A算法实验
- 格式:doc
- 大小:49.50 KB
- 文档页数:2
第1篇一、实验背景迷宫探路系统是一个经典的计算机科学问题,它涉及到算法设计、数据结构以及问题求解等多个方面。
本实验旨在通过设计和实现一个迷宫探路系统,让学生熟悉并掌握迷宫问题的求解方法,提高算法实现能力。
二、实验目的1. 理解迷宫问题的基本概念和求解方法。
2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)算法的原理和实现。
3. 了解A搜索算法的基本原理,并能够实现该算法解决迷宫问题。
4. 学会使用数据结构如栈、队列等来辅助迷宫问题的求解。
三、实验原理迷宫问题可以通过多种算法来解决,以下为三种常用的算法:1. 深度优先搜索(DFS):DFS算法通过递归的方式,沿着一条路径深入搜索,直到遇到死胡同,然后回溯并尝试新的路径。
DFS算法适用于迷宫的深度较深,宽度较窄的情况。
2. 广度优先搜索(BFS):BFS算法通过队列实现,每次从队列中取出一个节点,然后将其所有未访问过的邻接节点加入队列。
BFS算法适用于迷宫的宽度较宽,深度较浅的情况。
3. A搜索算法:A算法结合了DFS和BFS的优点,通过估价函数f(n) = g(n) +h(n)来评估每个节点的优先级,其中g(n)是从起始点到当前节点的实际代价,h(n)是从当前节点到目标节点的预估代价。
A算法通常能够找到最短路径。
四、实验内容1. 迷宫表示:使用二维数组表示迷宫,其中0表示通路,1表示障碍。
2. DFS算法实现:- 使用栈来存储路径。
- 访问每个节点,将其标记为已访问。
- 如果访问到出口,输出路径。
- 如果未访问到出口,回溯到上一个节点,并尝试新的路径。
3. BFS算法实现:- 使用队列来存储待访问的节点。
- 按顺序访问队列中的节点,将其标记为已访问。
- 将其所有未访问过的邻接节点加入队列。
- 如果访问到出口,输出路径。
4. A算法实现:- 使用优先队列来存储待访问的节点,按照f(n)的值进行排序。
- 访问优先队列中的节点,将其标记为已访问。
八数码问题C语言A星算法详细实验报告含代码Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、实验内容和要求八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:(a) 初始状态 (b) 目标状态图1 八数码问题示意图请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或 A* 算法)编程求解八数码问题(初始状态任选)。
选择一个初始状态,画出搜索树,填写相应的OPEN表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。
二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
三、实验算法A*算法是一种常用的启发式搜索算法。
在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。
A*算法的估价函数可表示为:f'(n) = g'(n) + h'(n)这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。
由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数:f(n) = g(n) + h(n)其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。
在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。
用f(n)作为f'(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。
这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。
实验三:A星算法求解8数码问题实验实验三:A*算法求解8数码问题实验一、实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
二、实验内容1、八数码问题描述所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。
将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态),如图1所示图1 八数码问题的某个初始状态和目标状态对于以上问题,我们可以把数码的移动等效城空格的移动。
如图1的初始排列,数码7右移等于空格左移。
那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。
最少有两种(当空格位于方阵的4个角时)。
所以,问题就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。
2、八数码问题的求解算法2.1 盲目搜索宽度优先搜索算法、深度优先搜索算法2.2 启发式搜索启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。
先定义下面几个函数的含义:f*(n)=g*(n)+h*(n) (1)式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。
评价函数的形式可定义如(2)式所示:f(n)=g(n)+h(n) (2)其中n是被评价的当前节点。
f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。
利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。
在A算法中,如果对所有的x,h(x)<=h*(x) (3)成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。
八数码实验报告八数码实验报告引言:八数码,也被称为滑块拼图,是一种经典的益智游戏。
在这个实验中,我们将探索八数码问题的解决方案,并分析其算法的效率和复杂性。
通过这个实验,我们可以深入了解搜索算法在解决问题中的应用,并且探讨不同算法之间的优劣势。
1. 问题描述:八数码问题是一个在3x3的方格上进行的拼图游戏。
方格中有8个方块,分别标有1到8的数字,还有一个空方块。
游戏的目标是通过移动方块,将它们按照从左上角到右下角的顺序排列。
2. 算法一:深度优先搜索(DFS)深度优先搜索是一种经典的搜索算法,它从初始状态开始,不断地向前搜索,直到找到目标状态或者无法继续搜索为止。
在八数码问题中,深度优先搜索会尝试所有可能的移动方式,直到找到解决方案。
然而,深度优先搜索在解决八数码问题时存在一些问题。
由于搜索的深度可能非常大,算法可能会陷入无限循环,或者需要很长时间才能找到解决方案。
因此,在实际应用中,深度优先搜索并不是最优的选择。
3. 算法二:广度优先搜索(BFS)广度优先搜索是另一种常用的搜索算法,它从初始状态开始,逐层地向前搜索,直到找到目标状态。
在八数码问题中,广度优先搜索会先尝试所有可能的一步移动,然后再尝试两步移动,依此类推,直到找到解决方案。
与深度优先搜索相比,广度优先搜索可以保证找到最短路径的解决方案。
然而,广度优先搜索的时间复杂度较高,尤其是在搜索空间较大时。
因此,在实际应用中,广度优先搜索可能不太适合解决八数码问题。
4. 算法三:A*算法A*算法是一种启发式搜索算法,它在搜索过程中利用了问题的启发信息,以提高搜索效率。
在八数码问题中,A*算法会根据每个状态与目标状态之间的差异,选择最有可能的移动方式。
A*算法通过综合考虑每个状态的实际代价和启发式估计值,来评估搜索路径的优劣。
通过选择最优的路径,A*算法可以在较短的时间内找到解决方案。
然而,A*算法的实现较为复杂,需要合适的启发函数和数据结构。
人工智能a算法
人工智能中的A算法是一种启发式搜索算法,也被称为A算法。
它利用估
价函数f(n)=g(n)+h(n)对Open表中的节点进行排序,其中g(n)是从起始
节点到当前节点n的实际代价,h(n)是从当前节点n到目标节点的估计代价。
A算法在搜索过程中会优先选择估价值最小的节点进行扩展,这样可以更有效地逼近目标节点,提高搜索效率。
A算法可以根据搜索过程中选择扩展节点的范围,将其分为全局择优搜索算法和局部择优搜索算法。
全局择优搜索算法会从Open表的所有节点中选择一个估价值最小的节点进行扩展,而局部择优搜索算法仅从刚生成的子节点中选择一个估价值最小的节点进行扩展。
A算法的搜索过程可能包括以下步骤:
1. 把初始节点S0放入Open表中,计算其估价值f(S0)=g(S0)+h(S0)。
2. 如果Open表为空,则问题无解,算法失败退出。
3. 把Open表的第一个节点取出放入Closed表,并记该节点为n。
4. 考察节点n是否为目标节点。
若是,则找到了问题的解,算法成功退出。
5. 若节点n不可扩展,则转到第2步。
6. 扩展节点n,生成子节点ni(i=1,2,…… ),计算每一个子节点的估价值f(ni) (i=1,2,……)。
7. 把子节点放入Open表中,并根据估价值进行排序。
8. 重复步骤2-7,直到找到目标节点或Open表为空。
总之,人工智能中的A算法是一种有效的人工智能搜索策略,它可以用于解决许多不同的问题,例如路径规划、机器人控制、游戏AI等。
题目: a算法求解八数码问题实验报告目录1. 实验目的2. 实验设计3. 实验过程4. 实验结果5. 实验分析6. 实验总结1. 实验目的本实验旨在通过实验验证a算法在求解八数码问题时的效果,并对其进行分析和总结。
2. 实验设计a算法是一种启发式搜索算法,主要用于在图形搜索和有向图中找到最短路径。
在本实验中,我们将使用a算法来解决八数码问题,即在3x3的九宫格中,给定一个初始状态和一个目标状态,通过移动数字的方式将初始状态转变为目标状态。
具体的实验设计如下:1) 实验工具:我们将使用编程语言来实现a算法,并结合九宫格的数据结构来解决八数码问题。
2) 实验流程:我们将设计一个初始状态和一个目标状态,然后通过a 算法来求解初始状态到目标状态的最短路径。
在求解的过程中,我们将记录下每一步的状态变化和移动路径。
3. 实验过程我们在编程语言中实现了a算法,并用于求解八数码问题。
具体的实验过程如下:1) 初始状态和目标状态的设计:我们设计了一个初始状态和一个目标状态,分别为:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 42) a算法求解:我们通过a算法来求解初始状态到目标状态的最短路径,并记录下每一步的状态变化和移动路径。
3) 实验结果在实验中,我们成功求解出了初始状态到目标状态的最短路径,并记录下了每一步的状态变化和移动路径。
具体的实验结果如下:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 47 6 5求解路径:1. 上移1 2 37 8 62. 左移1 2 3 4 0 5 7 8 63. 下移1 2 3 4 8 5 7 0 64. 右移1 2 3 4 8 5 0 7 65. 上移1 2 3 0 8 5 4 7 61 2 38 0 54 7 67. 下移1 2 38 7 54 0 68. 右移1 2 38 7 54 6 0共计8步,成功从初始状态到目标状态的最短路径。
A算法的实现原理及应用算法是计算机科学中重要的概念,其本质是一种数学思想,是一系列求解问题的方法和步骤。
A算法,也称为A*算法,是一种常见的寻路算法,被广泛应用于游戏开发、人工智能、机器人控制等领域。
本文将介绍A算法的实现原理及其应用。
一、A算法的实现原理A算法是一种搜索算法,其目标是在搜索图中找到从起点到终点的最短路径。
A算法基于一种启发式搜索策略,即优先考虑最有可能通向终点的节点。
下面是A算法的基本实现步骤:1. 初始化开始节点和结束节点,并把开始节点加入到开启列表中。
2. 从开启列表中选出具有最小f值(f值是节点的启发值和代价值之和)的节点作为当前节点。
3. 把当前节点从开启列表中删除,并将其加入到关闭列表中。
4. 遍历当前节点的相邻节点,如果相邻节点不可通过或者已经在关闭列表中,就忽略。
5. 对于未被遍历过的相邻节点,计算它的f值、g值和h值。
其中,g值表示从起点到该节点的代价,h值表示该节点到终点的启发值,即估算到终点的实际代价。
6. 如果相邻节点已经在开启列表中,比较新的g值和原先的g值,如果新的g值更小,就更新g值和f值。
如果相邻节点不在开启列表中,将其加入到开启列表中,并计算其f、g、h值。
7. 重复步骤2到步骤6,直到找到终点或者开启列表为空。
二、A算法的应用A算法是一种高效的寻路算法,其应用非常广泛。
下面列举几个例子:1. 游戏开发在游戏开发中,A算法被广泛用于计算游戏场景中的敌人或角色行走的最佳路径。
游戏场景通常被表示为一个二维数组,A算法可以根据玩家角色的位置和目标位置,在场景图中寻找最短路径,并输出路径。
2. 人工智能A算法是人工智能领域中常用的算法之一,可以被用于求解最优路径问题。
例如,在机器人路径规划中,A算法可以根据机器人的当前位置和目标位置,搜索机器人的最短路径,并输出路径。
3. 网络路由A算法也被广泛应用于网络路由领域。
当网络中出现路由选择问题时,A算法可以根据网络拓扑结构和路由代价,寻找到源节点到目标节点的最短路径。
实验一走迷宫问题一、实验目的:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解走迷宫问题,理解求解流程和搜索顺序。
二、实验原理:A*算法是一种有序搜索算法,其特点在于对估价函数的定义上。
对于一般的有序搜索,总是选择f值最小的节点作为扩展节点。
因此,f是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的代价以及从节点n到达目标节点的代价。
三、实验环境1. VC6.0/C++/C2. 走迷宫程序流程图四、实验内容1以走迷宫问题为例实际求解A*算法。
2画出A*算法求解框图。
3分析估价函数对搜索算法的影响。
4分析A*算法的特点。
五、实验步骤1. 分析问题,定义估价函数。
2. 编写程序,实验算法。
3. 改变估价函数,比较不同估价函数对算法的影响。
六、实验报告要求1A*算法流程图和算法框图。
2试分析估价函数的值对搜索算法速度的影响。
3根据A*算法分析启发式搜索的特点。
七、参考程序说明:该程序只作为参考程序,作为走迷宫问题的算法,从时间复杂度和空间复杂度考虑,它不是最优算法,但它利用了启发信息,能找到最短路径。
同学们可以从时间复杂度上考虑写出更优的算法。
函数调用说明:1、void AddClosed(struct Gather *des)des为struct Gather *类型的结点;该函数的功能是将des结点加到CLOSED集合中,无返回值。
2、void PartInit_Point(void)无行参,无返回值。
该函数的功能是初始化Point P[]中的部分成员。
3、void AddOpen(struct Point des)行参为struct Point 类型,可以直接将P[i]作行参。
该函数的功能是将点des加到OPEN集合中。
4、bool Goal(struct Gather *n)行参为struct Gather *类型, 返回值为bool型。
Apriori算法实验报告一、引言在数据挖掘领域,频繁项集挖掘是一项重要任务。
频繁项集指的是在一组交易记录中经常一起出现的物品集合。
Apriori算法是一种常用的频繁项集挖掘算法,其基本思想是通过迭代的方式逐渐生成和验证候选集合,从而找到频繁项集。
二、实验设计本实验旨在通过实际运用Apriori算法来挖掘某个购物网站的交易数据,从中发现频繁项集和关联规则。
实验数据集包含了一定数量的交易记录,每条记录包含了购买的商品列表。
我们将使用Python语言实现Apriori算法,并采用适当的数据结构和算法优化来提高运行效率。
三、数据预处理在进行频繁项集挖掘之前,我们首先需要对原始数据进行处理。
具体而言,需要将购买的商品列表进行编码,将商品名称映射为整数。
此外,还需要去除交易记录中的重复项,以减少数据的冗余性。
经过数据预处理后,我们得到了处理后的数据集。
四、Apriori算法实现首先,我们需要初始化候选集合。
将每个商品作为项集的初始候选项,并遍历整个数据集得到每个初始候选项的支持度。
根据设定的最小支持度阈值,过滤掉低频项,得到频繁1项集。
接下来,我们使用频繁1项集生成候选2项集。
具体而言,我们对于每个频繁1项集,两两组合,得到候选2项集,并计算其支持度。
同样根据最小支持度阈值,过滤掉低频项,得到频繁2项集。
然后,我们采用逐层迭代的方式生成更高阶的候选项集。
具体而言,我们使用频繁k-1项集生成候选k项集,然后计算其支持度,并过滤掉低频项,得到频繁k项集。
重复迭代,直到无法生成更高阶的候选项集为止。
最后,我们根据频繁项集生成关联规则。
具体而言,对于每个频繁项集,我们生成其所有非空子集,并计算其置信度。
根据设定的最小置信度阈值,过滤掉低置信度的关联规则,得到满足要求的关联规则。
五、实验结果分析经过实验运行,我们得到了购物网站交易数据的频繁项集和关联规则。
我们对实验结果进行分析如下:1. 频繁项集通过观察频繁项集,我们可以发现一些有趣的规律。
a星算法的例题含解答A* 算法是一种广泛用于图搜索和路径规划的算法。
它使用启发式评估函数来估计从起始节点到目标节点的代价,并在搜索过程中选择最优路径。
下面是一个简单的A* 算法的例子,以及对应的解答。
考虑一个简单的5x5 格子地图,其中S 表示起始点,G 表示目标点,# 表示障碍物,而数字表示每个方格的代价。
我们的目标是从起始点S 移动到目标点G,避开障碍物,并选择总代价最小的路径。
```地图:S 1 # 3 ## 2 # 4 ## # # G 5# # # 2 ## # # 1 #```在这个例子中,我们可以使用A* 算法找到从S 到G 的最优路径。
启发式函数可以使用曼哈顿距离,即从当前节点到目标节点的水平和垂直距离之和。
A* 算法的步骤:1. 初始化起始节点和目标节点,设置起始节点的代价为0。
2. 将起始节点加入开放列表(open list)。
3. 当开放列表不为空时,重复以下步骤:a. 从开放列表中选择代价最小的节点,作为当前节点。
b. 如果当前节点是目标节点,则找到了路径,结束搜索。
c. 将当前节点从开放列表中移除,并将其添加到封闭列表(closed list)。
d. 对当前节点的邻居节点进行遍历:-如果邻居节点不可通行或者在封闭列表中,忽略它。
-如果邻居节点不在开放列表中,将其添加到开放列表,并计算代价(代价= 当前节点的代价+ 从当前节点到邻居节点的代价)。
-如果邻居节点已经在开放列表中,并且新计算的代价更小,则更新邻居节点的代价。
在上面的例子中,我们可以通过A* 算法找到从S 到G 的最短路径。
具体步骤和代价计算需要在实际执行中进行,但希望这个简单的例子可以帮助理解A* 算法的基本思想。
java 利用a算法寻找最优路径实验步骤实验:利用A*算法寻找最优路径引言:A*算法是一种常用的寻找最优路径的算法,它结合了Dijkstra算法的广度优先搜索和Greedy Best-First Search算法的贪心思想,能够在实际操作中有效地优化路径的选择。
本实验将通过Java语言编写代码,展示如何使用A*算法在一个图形环境中寻找最优路径。
步骤一:创建图形界面和渲染基本场景首先,在Java中创建一个图形界面,并添加一个画布用于渲染基本场景。
在画布中,我们可以使用不同的形状和颜色表示不同的地形和障碍物。
这些地形和障碍物将构成我们的路径搜索环境。
步骤二:定义节点和边的数据结构接下来,我们需要定义节点和边的数据结构。
节点是图形环境中的一个位置,边是将两个节点连接起来的路径。
每个节点都有一个唯一的标识符,并且存储其在画布中的位置、与其他节点相邻的边以及其他有关信息。
步骤三:实现A*算法的估价函数A*算法的核心是估价函数,它用来评估路径的优劣。
在我们的实验中,我们可以使用欧几里得距离作为估价函数。
给定两个节点A(x1, y1)和B(x2,y2),欧几里得距离可以通过以下公式计算:distance = sqrt((x2-x1)^2 + (y2-y1)^2)。
我们可以通过这个函数来评估两个节点之间的距离。
步骤四:实现A*算法的启发函数启发函数用于预测节点到目标节点的成本。
在我们的实验中,我们可以使用欧几里得距离作为启发函数。
给定一个节点A(x, y)和目标节点B(tx, ty),启发函数可以通过以下公式计算:heuristic = sqrt((tx-x)^2 + (ty-y)^2)。
我们可以通过这个函数来预测节点到目标节点的成本。
步骤五:实现A*算法的搜索过程现在,我们可以开始实现A*算法的搜索过程。
首先,我们需要创建一个开放列表和一个关闭列表。
开放列表用于存储待处理的节点,关闭列表用于存储已经处理过的节点。
实验四 A*算法求解8数码问题一、实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解8数码难题,理解求解流程和搜索顺序。
二、实验原理A*算法是一种启发式图搜索算法,其特点在于对估价函数的定义上。
对于一般的启发式图搜索,总是选择估价函数f值最小的节点作为扩展节点。
因此,f 是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的实际代价g(n)以及从节点n 到达目标节点的估价代价h(n),且h(n)<=h*(n),h*(n)为n节点到目标节点的最优路径的代价。
八数码问题是在3×3的九宫格棋盘上,排放有8个刻有1~8数码的将牌。
棋盘中有一个空格,允许紧邻空格的某一将牌可以移到空格中,这样通过平移将牌可以将某一将牌布局变换为另一布局。
针对给定的一种初始布局或结构(目标状态),问如何移动将牌,实现从初始状态到目标状态的转变。
如图1所示表示了一个具体的八数码问题求解。
图1 八数码问题的求解三、实验内容1、参考A*算法核心代码,以8数码问题为例实现A*算法的求解程序(编程语言不限),要求设计两种不同的估价函数。
2、在求解8数码问题的A*算法程序中,设置相同的初始状态和目标状态,针对不同的估价函数,求得问题的解,并比较它们对搜索算法性能的影响,包括扩展节点数、生成节点数等。
3、对于8数码问题,设置与图1所示相同的初始状态和目标状态,用宽度优先搜索算法(即令估计代价h(n)=0的A*算法)求得问题的解,记录搜索过程中的扩展节点数、生成节点数。
4、提交实验报告和源程序。
四.实验截图五.源代码#include<iostream>#include"stdio.h"#include"stdlib.h"#include"time.h"#include"string.h"#include<queue>#include<stack>using namespace std;const int N=3;//3*3棋?盘ìconst int Max_Step=32;//最?大洙?搜?索÷深?度èenum Direction{None,Up,Down,Left,Right};//方?向ò,?分?别纄对?应畖上?下?左哩?右?struct Chess//棋?盘ì{int chessNum[N][N];//棋?盘ì数簓码?int Value;//评à估à值μDirection BelockDirec;//所ù屏á蔽?方?向òstruct Chess * Parent;//父?节ú点?};void PrintChess(struct Chess *TheChess);//打洙?印?棋?盘ìstruct Chess * MoveChess(struct Chess * TheChess,Direction Direct,bool CreateNewChess);//移?动ˉ棋?盘ì数簓字?int Appraisal(struct Chess * TheChess,struct Chess * Target);//估à价?函ˉ数簓struct Chess * Search(struct Chess* Begin,struct Chess * Target);//A*搜?索÷函ˉ数簓int main(){//本?程ì序ò的?一?组哩?测a试?数簓据Y为a/*初?始?棋?盘ì*1 4 0**3 5 2**6 7 8**//*目?标括?棋?盘ì*0 1 2**3 4 5**6 7 8**/Chess Target;Chess *Begin,*ChessList;Begin=new Chess;int i;cout<<"请?输?入?初?始?棋?盘ì,?各÷数簓字?用?空?格?隔?开a:阰"<<endl;for(i=0;i<N;i++){for(int j=0;j<N;j++){cin>>Begin->chessNum[i][j];}}cout<<"请?输?入?目?标括?棋?盘ì,?各÷数簓字?用?空?格?隔?开a:阰"<<endl;for(i=0;i<N;i++){for(int j=0;j<N;j++){cin>>Target.chessNum[i][j];}}//获?取?初?始?棋?盘ìAppraisal(Begin,&Target);Begin->Parent=NULL;Begin->BelockDirec=None;Target.Value=0;cout<<"初?始?棋?盘ì:";PrintChess(Begin);cout<<"目?标括?棋?盘ì:";PrintChess(&Target);ChessList=Search(Begin,&Target);//搜?索÷//打洙?印?if(ChessList){/*将?返う?回?的?棋?盘ì列表括?利?用?栈?将?其?倒?叙e*/Chess *p=ChessList;stack<Chess *>Stack;while(p->Parent!=NULL){Stack.push(p);p=p->Parent;}cout<<"搜?索÷结á果?:"<<endl;int num=1;while(!Stack.empty()){cout<<"第台?<<num<<"步?: ";num++;PrintChess(Stack.top());Stack.pop();}cout<<"\n完?成é!"<<endl;}elsecout<<"搜?索÷不?到?结á果?,?搜?索÷深?度è大洙?于?2\n"<<endl;return 0;}//打洙?印?棋?盘ìvoid PrintChess(struct Chess *TheChess){cout<<"(评à估à值μ为a";cout<<TheChess->Value;cout<<")"<<endl;for(int i=0;i<N;i++){cout<<" ";for(int j=0;j<N;j++){cout<<TheChess->chessNum[i][j]<<" ";}cout<<endl;}}//移?动ˉ棋?盘ìstruct Chess * MoveChess(struct Chess * TheChess,Direction Direct,bool CreateNewChess) {struct Chess * NewChess;//获?取?空?闲D格?位?置?int i,j;for(i=0;i<N;i++){bool HasGetBlankCell=false;for(j=0;j<N;j++){if(TheChess->chessNum[i][j]==0){HasGetBlankCell=true;break;}}if(HasGetBlankCell)break;}int ii=i,jj=j;bool AbleMove=true;//判D断?是?否?可é以?移?动ˉswitch(Direct){case Up:i++;if(i>=N)AbleMove=false;break;case Down:i--;if(i<0)AbleMove=false;break;case Left:j++;if(j>=N)AbleMove=false;break;case Right:j--;if(j<0)AbleMove=false;break;};if(!AbleMove)//不?可é以?移?动ˉ则ò返う?回?原-节ú点?{return TheChess;}if(CreateNewChess){NewChess=new Chess();for(int x=0;x<N;x++){for(int y=0;y<N;y++)NewChess->chessNum[x][y]=TheChess->chessNum[x][y];//创洹?建¨新?棋?盘ì,?此?时骸?值μ与?原-棋?盘ì一?致?}}elseNewChess=TheChess;NewChess->chessNum[ii][jj] = NewChess->chessNum[i][j];//移?动ˉ数簓字?NewChess->chessNum[i][j]=0;//将?原-数簓字?位?置?设Θ?置?为a空?格?return NewChess;}//估à价?函ˉ数簓int Appraisal(struct Chess * TheChess,struct Chess * Target){int Value=0;for(int i=0;i<N;i++){for(int j=0;j<N;j++){if(TheChess->chessNum[i][j]!=Target->chessNum[i][j])Value++;}}TheChess->Value=Value;return Value;}//A*搜?索÷函ˉ数簓struct Chess * Search(struct Chess* Begin,struct Chess * Target){Chess *p1,*p2,*p;int Step=0;//深?度èp=NULL;queue<struct Chess *> Queue;Queue.push(Begin);//初?始?棋?盘ì入?队ó//搜?索÷do{p1=(struct Chess *)Queue.front();Queue.pop();//出?队ófor(int i=1;i<=4;i++)//分?别纄从洙?四?个?方?向ò推?导?出?新?子哩?节ú点? {Direction Direct=(Direction)i;if(Direct==p1->BelockDirec)//跳?过y屏á蔽?方?向òcontinue;p2=MoveChess(p1,Direct,true);//移?动ˉ数簓码?if(p2!=p1)//数簓码?是?否?可é以?移?动ˉ{Appraisal(p2,Target);//对?新?节ú点?估à价?if(p2->Value<=p1->Value)//是?否?为a优?越?节ú点?{p2->Parent=p1;switch(Direct)//设Θ?置?屏á蔽?方?向ò,防え?止1往?回?推?{case Up:p2->BelockDirec=Down;break;case Down:p2->BelockDirec=Up;break;case Left:p2->BelockDirec=Right;break;case Right:p2->BelockDirec=Left;break;}Queue.push(p2);//存?储洹?节ú点?到?待鋣处鋦理え?队ó列if(p2->Value==0)//为a0则ò,搜?索÷完?成é{p=p2;i=5;}}else{delete p2;//为a劣ⅷ?质ê节ú点?则ò抛×弃úp2=NULL;}}}Step++;if(Step>Max_Step)return NULL;}while(p==NULL || Queue.size()<=0);return p;}六、实验报告要求1、分析不同的估价函数对A*搜索算法性能的影响等。
★★★★★
例8 设计求一个数a的绝对值的算法并画出相应的流程图
解答:
算法第一步:输入a
第二步:如果a>=0;则| a |=a,否则,| a |=-a;
第三步:输出| a |
豆丁致力于构建全球领先的文档发布与销售平台,面向世界范围提供便捷、安全、专业、有效的文档营销服务。
包括中国、日本、韩国、北美、欧洲等在内的豆丁全球分站,将面向全球各地的文档拥有者和代理商提供服务,帮助他们把文档发行到世界的每一个角落。
豆丁正在全球各地
建立便捷、安全、高效的支付与兑换渠道,为每一位用户提供优质的文档交易和账务服务。
A星算法的简单原理A星算法(A* algorithm)是一种常用于路径规划的算法,它能够在图形中找到最短路径。
本文将详细介绍A星算法的原理及其实现过程。
一、A星算法的原理A星算法是一种启发式算法,它通过估计离目标节点最短距离来为每个节点评分,从而决定下一步应该扩展的节点。
A星算法通常用于二维图形中,其中每个节点都有一定的代价或权重。
1. 创建一个开放列表(open list)和一个关闭列表(closedlist)。
-开放列表用于保存可能成为最佳路径的节点。
-关闭列表用于保存已经扩展过的节点。
2.将起始节点添加到开放列表中,并设置其启发式评分(也称为f值)为0。
3.重复以下步骤,直到找到目标节点或者开放列表为空。
a.从开放列表中选择一个节点,称之为当前节点。
选择当前节点的依据是当前节点的f值最低。
b.将当前节点移到关闭列表中。
c.对当前节点的邻居节点进行遍历。
d.对于每个邻居节点,判断它是否在关闭列表中,如果是则忽略。
其父节点为当前节点。
同时计算邻居节点的f值、g值和h值。
-g值是起始节点到当前节点的实际代价。
-h值是当前节点到目标节点的估计代价,也称为启发式评估。
-f值是g值和h值的和,用于排序开放列表中的节点。
4.当找到目标节点时,可以通过遍历每个节点的父节点,从而最终得到最短路径。
5.如果开放列表为空,表示找不到目标节点,路径规划失败。
二、A星算法的实现1.定义节点类:节点类包含节点的坐标、父节点、g值和h值等属性。
2.创建开放列表和关闭列表:开放列表用于保存可能成为最佳路径的节点,关闭列表用于保存已经扩展过的节点。
3.初始化起始节点和目标节点,并将起始节点添加到开放列表中。
4.重复以下步骤,直到找到目标节点或者开放列表为空。
a.从开放列表中选择一个节点,称之为当前节点。
选择当前节点的依据是当前节点的f值最低。
b.将当前节点移到关闭列表中。
c.对当前节点的邻居节点进行遍历,计算邻居节点的f值、g值和h 值。
人工智能基础(第2版)
实验二A*算法实验
1.提交期限和方法
2.实验目的
熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N 数码难题,理解求解流程和搜索顺序。
3.实验任务
1)实现类似于如图所示N数码难题演示程序。
2)用你所熟悉的程序语言实现,可以B/S实现,也可以C/S实现。
4、实验内容
1)分别以8数码和15数码为例实际求解A*算法。
2)画出A*算法求解框图。
3)分析估价函数对搜索算法的影响。
4 )分析A*算法的特点。
5、提交要求
1、本次实验为个人任务,需独立完成,以纸质和电子档的形式把实验报告提交给学习委员,再由学习委员在规定期限内提交给任课老师。
2、要求把所做的程序的演示图附加到实验报告上,代码不需要添加到实验报告上。
3、撰写实验报告
实验报告具体内容如下:
实验题目、实验目的、实验原理、实验条件、实验内容、实验步骤、程序代码、个人实验小结。
4、未按时提交实验报告者,每迟交一天扣1分,扣完为止。
经辅导员同意并签字的事病假时间不计入迟交范围。
凡被发现实验报告有抄袭者,本次成绩以零分记。
实验四 A*算法实验
(选修,2学时)
一、实验目的:
熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
二、实验原理:
A*算法是一种有序搜索算法,其特点在于对估价函数的定义上。
对于一般的有序搜索,总是选择f值最小的节点作为扩展节点。
因此,f是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的代价以及从节点n到达目标节点的代价。
三、实验条件:
1N数码难题演示程序。
2IE5.0以上,可以上Internet。
三、实验内容:
1分别以8数码和15数码为例实际求解A*算法。
2画出A*算法求解框图。
3分析估价函数对搜索算法的影响。
4分析A*算法的特点。
四、实验步骤:
1开始演示。
进入N数码难题演示程序,可选8数码或者15数码,点击“选择数码”按钮确定。
第一次启动后,点击两次“缺省”或者“随机”按钮,才会出现图片。
2点击“缺省棋局”,会产生一个固定的初始节点。
点击“随机生成”,会产生任意排列的初始节点。
3算法执行。
点击“连续执行”则程序自动搜索求解,并演示每一步结果;点击“单步运行”则每次执行一步求解流程。
“运行速度”可自由调节。
4观察运行过程和搜索顺序,理解启发式搜索的原理。
在下拉框中选择演示“15数码难题”,点击“选择数码”确定选择;运行15数码难题演示实例。
5算法流程的任一时刻的相关状态,以算法流程高亮、open表、close表、节点静态图、当前扩展节点移动图等5种形式在按钮上方同步显示,便于深入学习理解A*算法。
6根据程序运行过程画出A*算法框图。
其它可参考帮助文件。
五、实验报告要求:
1A*算法流程图和算法框图。
2试分析估价函数的值对搜索算法速度的影响。
3根据A*算法分析启发式搜索的特点。