一元一次方程解决问题1--庄阳海
- 格式:doc
- 大小:391.23 KB
- 文档页数:14
第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。
解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。
每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。
还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。
三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。
2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。
六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。
2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。
3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =8【答案】B.【分析】根据合并同类项法则,即可判断【详解】8x +6x -10x =8合并同类项,得 4x=8故选B.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.2.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 【答案】B.【分析】根据合并同类项解一元一次方程的特征,即可判断【详解】略【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =8【答案】B.【分析】根据合并同类项法则,求出解,即可判断【详解】A .7x -3x =-4 合并同类项,得4x=-4,系数化为1,得 x=-1B .x +x =5+3 合并同类项,得2x=8,系数化为1,得 x=4C .x =-1+3 合并同类项,得x=2D .-2x =8 系数化为1,得 x=-4故选B.题的关键.4.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=13【答案】A.【分析】根据合并同类项法则,求出解,即可判断【详解】353122--=-x x 合并同类项,得−92x=32.系数化为1,得 x=-3.故选A.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.5.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-23【答案】C.【分析】根据合并同类项法则和系数化为1,求出解,即可判断【详解】A .-2m +3m =4,得-m =4B .4y -2y +y =4,得(4-2+1)y =4,3y=4C .-12x =0,得x =0 D .2x =-3,得x =-32故选C.题的关键.6.下列各方程合并同类项不正确的是()A.由3x-2x=4合并同类项,得x=4B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x-+=合并同类项,得352x-=【答案】C.【分析】根据合并同类项法则,求出解,即可判断【详解】A.由3x-2x=4合并同类项,得x=4 ,正确;B.由2x-3x=3合并同类项,得-x=3,正确;C.由5x-2x+3x=12合并同类项,得x=-2,合并后应为6x=12,解得x=2,错误;D.由7252x x-+=合并同类项,得352x-=,正确.故选C【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x天才能挖好,则列出的方程为( )A.150x+90x=1200 B.150+90x=1200 C.150x+90=1200 D.150x-90x=1200【答案】A.【分析】根据题意,找等量关系,设未知数,列方程.【详解】解设需要x天才能挖好.由题意得,150x+90x=1200故选A8.解方程8x-3x=10,合并同类项得__________,解得x=_____;若3a-1与1-2a互为相反数,则a=_____.【答案】5x=10;2;0.【分析】根据合并同类项法则,求出解.【详解】8x -3x =10,合并同类项,得5x=10系数化为1,得x =2.因为若3a -1与1-2a 互为相反数,∴3a -1+1-2a=0合并同类项,得a=0【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.9.某数的5倍比这个数的8倍少12,则这个数是_________.【答案】4.【分析】列出方程,根据合并同类项法则,求出解.【详解】8x -5x =12,合并同类项,得3x=12系数化为1,得x=4.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 . 【答案】37- 【分析】同解方程,根据合并同类项法则,求出363+=-x x 的解.再把解代入到231+=-mx m 中,求出m 的值.【详解】363+=-x x合并同类项,得9x=-3系数化为1,得x=-13.把x=-13代入231+=-mx m 中,得-23m+3m=-1解得m=-3711.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;【答案】20【分析】根据题意,找等量关系,设未知数,列方程,利用合并同类项的方法解方程,即可求解.【详解】解设前年购买x 台计算机,则去年购买2x 台,今年购买4x 台。
解一元一次方程欧阳学文 1、712=+x ; 2、825=-x ;3、7233+=+x x ;4、735-=+x x ; 解:(移项)(合并)(化系数为1)5、914211-=-x x ;6、2749+=-x x ;7、162=+x ;8、9310=-x ;解:(移项)(合并)(化系数为1)9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x 解:(移项)(合并)(化系数为113、1623+=x x 14、253231+=-x x ;15、152+=--x x ; 16、23312+=--x x 解:(移项)(合并)(化系数为1).17、475.0=)++(x x ;18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ;解:(去括号)(移项)(合并)(化系数为1)21、)12(5111+=+x x ;22、32034)=-(-x x .23、5058=)-+(x ; 24、293)=-(x ;解:(去括号)(移项)(合并)(化系数为1)25、3-243)=+(x ;26、2-122)=-(x ; 27、443212+)=-(x x ;28、323236)=+(-x ;解:(去括号)(移项)(合并)(化系数为1)29、x x 2570152002+)=-(; 30、12123)=+(x .31、452x x =+;32、3423+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为1)33、)-()=+(3271131x x ; 34、)-()=+(131141x x ;35、142312-+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为136、)+(-)=-(2512121x x .37、)+()=+(20411471x x ;38、)-(-)=+(731211551x x . 解:(去分母)(去括号)(移项)(合并)(化系数为139、432141=-x ; 40、83457=-x ; 41、815612+=-x x ; 42、629721-=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为143、1232151)=-(-x x ; 44、1615312=--+x x ;45、x x 2414271-)=+(; 解:(去分母)(去括号)(移项)(合并)(化系数为146、259300300102200103 )=-()-+(x x .47、307221159138)=-()--()--(x x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为148、51413121-=+x x ;49、13.021.02.015.0=-+--x x ;50、3.01-x -5.02+x =12. 解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】1、【答案】(1)3=x ; (2)2=x ; (3)4=x ; (4)6=x ;(5)37=x ; (6)12=-x ; (7)4=x ; (8)32=-x .1.1、【答案】 (9)25=-x ; (10)56=x ; (11)5=-x ; (12)31=-x ; (13)1=x ; (14)32=x ; (15)35=-x ; (16)1=x .2、【答案】(17)1=x ;(18)1=-x ; (19)56=x ; (20)3=-x ; (21)4=x ; (22)9=x .2.1、【答案】(23)7=-x ; (24)23=-x ; (25)11=-x ; (26)4=-x ; (27)21=x ; (28)910=x ; (29)6=x ; (30)23=x . 3、【答案】 (31)8=x ; (32)51=x ; (33)16=-x ; (34)7=x ; (35)52=-x ;(36)3=x ; (37)28=-x ; (38)165=-x . 3.1、【答案】 (39)5=x ; (40)1413=x ; (41)1=-x ; (42)320=-x ; (43)1225=x ;(44)3=-x ; (45)87=x ; (46)216=x .4、【答案】 (47)3=x ; (48)1532=-x ; (49)1364=x ;(50)229=x .。
七年级上册数学《第三章一元一次方程》专题一元一次方程的同解、错解、参数等问题【例题1】(2022•江阴市模拟)已知x=1是方程x+2a=﹣1的解,那么a的值是()A.﹣1B.0C.1D.2【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a 的值.【解答】解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选:A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.【变式1-1】(2022秋•秀山县期末)已知x=1是关于x的方程6﹣(m﹣x)=5x的解,则代数式m2﹣6m+2=.【分析】根据一元一次方程的解的定义可知m的值,然后代入求值即可.【解答】解:把x=1代入6﹣(m﹣x)=5x,得6﹣(m﹣1)=5×1.解得m=2.所以m2﹣6m+2=22﹣6×2+2=﹣6.故答案为:﹣6.【点评】本题主要考查了一元一次方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式1-2】(2022秋•张家港市期中)已知x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,则3a3﹣2a2+a ﹣4的值是()A.1B.﹣1C.16D.14【分析】把x=1代入关于x的方程3x3﹣2x2+x﹣4+a=0可以求得a的值,然后把x=2代入所求的代数式进行求值.【解答】解:∵x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,∴3﹣2+1﹣4+a=0,解得,a=2,∴3a3﹣2a2+a﹣4=3×23﹣2×22+2﹣4=14.故选:D.【点评】本题主要考查了方程解的定义,解决本题的关键在于根据方程的解的定义将x=1代入,从而转化为关于a的一元一次方程.【变式1-3】若关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,则m的值是()A.14或134B.14C.54D.−12或54【分析】解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.【解答】解:因为方程|x−12|=1,所以x−12=±1,解得x=32或x=−12,因为关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,所以解方程x+2=2(m﹣x)得,m=3r22,当x=32时,m=134,当x=−12时,m=14.所以m的值为:134或14.故选:A.【点评】本题考查了含绝对值符号的一元一次方程,解决本题的关键是解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论.【变式1-4】(2022秋•奎屯市校级月考)已知x=4是关于x的一元一次方程﹣3m﹣x=2+3m的解,则m2020+1的值是.【分析】根据一元一元一次方程的解的定义求得m,再解决此题.【解答】解:由题意得,﹣3m﹣4=42+3.∴﹣3m﹣4=2+3m.∴﹣6m=6.∴m=﹣1.∴m2020+1=(﹣1)2020+1=1+1=2.故答案为:2.【点评】本题主要考查一元一次方程的解、有理数的乘方,熟练掌握一元一次方程的解的定义、有理数的乘方是解决本题的关键.【变式1-5】(2022秋•烟台期末)已知x=﹣1是关于x的方程2a+2=﹣1﹣bx的解.求代数式5(2a﹣b)﹣2a+b+2的值.【分析】根据方程解的定义,把x=﹣1代入关于x的方程2a+2=﹣1﹣bx,即可得出代数式5(2a﹣b)﹣2a+b+2的值.【解答】解:当x=﹣1时,2a+2=﹣1+b,即2a﹣b=﹣3,∴5(2a﹣b)﹣2a+b+2=5(2a﹣b)﹣(2a﹣b)+2=﹣15+3+2=﹣10.【点评】本题考查了一元一次方程的解,以及整式的加减,把2a﹣b作为整体,是数学中常用的整体思想.(2023春•长春期中)已知关于x的方程4x+2m=3x+1的解是x=0,试求(−2p2021−(−32)2020【变式1-6】的值.【分析】将x=0代入原方程,可求出m的值,再将m的值代入原式,即可求出结论.【解答】解:将x=0代入原方程得:2m=1,解得:m=12,∴原式=(﹣2×12)2021﹣(12−32)2020,=(﹣1)2021﹣(﹣1)2020=﹣1﹣1=﹣2.【点评】本题考查了一元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.【例题2】(2023秋•东台市期中)如果关于x的方程K43=8−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求a的值.【分析】先求出第一个方程的解,然后代入第二个方程得到关于a的一元一次方程,再根据一元一次方程的解法进行求解即可.【解答】解:解方程K43=8−r22得:x=10,由题意:4x﹣(3a+1)=6x+2a﹣1的解为x=10,代入得:4×10﹣(3a+1)=6×10+2a﹣1,解得:a=﹣4.【点评】本题考查了同解方程,同解方程就是解相同的方程,本题先求出第一个方程的解是解题的关键.【变式2-1】(2022秋•长沙期末)若关于x的方程r32−=2的解与方程x+1=m的解相同,求m的值.【分析】先解方程r32−=2可得x=4﹣m,再根据方程同解的含义可得4﹣m+1=m,再解关于m 的方程即可.【解答】解:r32−=2,去分母可得:m+3x﹣2x=4,即x=4﹣m,∵关于x的方程r32−=2的解与方程x+1=m的解相同,∴4﹣m+1=m,解得:=52.【点评】本题考查的是同解方程的含义,选择合适的方程进行变形是解本题的关键.【变式2-2】(2022秋•仙游县校级期末)如果方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,求(a ﹣3)2的值.【分析】通过解关于x的方程2K35=23x﹣2求得x的值,然后将x的值代入3a−14=3(x+a)﹣2a列出关于a的新方程,通过解该新方程即可求得a的值,再代入计算即可求解.【解答】解:由关于x的方程2K35=23x﹣2,解得x=5.25∵关于x的方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,∴3a−14=3(5.25+a)﹣2a,解得a=8.∴(a﹣3)2=(8﹣3)2=25.【点评】本题考查了同解方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式2-3】(2023春•安岳县校级期中)已知关于x的一元一次方程2r13−5K16=1.(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=﹣(x﹣1)的解相同,求m的值.【分析】(1)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)根据题意可知x=﹣3是方程3(x+m)=﹣(x﹣1)的解,把x=﹣3代入方程3(x+m)=﹣(x ﹣1)中得到关于m的方程,解方程即可.【解答】解:(1)2r13−5K16=1去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣1﹣2,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(2)由题意得x=﹣3是方程3(x+m)=﹣(x﹣1)的解,∴3(﹣3+m)=﹣(﹣3﹣1),∴3m﹣9=4,解得=133.【点评】本题主要考查了解一元一次方程,一元一次方程的解,熟知解一元一次方程的步骤是解题的关键.【变式2-4】如果方程K43−8=−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子a﹣a2的值.【分析】先求得方程方程K43−8=−r22的解,然后将所求的x的值代入方程4x﹣(3a+1)=6x+2a﹣1求得a的值,最后在求代数式的值即可.【解答】解:K43−8=−r22去分母得:2(x﹣4)﹣48=﹣3(x+2)去括号得:2x﹣8﹣48=﹣3x﹣6,移项得:2x+3x=﹣6+8+48,合并同类项得:5x=50,系数化为1得:x=10.将x=10代入方程4x﹣(3a+1)=6x+2a﹣1得:40﹣(3a+1)=60+2a﹣1,去括号得:40﹣3a﹣1=60+2a﹣1,移项得:﹣3a﹣2a=60﹣1﹣40+1,合并同类项得:﹣5a=20,系数化为1得:a=﹣4.a﹣a2=﹣4﹣(﹣4)2=﹣4﹣16=﹣20.【点评】本题主要考查的是同解方程的定义、解一元一次方程、求代数式的值,求得a的值是解题的关键.【变式2-5】(2022秋•巴南区期末)已知方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),求m的值.【分析】根据方程的解相同,可得关于m的方程,根据解方程,可得答案.【解答】解:解方程3K52=5K83,3(3x﹣5)=2(5x﹣8),9x﹣15=10x﹣16,9x﹣10x=﹣16+15,x=1,∵方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),∴10−3(1−p2=3−4−25×(3+p,2m﹣30(1﹣m)﹣5(3﹣m)﹣8(3+m),2m﹣30+30m=15﹣5m﹣24﹣8m,2m+30m+8m+5m=30+15﹣24,45m=21,解得m=715.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.【变式2-6】(2022秋•利州区校级期末)已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同.(1)求m的值;(2)求代数式(﹣2m)2022−(−32)2021的值.【分析】(1)分别解出两个方程的解,根据解相同列出方程,解方程即可;(2)代入求值即可.【解答】解:(1)由4x+2m=3x+1解得:x=1﹣2m,由3x+2m=6x+1解得:x=2K13,由题知:1﹣2m=2K13,解得:m=12;(2)当m=12时,(﹣2m)2022﹣(m−32)2021=(﹣2×12)2022﹣(12−32)2021=1+1=2.【点评】本题考查了同解方程,解一元一次方程,列出关于m的方程是解题的关键.【例题3】(202秋•沂源县期末)方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,求k的值【分析】直接解方程得出x=−13,进而得出关于x的方程r2−3k﹣2=2x的解,求出答案即可.【解答】解:∵2﹣3(x+1)=0,∴解得:x=−13,∵方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,∴关于x的方程r2−3k﹣2=2x的解x=13,∴r132−3k﹣2=23,解得:k=﹣1.【点评】此题主要考查了一元一次方程的解,正确得出x的值是解题关键.【变式3-1】(2022秋•高港区校级月考)已知关于x的方程①:x+1﹣2m=﹣m的解比方程②:32(−p−2=54的解大2.求m的值以及方程②的解.【分析】用含m的式子分别表示出方程①和方程②的解,根据方程①的解比方程②的解大2列出关于m的方程,求解可得m的值,将m的值代入方程②中即可解得x的值.【解答】解:解x+1﹣2m=﹣m得:x=m﹣1,解32(−p−2=54得:=611−811,∵方程①的解比方程②的解大2,∴−1−(611−811)=2,解得:m=5,将m=5代入方程②中得:32(5−p−2=54,解得:x=2.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.【变式3-2】(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【变式3-3】(2022秋•太仓市期末)已知关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,求代数式92m﹣4n﹣1的值.【分析】分别解方程,进而用m,n分别表示出x,再结合相反数的定义得出等式,将原式变形求出答案.【解答】解:2x+10﹣3m=0,则2x=3m﹣10,解得:x=3K102,r12+2(r1)3=1,则3(x+1)+4(n+1)=6,故3x+3+4n+4=6,3x=﹣1﹣4n,解得:x=−1+43,∵关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,∴3K102−1+43=0,去分母得:3(3m﹣10)﹣2(1+4n)=0,则9m﹣30﹣2﹣8n=0,故9m﹣8n=32,则92m﹣4n﹣1=12(9m﹣8n)﹣1=12×32﹣1=16﹣1=15.【点评】此题主要考查了一元一次方程的解,正确解方程是解题关键.【变式3-4】(2022秋•亭湖区校级月考)已知关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,求2a﹣3的值.【分析】先分别求出两个方程的解,根据题意得出关于a的一元一次方程,再求出方程的解,最后求出答案即可.【解答】解:解方程3(x﹣2)=x﹣a得:x=6−2,解方程r2=2K3得:x=5a,∵关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,∴6−2=5a−52,解得:a=1,∴2a﹣3=2×1﹣3=﹣1.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.【变式3-5】(2022秋•常州期中)已知关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,求m的值.【分析】先求出两方程的解,再由倒数的定义即可得出结论.【解答】解:解方程r12=3x﹣2得,x=1,解方程K2=x+3得,x=−53,∵关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,−53×1=1,解得m=−35.【点评】本题考查的是一元一次方程的解,熟知使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解答此题的关键.【变式3-6】(2022秋•武城县期末)已知(|a|﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求a的值,并解出上述一元一次方程;(2)若上述方程的解是方程5x﹣2k=2x解的2倍,求k的值.【分析】(1)根据一元一次方程的定义和解一元一次方程的一般步骤准确计算即可;(2)根据解析(1)得出的方程解,得出方程5x﹣2k=2x解为x=2,然后代入求出k的值即可.【解答】解:(1)由题意得:|a|﹣1=0,﹣(a+1)≠0,∴a=±1且a≠﹣1,∴a=1,将a=1代入方程得:﹣2x+8=0,解得:x=4.答:a的值是1,方程的解是x=4.(2)由题意得:x=4÷2=2,将x=2代入方程得:5×2﹣2k﹣2×2,解得:k=3.答:k的值是3.【点评】本题主要考查了解一元一次方程,方程解的定义,一元一次方程的定义,解题的关键熟练掌握解一元一次方程的方法.【例题4】(2023•平桥区校级开学)王涵同学在解关于x的一元一次方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣2【分析】把x=﹣4代入方程7a﹣x=18,得出方程7a+4=18,求出a的值,再代入方程,求出方程的解即可.【解答】解:把x=﹣4代入方程7a﹣x=18得:7a+4=18,解得:a=2,即原方程为14+x=18,解得:x=4.故选:A.【点评】本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.【变式4-1】(2022秋•椒江区校级期中)小明解方程2K15+1=r2,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并求出方程的正确解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:2K15+1=K12,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【变式4-2】(2022秋•前郭县期末)某同学在解关于y的方程3K4−5K76=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y=10.(1)求a的值;(2)求方程正确的解.【分析】(1)根据题意得3(3y﹣a)﹣2(5y﹣7a)=1,将y=10代入方程即可求a的值;(2)当a=1代入原方程再求解即可.【解答】解:(1)该同学去分母时方程右边的1忘记乘12,则原方程变为3(3y﹣a)﹣2(5y﹣7a)=1,∵方程的解为y=10,代入得3(30﹣a)﹣2(50﹣7a)=1.解得a=1.(2)将a=1代入方程3K4−5K76=1,得3K14−5K76=1,解得y=﹣1,即原方程的解为y=﹣1.【点评】本题考查一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.【变式4-3】(2023•秦皇岛一模)米老鼠在解方程2K13=r2−1的过程中,去分母时方程右边的﹣1忘记乘6,因而求得的解为x=2.(1)请你帮助米老鼠求出a的值;(2)正确地解这个方程.【分析】(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得出2×(2×2﹣1)=3(2+a)﹣1,再求出方程的解即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得:2×(2×2﹣1)=3(2+a)﹣1,解得:a=13;(2)方程为2K13=r132−1,2(2x﹣1)=3(x+13)﹣6,4x﹣2=3x+1﹣6,4x﹣3x=1﹣6+2,x=﹣3.【点评】本题考查了一元一次方程的解和解一元一次方程,注意:使方程左右两边相等的未知数的值,叫方程的解.【变式4-4】(2022秋•道里区校级月考)小明同学在解方程2K13=r3−2,去分母时,方程右边的﹣2没有乘3,因而求得方程的解为x=3.试求a的值,并正确地解出方程.【分析】先根据题意,得x=3是方程2x﹣1=x+a﹣2的解,然后根据方程解的定义将x=2代入这个方程,从而求出a的值;再把所求得的a的值代入原方程,最后解一元一次方程即可.【解答】解:依题意,x=3是方程2x﹣1=x+a﹣2的解,∴2×3﹣1=3+a﹣2,∴a=4.∴原方程为2K13=r43−2,解方程,得2x﹣1=x+4﹣6,解得x=﹣1.故a=4,原方程的正确的解是x=﹣1.【点评】本题考查了一元一次方程的解和解一元一次方程的知识,解题的关键是掌握相关的定义和解一元一次方程的一般步骤.【变式4-5】小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【变式4-6】(2022秋•大余县期末)聪聪在对方程r33−B−16=5−2①去分母时,错误地得到了方程:2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是=52.(1)求m的值;(2)求原方程的解.【分析】(1)将x=52代入方程②,整理即可求出m的值,(2)将m的值代入方程①即可求出正确的解.【解答】(1)把x=52代入2(x+3)﹣mx﹣1=3(5﹣x)中,得:2×(52+3)−52m﹣1=3×(5−52),解得:m=1.(2)当m=1时原方程为r33−K16=5−2,2(x+3)﹣(x﹣1)=3(5﹣x),4x=8,x=2.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【例题5】(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个?()A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得=12r2,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.【变式5-1】已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为.【分析】根据方程的解是正整数,可得5的约数.【解答】解:由kx=5﹣x,得x=5r1.由关于x的方程kx=5﹣x,有正整数解,得5是(k+1)的倍数,得k+1=1或k+1=5.解得k=0或k=4,故答案为:0或4.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于k的方程是解题关键.【变式5-2】已知关于x的一元一次方程mx﹣1=2(x+32)的解是正整数,则整数m的值为.【分析】根据方程的解是正整数,可得4的约数,根据4的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx﹣1=2(x+32),得x=4K2,因为关于x的方程mx﹣1=2(x+32)的解是正整数,得m﹣2=1,m﹣2=2,或m﹣2=4.解得m=3,m=4,或m=6.故答案为:3或4或6.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于m的方程是解题关键.【变式5-3】(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.【变式5-4】(2022秋•邗江区校级期末)若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值.【分析】首先解方程表示出x的值,然后根据解为正整数求解即可.【解答】解:2ax=(a+1)x+6,移项得:2ax﹣(a+1)x=6,合并同类项得:(a﹣1)x=6,系数化为1得:=6K1,∵关于x的方程2ax=(a+1)x+6的解为正整数,∴=6K1为正整数,∴a﹣1=1或a﹣1=2或a﹣1=3或a﹣1=6∴a=2或a=3或a=4或a=7.【点评】本题主要考查方程的解和解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【变式5-5】设m为整数,且关于x的一元一次方程(m﹣5)x+m﹣3=0.(1)当m=2时,求方程的解;(2)若该方程有整数解,求m的值.【分析】(1)把m=2代入原方程,得到关于x得一元一次方程,解之即可,(2)根据“m≠5,该方程有整数解,且m是整数”,结合一元一次方程的解题步骤,得到关于m的几个一元一次方程,解之即可.【解答】解:(1)当m=2时,原方程为﹣3x﹣1=0,解得,=−13,(2)当m≠5时,方程有解,=3−K5=−1−2K5,∵方程有整数解,且m是整数,∴m﹣5=±1,m﹣5=±2,解得,m=6或m=4或m=7或m=3.【点评】本题考查了一元一次方程的解和一元一次方程的定义,解题的关键:(1)正确掌握一元一次方程的解题步骤,(2)正确掌握一元一次方程的定义和一元一次方程的解题步骤.【变式5-6】(2022秋•西城区校级期中)已知关于x的方程−2−B6=3−2有非负整数解,求整数a。