 $\bbf$ 的连续性即知结论.5 若 $L_P^+$ 有界且 $\Omega_P$ 仅由奇点构成, 能否断定 $\Omega_P$ 仅含⼀个奇点?解答: 不能断定. 仅能说 $\Omega_P$ 为由奇点构成的连通闭集或闭轨线.6 设 $O(0,0)$ 是⼀平⾯⾃治系统的惟⼀奇点, 且是稳定的, 全平⾯没有闭轨线. 试证: (1) 此系统的任⼀轨线必负向⽆界; (2) 任⼀有界的正半轨闭进⼊奇点 $O$.证明:(1) ⽤反证法. 若有⼀轨线负向有界, 则在定理 2.8 中, 由全平⾯没有闭轨线知 (3),(4) 不成⽴; 由 $O$ 为惟⼀奇点知 (1),(2),(5) 不成⽴. 这是⼀个⽭盾.(2) 对有界正半轨⽽⾔, 定理 2.8 中仅有 (1),(2),(5) 可能成⽴. 若 (1),(2) 成⽴, 则结论已证; ⽽由全平⾯没有闭轨线知 (5) 不成⽴.第三章 稳定性理论1 讨论⽅程 $$\bee\label{3.1:1} \sedd{\ba{ll}\frac{\rd x_1}{\rd t}=x_2,\\ \frac{\rd x_2}{\rd t}=-a^2\sin x_1\ea} \eee$$ 零解的稳定性.解答: 选取 $$\bex V(\bbx)=\frac{x_2^2}{2}+a^2(1-\cos x_1), \eex$$ 则 $V$ 在原点的⼀邻域内是正定的, 且沿 \eqref{3.1:1} 的轨线有 $$\bex \dot V(\bbx)=V_{x_1}x_1'+V_{x_2}x_2'=0. \eex$$ 由此, 零解是稳定的, 但不是渐近稳定的.2 证明⽅程 $\dps{\frac{\rd x}{\rd t}=-x+x^2}$ 的零解是指数渐近稳定的, 但不是全局渐近稳定的.证明: 解该微分⽅程有: $$\bex \ba{ccc} -\frac{1}{x^2}\frac{\rd x}{\rd t}=\frac{1}{x}-1,&\frac{\rd y}{\rd t}=y-1\\sex{y=\frac{1}{x}},&\frac{\rd z}{\rd t}=-e^{-t}\ \sex{z=e^{-t}y},\\ z=e^{-t}+C,&y=Ce^t+1,&x=\frac{1}{1+Ce^t}. \ea \eex$$由此, 原微分⽅程的解为 $$\bex x=0,\mbox{ 或 }x(t)=\frac{1}{1+Ce^t}. \eex$$ 取初值 $(t_0,x_0),\ x_0\neq 0$, 有 $$\bexx(t,t_0,x_0)=\frac{x_0}{1+e^{t-t_0}(1-x_0)}. \eex$$ 故当 $|x_0|<1$ 时, $$\bex |x(t,t_0,x_0)|\leq \sev{\frac{1}{x_0}-1}e^{-(t-t_0)}. \eex$$ 这说明零解是指数渐近稳定的. 但由于从 $(t_0,1)$ 出发的解 $x(t,t_0,1)=1$ 不趋于零解, ⽽零解不是全局渐近稳定的.3 在相空间 $\bbR^n$ 中给出 $\dps{\frac{\rd \bbx}{\rd t}=\bbf(t,\bbx),\ \bbf(t,0)=0}$ 的零解稳定、渐近稳定、不稳定的⼏何解释.解答: 零解是稳定的 $\lra\ \forall\ \ve>0,\ \exists\ \delta>0,\ \forall\ P\in B_\delta,\ L_P^+\subset B_\ve$; 零解是渐进稳定的$\lra\ \exists\ U\ni O,\ \forall\ P\in U,\ L_P^+\to 0$; 零解是不稳定的 $\lra\ \exists\ \ve_0>0,\ \exists\ P_n\to0, \stL_{P_n}^+\bs B_\ve\neq \vno$.4判断下列系统零解的稳定性:(1) $\dps{\sedd{\ba{ll} \frac{\rd x_1}{\rd t}=mx_2+\alpha x_1(x_1^2+x_2^2),\\ \frac{\rd x_2}{\rd t}=-mx_1+\alphax_2(x_1^2+x_2^2); \ea}}$;(2) $\dps{\frac{\rd^2x}{\rd t^2}+\sex{\frac{\rd x}{\rd t}}^3+f(x)=0,}$ 其中 $xf(x)>0\ (x\neq 0), f(0)=0$;(3) $\dps{\frac{\rd^2x}{\rd t^2}-\sex{\frac{\rd x}{\rd t}}^2sgn\sex{\frac{\rd x}{\rd t}}+x=0}$.解答:(1) 取 $$\bex V=x_1^2+x_2^2, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $$\bex \dot V=2\alpha(x_1^2+x_2^2)\sedd{\ba{lll} \mbox{正定},&\alpha>0,\\ 0,&\alpha=0,\\ \mbox{负定},&\alpha<0. \ea} \eex$$ 于是当 $\alpha>0$ 时, 由定理 3.3, 零解是不稳定的; 当 $\alpha=0$ 时, 由定理 3.1, 定理是稳定的; 当 $\alpha<0$ 时, 由定理 3.1, 零解是渐近稳定的.(2) 令 $\dps{x_1=x,x_2=\frac{\rd x}{\rd t}}$, 则 $$\bex \frac{\rd x_1}{\rd t}=x_2,\quad \frac{\rd x_2}{\rd t}=-x_2^3-f(x_1). \eex$$ 取 $$\bex V=\frac{x_2^2}{2}+\int_0^{x_1}f(t)\rd t, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $\dot V=-x_2^4\leq 0.$再 $$\bex \sed{\bbx;\dot V(\bbx)=0}=\sed{0}, \eex$$ 我们据定理 3.2 知零解是渐近稳定的.(3) 令 $\dps{x_1=x,x_2=\frac{\rd x}{\rd t}}$, 则 $$\bex \frac{\rd x_1}{\rd t}=x_2,\quad \frac{\rd x_2}{\rd t}=x_2^2sgn(x_2)-x_1. \eex$$ 取 $$\bex V=\frac{x_1^2+x_2^2}{2}, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $\dot V=x_2^2|x_2|$是正定的. 我们据定理 3.3 知零解是不稳定的.5 若存在有⽆穷⼩上界的正定函数 $V(t,\bbx)$, 它沿着 $$\bex (3.3.1)\quad \frac{\rd\bbx}{\rd t}=\bbf(t,\bbx),\quad \bbf(t,0)=0 \eex$$ 解曲线的全导数 $\dot V(t,\bbx)$ 负定, 证明 (3.3.1) 的零解是渐近稳定的.证明: 仅须注意到存在正定函数 $W(x)$, $W_1(x)$ 使得 $$\bex W(\bbx)\leq V(t,\bbx)\leq W_1(\bbx). \eex$$ ⽽可仿照定理 3.1 的证明.6 讨论 $\dps{\frac{\rd x}{\rd t}=\frac{g'(t)}{g(t)}x}$ 零解的稳定性, 其中 $\dps{g(t)=\sum_{n=1}^\infty \frac{1}{1+n^4(t-n)^2}}$. 能否得到零解渐近稳定的结果? 为什么?解答: 直接求解有 $$\bex x(t)=\frac{x_0}{g(t_0)}{g(t)}, \eex$$ ⽽由 $$\bex |x(t)|\leq\frac{|x_0|}{g(t_0)}\sez{2+\sum_{n\neq [t],[t]+1}\frac{1}{1+n^4(t-n)^2}} \leq \frac{|x_0|}{g(t_0)}\sez{2+\sum_{n=1}^\infty\frac{1}{n^4}} \eex$$ 知零解是稳定的; 由$$\bex |x(k)|=\frac{|x_0|}{g(t_0)}\sez{1+\sum_{n\neq k}\frac{1}{n^4(k-n)^2}}\geq \frac{|x_0|}{g(t_0)} \eex$$ 知零解不是渐近稳定的.7证明 $\dps{\frac{\rd x}{\rd t}=-\frac{x}{t+1}}$ 的零解是渐近稳定的, 但不存在有⽆穷⼩上界的正定函数 $V(t,x)$, 使得 $\dotV(t,x)$ 负定 (该习题表明习题 5 中渐近稳定性定理中的条件不是必要的).证明: 直接求解有 $$\bex x(t)=\frac{x_0}{1+t}. \eex$$ ⽽零解是渐近稳定的.。
微积分习题集带参考答案一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
例 1.1.1 设v=v(线x,y),二阶性偏微分方程v xy =xy 的通解。
解 原方程可以写成 ð/ðx(ðv/ðy) =xy 两边对x 积分,得v y =¢(y )+1/2 x 2Y,其中¢(y )是任意一阶可微函数。
进一步地,两边对y 积分,得方程得通解为v (x,y )=∫v y dy+f (x )=∫¢(y )dy+f (x )+1/4 x 2y 2=f (x )+g (y )+1/4 x 2y 2其中f (x ),g (y )是任意两个二阶可微函数。
例1.1.2即 u(ξ,η) = F(ξ) + G(η),其中F(ξ),G(η)是任意两个可微函数。
例1.2.1设有一根长为L 的均匀柔软富有弹性的细弦,平衡时沿直线拉紧,在受到初始小扰动下,作微小横振动。
试确定该弦的运动方程。
取定弦的运动平面坐标系是O XU ,弦的平衡位置为x 轴,弦的长度为L ,两端固定在O,L 两点。
用u(x,t)表示弦上横坐标为x 点在时刻t 的位移。
由于弦做微小横振动,故u x ≈0.因此α≈0,cos α≈1,sin α≈tan α=u x ≈0,其中α表示在x 处切线方向同x 轴的夹角。
下面用微元法建立u 所满足的偏微分方程。
在弦上任取一段弧'MM ,考虑作用在这段弧上的力。
作用在这段弧上的力有力和外力。
可以证明,力T 是一个常数,即T 与位置x 和时间t 的变化无关。
事实上,因为弧振动微小,则弧段'MM 的弧长dx u xx xx ⎰∆++=∆21s ≈x ∆。
这说明该段弧在整个振动过程中始终未发生伸长变化。
于是由Hooke 定律,力T 与时间t 无关。
因为弦只作横振动,在x 轴方向没有位移,故合力在x 方向上的分量为零,即T(x+x ∆)cos α’-T(x)cos α=0.由于co's α’≈1,cos α≈1,所以T(X+∆x)=T(x),故力T 与x 无关。
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
常微分方程测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数;2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件;4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解-;二、计算题40%1、求方程2、求方程的通解;3、求方程的隐式解;4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵;2.设为方程x=AxA为n n常数矩阵的标准基解矩阵即0=E,证明:t =t- t其中t为某一值.<%建设目标%>常微分方程测试题2一、填空题:30%1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是.2、方程的通解中含有任意常数的个数为.3、方程有积分因子的充要条件为 .4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们有或无共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解.9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是.10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:40%1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.10分四、求解微分方程组满足初始条件的解.10%五、证明题:10%设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C常微分方程测试题31.辨别题指出下列方程的阶数,是否是线性方程:12%1234562、填空题8%1.方程的所有常数解是___________.2.若y=y1x,y=y2x是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.3.若方程Mx, y d x + Nx, y d y= 0是全微分方程,同它的通积分是________________.4.设Mx0, y0是可微曲线y=yx上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题14%1.方程是.A可分离变量方程B线性方程C全微分方程D贝努利方程2.方程,过点0,0有.A一个解B两个解C无数个解D三个解3.方程xy2-1d x+yx2-1d y=0的所有常数解是.A y=±1,x=±1,B y=±1C x=±1D y=1,x=14.若函数yx满足方程,且在x=1时,y=1,则在x =e时y= .A B C2 De5.阶线性齐次方程的所有解构成一个线性空间.A维B维C维D维6.方程奇解.A有三个B无C有一个D有两个7.方程过点.A有无数个解B只有三个解C只有解D只有两个解4.计算题40%求下列方程的通解或通积分:1.2.3.4.5.5.计算题10%求方程的通解.6.证明题16%设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>常微分方程测试题41.辨别题指出下列方程的阶数,是否是线性方程:12%1234562、填空题8%1.方程的所有常数解是___________.2.若y=y1x,y=y2x是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.3.若方程Mx, y d x + Nx, y d y= 0是全微分方程,同它的通积分是________________.4.设Mx0, y0是可微曲线y=yx上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题14%1.方程是.A可分离变量方程B线性方程C全微分方程D贝努利方程2.方程,过点0,0有.A一个解B两个解C无数个解D三个解3.方程xy2-1d x+yx2-1d y=0的所有常数解是.A y=±1,x=±1,B y=±1C x=±1D y=1,x=14.若函数yx满足方程,且在x=1时,y=1,则在x =e时y= .A B C2 De5.阶线性齐次方程的所有解构成一个线性空间.A维B维C维D维6.方程奇解.A有三个B无C有一个D有两个7.方程过点.A有无数个解B只有三个解C只有解D只有两个解4.计算题40%求下列方程的通解或通积分:1.2.3.4.5.5.计算题10%求方程的通解.6.证明题16%设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或常微分方程测试题5一、填空题30%1.若y=y1x,y=y2x是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4.线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是. 6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题40%求下列方程的通解或通积分:1.2.3.4.5.三、证明题30%1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.常微分方程测试题6一、填空题20%1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题25%1.阶线性齐次微分方程基本解组中解的个数恰好是个.A B-1C+1D+22.李普希兹条件是保证一阶微分方程初值问题解惟一的条件.A充分B必要 C充分必要D必要非充分3.方程过点共有个解.A一B无数C两D三4.方程奇解.A有一个B有两个C无D有无数个5.方程的奇解是.A B C D三、计算题25%=+y=03.4.5.四、求下列方程的通解或通积分30%1.2.3.常微分方程测试题7一.解下列方程80%1.x=+y2.tgydx-ctydy=03.{y-x+}dx-xdy=04.2xylnydx+{+}dy=05.=6-x6.=27.已知fx=1,x0,试求函数fx的一般表达式;8.一质量为m质点作直线运动,从速度为零的时刻起,有一个和时间成正比比例系数为的力作用在它上面,此外质点又受到介质的阻力,这阻力和速度成正比比例系数为;试求此质点的速度与时间的关系;二.证明题20%1.证明:如果已知黎卡提方程的一个特解,则可用初等方法求得它的通解;2.试证:在微分方程Mdx+Ndy=0中,如果M、N试同齐次函数,且xM+yN0,则是该方程的一个积分因子常微分方程测试题8计算题.求下列方程的通解或通积分70%1.2.3.4.5.6.7.证明题 30%8.在方程中,已知,在上连续,且.求证:对任意和,满足初值条件的解的存在区间必为9.设在区间上连续.试证明方程的所有解的存在区间必为10.假设方程在全平面上满足解的存在惟一性定理条件,且,是定义在区间I上的两个解.求证:若<,,则在区间I上必有<成立常微分方程测试题9一、填空题30%1、方程有只含的积分因子的充要条件是;有只含的积分因子的充要条件是______________;2、_____________称为黎卡提方程,它有积分因子______________;3、__________________称为伯努利方程,它有积分因子_________;4、若为阶齐线性方程的个解,则它们线性无关的充要条件是__________________________;5、形如___________________的方程称为欧拉方程;6、若和都是的基解矩阵,则和具有的关系是_____________________________;7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________;二、计算题60%1、2、3、若试求方程组的解并求expAt 4、5、求方程经过0,0的第三次近似解6.求的奇点,并判断奇点的类型及稳定性.三、证明题10%1、阶齐线性方程一定存在个线性无关解;常微分方程测试题10一、选择题30%1微分方程的阶数是____________2若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则方程有只与有关的积分因子的充要条件是_________________________3 _________________________________________称为齐次方程.4如果___________________________________________ ,则存在唯一的解,定义于区间上,连续且满足初始条件,其中_______________________ .5对于任意的,为某一矩形区域,若存在常数使______________________ ,则称在上关于满足利普希兹条件.6方程定义在矩形区域:上,则经过点的解的存在区间是___________________7若是齐次线性方程的个解,为其伏朗斯基行列式,则满足一阶线性方程___________________________________8若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_________________________9若为毕卡逼近序列的极限,则有__________________ 10_________________________________________称为黎卡提方程,若它有一个特解,则经过变换___________________,可化为伯努利方程.二求下列方程的解 35%12求方程经过的第三次近似解3讨论方程,的解的存在区间4求方程的奇解567三证明题 35%1试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解2试用一阶微分方程解的存在唯一性定理证明:一阶线性方程,当,在上连续时,其解存在唯一<%建设目标%>常微分方程测试题 11一.填空题30%;1、当_______________时,方程Mx,ydx+Nx,ydy=0称为恰当方程,或称全微分方程;2、________________称为齐次方程;3、求=fx,y满足的解等价于求积分方程____________________的连续解;4、若函数fx,y在区域G内连续,且关于y满足利普希兹条件,则方程的解y=作为的函数在它的存在范围内是__________;5、若为n阶齐线性方程的n个解,则它们线性无关的充要条件是__________________________________________;6、方程组的_________________称之为的一个基本解组;7、若是常系数线性方程组的基解矩阵,则expAt =____________8、满足___________________的点,称为方程组的奇点9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定的,对应的奇点称为___________;二、计算题60%1、求解方程:=2、解方程:2x+2y-1dx+x+y-2dy=03、讨论方程在怎样的区域中满足解的存在唯一性定理的条件,并求通过点0,0的一切解4、求解常系数线性方程:5、试求方程组的一个基解矩阵,并计算6、试讨论方程组1的奇点类型,其中a,b,c为常数,且ac0;三、证明题10%;试证:如果满足初始条件的解,那么常微分方程测试题13一、判断题10%1.方程是恰当方程;2.是三阶微分方程;3.是方程的通解;4.函数组线性相关的充要条件是它们的伏朗斯基行列式等于零;5.方程是二阶线性方程;二、选择题101.方程定义在矩形域上,则经过点的解的存在区间是;A.B.C.D.2.与初值问题等价的一阶方程组是________. A.B.C.D.3.方程是一个函数矩阵的解空间构成________维线性空间.A.n-1 B.n C.n+1 D.4.微分方程的一个解是A.B.C.D.5.方程有积分因子A.B.C.D.三、填空题20%1.方程通过点的第二次近似解是________________;2.当_______________时,方程Mx,ydx+Nx,ydy=0称为恰当方程,或称全微分方程;3.如果在且,则方程存在唯一的解,定义于区间上,连续且满足初始条件,其中,;4.若1,2,……,是齐线性方程的个解,为其伏朗斯基行列式,则满足一阶线性方程5.方程有仅与有关的积分因子的充要条件是___________;6.利用变量替换__________可把方程化为变量分离方程___________________;7.若都是=AtX的基解矩阵,则具有关系:;8.方程的一个特解是________________________9.形如的方程称为欧拉方程;10.若是常系数线性方程组的基解矩阵,则expAt =____________;四、计算题60%1.求方程的通解;8分2.求解下列初值问题:;8分常微分方程测试题14一、判断题10%1.方程是二阶非线性方程;2.方程的通解是;3.利普希茨条件是保证初值问题解的唯一性的充分条件而不是必要条件; 4.向量函数组的线性相关概念与它的相应的分量线性相关概念并不等价; 5.若是阶齐次线性方程的个解,其伏朗斯基行列式,则在I上线性相关;二、选择题10%1.曲线满足方程A. B. C. D.2.积分方程的一个解是A. B. C. D.3.若微分方程有积分因子,则满足A. B.C. D.4.微分方程可化为A.B.C.D.5.设有微分方程,则有123A.方程1是线性方程式 B.方程2是线性方程C.方程3是线性方程 D.它们都不是线性方程三、填空题20%1.含有自变量、未知函数及它的导数或微分的方程,称为________________方程2.利用变量替换__________可把方程化为变量分离方程___________________;3.方程的一个特解是________________________;4.方程是自变量的对应的特征方程是_________________________; 5.一曲线,其上每点处的切线斜率为该点横坐标的二倍,且通过点,则该曲线方程是________________;6.微分方程初值问题与积分方程_________________________等价; 7.如果在矩形域R上满足:①_______________,②____________________,则方程存在惟一解;8.方程有仅与有关的积分因子的充要条件是___________; 9.方程的常数解是____________________;10.微分方程是自变量的通解是_______________________;方程通过点的第二次近似解是________________四、计算题60%1.求方程的通解;8分2.求方程8分3.求方程9分4.求方程的通解;8分5.求方程的通解;9分6.求非齐次方程的通解;7.已知微分方程组的基解矩阵是, 求微分方程组的通解;9分。
常微分方程习题集Last revision on 21 December 2020《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解-。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证明:(t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是.2、方程的通解中含有任意常数的个数为.3、方程有积分因子的充要条件为 .4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们(有或无)共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解.9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是.10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解.(10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A)一个解(B)两个解(C)无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1,则在x =e时y=( ).(A) (B)(C)2 (D)e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6).方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5.计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A)一个解(B)两个解(C)无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1,则在x =e时y=( ).(A) (B)(C)2 (D)e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6).方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5.计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4.线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1(C)+1(D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3.方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一.解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05.=6-x6.=27.已知f(x)=1,x0,试求函数f(x)的一般表达式。
8.一质量为m质点作直线运动,从速度为零的时刻起,有一个和时间成正比(比例系数为)的力作用在它上面,此外质点又受到介质的阻力,这阻力和速度成正比(比例系数为)。
试求此质点的速度与时间的关系。
二.证明题(20%)1.证明:如果已知黎卡提方程的一个特解,则可用初等方法求得它的通解。
2.试证:在微分方程Mdx+Ndy=0中,如果M、N试同齐次函数,且xM+yN0,则是该方程的一个积分因子《常微分方程》测试题8计算题.求下列方程的通解或通积分(70%)1.2.3.4.5.6.7.证明题(30%)8.在方程中,已知,在上连续,且.求证:对任意和,满足初值条件的解的存在区间必为9.设在区间上连续.试证明方程的所有解的存在区间必为10.假设方程在全平面上满足解的存在惟一性定理条件,且,是定义在区间I上的两个解.求证:若<,,则在区间I上必有<成立《常微分方程》测试题9一、填空题(30%)1、方程有只含的积分因子的充要条件是()。
有只含的积分因子的充要条件是______________。
2、_____________称为黎卡提方程,它有积分因子______________。
3、__________________称为伯努利方程,它有积分因子_________。
4、若为阶齐线性方程的个解,则它们线性无关的充要条件是__________________________。
5、形如___________________的方程称为欧拉方程。
6、若和都是的基解矩阵,则和具有的关系是_____________________________。
7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。
二、计算题(60%)1、2、3、若试求方程组的解并求expAt 4、5、求方程经过(0,0)的第三次近似解6.求的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、阶齐线性方程一定存在个线性无关解。
《常微分方程》测试题10一、选择题(30%)1微分方程的阶数是____________2若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则方程有只与有关的积分因子的充要条件是_________________________3 _________________________________________称为齐次方程.4如果___________________________________________ ,则存在唯一的解,定义于区间上,连续且满足初始条件,其中_______________________ .5对于任意的,(为某一矩形区域),若存在常数使______________________ ,则称在上关于满足利普希兹条件.6方程定义在矩形区域:上,则经过点的解的存在区间是___________________7若是齐次线性方程的个解,为其伏朗斯基行列式,则满足一阶线性方程___________________________________8若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_________________________9若为毕卡逼近序列的极限,则有__________________10_________________________________________称为黎卡提方程,若它有一个特解,则经过变换___________________,可化为伯努利方程.二求下列方程的解(35%)12求方程经过的第三次近似解3讨论方程,的解的存在区间4求方程的奇解567三证明题(35%)1试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解2试用一阶微分方程解的存在唯一性定理证明:一阶线性方程,当,在上连续时,其解存在唯一<%建设目标%>《常微分方程》测试题 11一.填空题(30%)。