第4章 X射线衍射仪.
- 格式:ppt
- 大小:2.90 MB
- 文档页数:34
X射线衍射仪实验报告(范文模版)第一篇:X射线衍射仪实验报告(范文模版)基本构造:(1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。
(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。
(3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。
(4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。
操作:第一步:检查真空灯是否正常,左“黄”右“绿”为正常状态,如果“绿”灯闪或者灭的状态表明真空不正常;第二步:冷却水系统箱,打开其开关(冷却水的温度低于26℃为正常)。
如果“延时关机”为开的状态要关闭。
“曲轴加热”一般在寒冬才用,打开预热10min 后即可继续以下操作。
(此外,测试实验完成后,打开“延时关机”按钮,而冷却水的“关闭”按钮不关,30min后冷却水会自动关闭)第三步:打开机器后面“右下角”的“测角仪”(上开下关),而“左下角”的开关一般为“开”的状态,除有允许不要动;第四步:电脑操作,桌面“右下角”有“蓝色标示”说明电脑和机器已经连接,否则“左击”该标示选择“初始化”即可;第五步:装样品,载物台一般用“多功能”的,粉体或者块体装上后,使其平面与载物台面相平。
如果是粉体还要在滑道上铺层纸,避免掉料污染滑道;第六步:在机器中放样品前,按“Door”按键,听到“嘀嘀”声时,方可打开机器门;第七步:点击“standard measurement”中的运行按钮即可运行机器进行测试中。
第八步:实验完成后,先降电流后降电压,20mA/5min至10mA,5kV/5min至20kV;关闭各个软件,关闭“测角仪”开关。
冷却水箱上的开关可以直接打开“延时关机”开关,而冷却水“关闭”按钮不关,30min后自动关闭冷却水。
x射线衍射仪工作原理
x射线衍射仪是一种常用的分析仪器,广泛应用于材料科学、
结构生物学等领域。
它的工作原理是基于x射线的衍射现象。
首先,x射线衍射仪会通过一个x射线管产生一束高能的x射线。
这束x射线会经过一个束限器,使得只有一束直线状的射线从出口射出。
接下来,这束x射线会进入一块晶体或者一束平行的晶体。
晶体的晶格结构会使得入射的x射线遇到晶格中的原子时发生衍射现象。
根据布拉格定律,x射线在晶体晶面上的散射角度与
晶面的间距有关。
这意味着,不同晶面的散射角度是不同的。
在x射线衍射仪中,会放置一个底片或者探测器来捕捉散射光的信息。
当散射光到达底片或者探测器时,会形成一种特殊的衍射图样,称为衍射图。
衍射图上的每个峰代表着不同的晶面。
通过测量、分析衍射图中的峰的位置、强度等参数,可以推算出晶体的晶格参数、晶面的间距、晶体的结构等信息。
需要注意的是,为了获得准确的衍射图,x射线衍射仪中各个
部件的位置、角度等参数要进行精确的调整。
并且,在实际应用中,也需要进行数据处理、解析等工作,以获得更详细的晶体结构信息。
总结起来,x射线衍射仪通过向晶体中发射高能的x射线,并
捕捉其衍射光的信息,利用衍射图来研究晶体的结构和性质。
这种衍射现象基于布拉格定律,因此可以通过衍射图的分析来推导晶体的晶格结构参数。
x射线衍射仪的工作原理X射线衍射仪的工作原理是基于X射线的散射现象。
当X射线通过物质时,会与物质的原子产生相互作用,通过散射来改变其传播方向和能量。
具体工作原理如下:1. 产生X射线:X射线衍射仪使用X射线管产生X射线。
X射线管中有一个阴极和阳极,当高压施加在两个电极之间时,阴极上的电子会被加速,击中阳极,从而产生X射线。
2. 照射样品:产生的X射线通过选择性选择性照射到待测样品上。
样品中的原子核和电子会与X射线发生相互作用。
3. 散射现象:当X射线与样品中的原子相互作用时,会发生散射现象。
主要有两种类型的散射,即弹性散射和无弹性散射。
- 弹性散射(Rayleigh散射):在弹性散射中,X射线与样品中的原子表面相互作用,改变传播方向,但不改变能量。
这种散射通常被忽略,因为它对X射线衍射仪的结果没有贡献。
- 无弹性散射(Compton散射):在无弹性散射中,X射线与样品中的原子内部相互作用,改变了X射线的能量。
这种散射是X射线衍射仪中非常重要的现象,因为它提供了有关样品内部结构和晶体学信息的重要数据。
4. 衍射现象:当经过样品后的X射线进入到探测器时,会发生衍射现象。
衍射是由于入射X射线在样品中被散射后,不同方向上的散射波相互叠加形成的相干波的干涉现象。
5. 探测与记录:探测器将衍射产生的干涉图案转化为电信号,并通过信号处理和记录设备将其转化为可见图像或X射线衍射图谱。
这些图像或图谱可以用于分析样品的晶体结构、晶胞参数、晶体定向和有序结构等信息。
总的来说,X射线衍射仪的工作原理是通过利用X射线与样品中原子的相互作用和散射现象,来获取样品的晶体学信息和结构参数。
衍射图案的形状和强度可以提供关于样品原子排列和晶格结构的重要信息。
x射线衍射仪测量原理
X射线衍射是一种用来研究晶体结构的重要方法。
X射线衍射仪是用来进行X射线衍射实验的仪器。
其测量原理可以从以下几个方面来进行解释:
1. X射线的衍射现象,当X射线照射到晶体上时,由于晶体的周期性结构,X射线会被晶体中的原子散射,产生衍射现象。
根据布拉格定律,衍射角与晶格间距及入射X射线波长有关。
2. 晶体结构分析,X射线衍射仪利用X射线衍射现象来研究晶体的结构。
通过测量衍射角和X射线波长,可以计算出晶格的间距和晶体的结构信息,如晶格常数、晶胞结构等。
3. X射线衍射仪的构成,X射线衍射仪通常由X射线源、样品台、衍射角度测量装置和衍射图样测量装置等部分组成。
X射线源产生X射线,样品台用于放置待测样品,衍射角度测量装置用于测量衍射角,衍射图样测量装置用于记录衍射图样等。
4. 应用领域,X射线衍射仪广泛应用于材料科学、化学、生物学等领域。
例如,用于研究晶体结构、材料的相变行为、生物大分
子的结构等。
总的来说,X射线衍射仪利用X射线衍射现象来研究晶体结构,其测量原理涉及X射线的衍射现象、晶体结构分析、仪器构成和应
用领域等多个方面。
通过对这些方面的全面了解,可以更好地理解
X射线衍射仪的测量原理。
x射线衍射仪的原理
x射线衍射仪是一种用于观察物质内部结构的重要仪器,其原理基于x射线的衍射现象。
具体原理如下:
1. 产生x射线:在x射线衍射仪中,通常使用x射线管来产生x射线。
x射线管中有一个阴极和一个阳极,当阴极受到高电压激发时,会释放出高能电子。
这些电子在阳极上的金属靶上产生碰撞,从而产生x射线。
2. 准直:产生的x射线是一个由许多不同波长的电磁波构成的连续光谱。
为了让x射线能够射向样品并形成衍射图样,需要使用准直器来滤除非衍射光线,只保留所需的波长。
3. 衍射:经过准直后的x射线会照射到样品上。
样品中的原子和晶体结构会对x射线进行散射,这种散射就是衍射。
根据布拉格公式,衍射角与晶格间距和入射角度有关。
4. 探测器:x射线衍射仪上通常装有一种特殊的探测器,如闪烁屏幕或固态探测器。
这些探测器可以测量入射x射线和散射x射线之间的角度差,从而确定晶格间距。
5. 分析和解释:通过记录散射角和强度的数据,可以通过数学算法来解析和解释衍射图样。
根据不同晶体结构和晶格参数的特征,可以确定和确认样品的内部结构。
总结起来,x射线衍射仪的原理是利用x射线的衍射现象来观察并分析物质的内部结构。
通过产生x射线、准直、衍射、探
测和分析等步骤,可以获得有关样品晶格参数和晶体结构的重要信息。