含参变量的积分课件
- 格式:doc
- 大小:560.50 KB
- 文档页数:11
ξ12.3 含参变量的积分一、含参变量的有限积分设二元函数f (x,u)在矩形域R (βα≤≤≤≤u b x a ,)有定义,],,[βα∈∀u 一元函数f(x,u)在[a,b]可积,即积分dxu x f a b),(⎰存在 ],[βα∈∀u 都对应唯一一个确定的积分(值)),(u x f a b⎰dx .于是,积分dx u x f a b),(⎰是定义在区间],[βα的函数,记为],[,),()(βαϕ∈=⎰u dx u x f ab u ,称为含参变量的有限积分,u 称为参变量。
下面讨论函数)(u ϕ在区间 ],[βα的分析性质,即连续性、可微性与可积性定理 1 若函数),(u x f 在矩形域R ),(βα≤≤≤≤u b x a 连续,则函数dx u x f abu ),()(⎰=ϕ在区间也连续。
证明有,使取],,[u ],,[βαβα∈∆+∆∈∀u u u.),(),()()(.)],(),([)()dx u x f u u x f abu u u dx u x f u u x f abu u u -∆+≤-∆+-∆+=-∆+⎰⎰ϕϕϕϕ(根据ξ10.2定理8,函数),(u x f 在闭矩形域R 一致连续,即,,:),(),(,0,02121221,1δδδε<-<-∈∀>∃>∀y y x x R y x y x 有ε<-),(),(2211y x f y x f .特别地,.:),(),,(δ<∆∈∆+∀u R u u x u x 有 .),(),(ε<-∆+u x f u u x f 于是,,δ<∆u 有)(),(),()()(a b dx u x f u u x f ab u u u -<-∆+≤-∆+⎰εϕϕ 即函数在区间连续.设[]βα,0∈u ,由连续定义,有)()(lim ),(limu u dx u x f a bu u u u ϕϕ==→→⎰=dx u x f a b dx u x f a b u u ),(lim ),(00→⎰⎰=. 由此可见,当函数),(u x f 满足定理1的条件时,积分与极限可以交换次序. 定理2 若函数),(u x f 与uf∂∂在矩形域R(βα≤≤≤≤u b x a ,)连续,则函数在区间[βα,]可导,且[]βα,∈∀u ,有dxu u x f a b u du d∂∂=⎰),()(ϕ 或dx u u x f a b dx u x f abdu d ∂∂=⎰⎰),(),(. 简称积分号下可微分.证明 [][],,u,,,βαβα∈∆+∆∈∀u u u 使取有[].),(),()()(dx u x f u u x f abu u u -∆+=-∆+⎰ϕϕ (1) 已知uf∂∂在R 存在,根据微分中值定理,有 .10,),(),(),('<<∆∆+=-∆+θθu u u x f u x f u u x f u 将它代入(1)式,等号两端除以u ∆,有.10,),()()('<<∆+=∆-∆+⎰θθϕϕdx u u x f ab u u u u u 在上面等式等号两端减去dx u x f abu ),('⎰,有d x u x f abu u u u u ),()()('⎰-∆-∆+ϕϕ dx u x f u u x f ab u u ),(),(''-∆+≤⎰θ. 根据 ξ10.2定理8,函数),('u x f u 在闭矩形域R 一致连续,即,0,0>∃>∀δε,:),(),,(δ<∆∈∆+∀u R u u x u x 有.),(),(''εθ<-∆+u x f u u x f u u 从而,有),(),()()('a b dx u x f abu u u u u -≤-∆-∆+⎰εϕϕ即 dx u x f abuu u u u u ),()()(lim '0⎰=∆-∆+→∆ϕϕ 或.),()(dx u u x f a b u dud∂∂=⎰ϕ 定理2指出,当函数),(u x f 满足定理2的条件时,导数与积分可以交换次序. 定理 3 若函数),(u x f 在矩形域R (βα≤≤≤≤u b x a ,)连续,则函数dx u x f abu ),()(⎰=ϕ在区间[]βα,可积,且.).(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ (2) 简称积分号下可积分.证明 根据定理1,函数)(u ϕ在[]βα,连续,则函数)(u ϕ在区间[]βα,可积.下面证明等式(2)成立.[]βα,∈∀t ,设.),()(,),()(21dx du u x f t a b t L du dx u x f a b t t L ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎰⎰⎰⎰αα根据4.8ξ定理1,有.),()('1dx t x f abt L ⎰=已知du u x f t ),(⎰α与du u x f tt ),(⎰∂∂α都在R 连续,根据定理2,有dx du u x f ta b dt d t L ⎥⎦⎤⎢⎣⎡=⎰⎰),()('2α =dx du u x f t t a b ⎥⎦⎤⎢⎣⎡∂∂⎰⎰),(α =dx t x f ab),(⎰.于是,[]βα,∈∀t ,有()().'2'1t L t L =.由1.6ξ例1,()(),21C t L t L =-其中C 是常数.特别地,当α=t 时,()(),021==ααL L 则C=0,即()()β==t t L t L 当.21时,有()(),21ββL L =即.),(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ定理3指出,当函数),(u x f 满足定理3的条件时,关于不同变量的积分可以交换次序。
第十五章含参变量的积分教学目的与要求1 掌握含参变量的常义积分的定义及分析性质;2 能应用含参变量的常义积分的分析性质证明某些理论问题.3 理解含参变量的反常积分的一致收敛的定义;4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;5 能利用参变量的反常积分的分析性质求函数的导数、积分等;6 掌握Beta函数和Gamma函数的定义及其相互关系;7 掌握Beta函数和Gamma函数的性质。
教学重点1 应用含参变量的常义积分的分析性质证明某些理论问题;2 求含参变量的常义积分的极限、导数、积分;3 含参变量的反常积分的一致收敛的定义;4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;5 利用参变量的反常积分的分析性质求函数的导数、积分等6 Beta函数和Gamma函数的性质。
教学难点1 应用含参变量的常义积分的分析性质证明某些理论问题;2 含参变量的反常积分的一致收敛的定义;3 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;§1 含参变量的常义积分教学目的1 掌握含参变量的常义积分的定义及分析性质;2 能应用含参变量的常义积分的分析性质证明某些理论问题.教学过程1 含参变量的常义积分的定义 (P373)2 含参变量的常义积分的分析性质 连续性定理P374Theorem 1 若函数),(y x f 在矩形域] , [ ] , [d c b a D ⨯=上连续 , 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续 .Theorem 2 若函数),(y x f 在矩形域] , [ ] , [d c b a D ⨯=上连续, 函数)(1x y 和)(2x y 在] , [b a 上连续 , 则函数⎰=)()(21),()(x y x y dy y x f x G 在] , [b a 上连续.例 1 求下列极限 (1)dx y x y ⎰-→+11220lim(2) dx nxnn ⎰++∞→1)1(11lim积分次序交换定理P375 例2 见教材P375.积分号下求导定理P375—376Theorem 3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导 , 且⎰⎰=dc d c x dy y x f dy y x f dxd ),(),(. ( 即积分和求导次序可换 ) .Theorem 4设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 函数)(1x y 和)(2x y 定义在] , [b a , 值域在] , [d c 上, 且可微 , 则含参积分⎰=)()(21),()(x y x y dy y x f x G 在] , [b a 上可微 , 且()())()(,)()(,),()(1122)()(21x y x y x f x y x y x f dy y x f x G x y x y x '-'+='⎰. 例2 求下列函数的导数 (1) ⎰>+=122)0()ln()(y dx y xy F (2) ⎰-=22)(x xxy dx ey F例3 计算积分 dx x x I ⎰++=1021)1ln(.例 4 设函数)(x f 在点0=x 的某邻域内连续 . 验证当||x 充分小时 , 函数 ⎰---=x n dt t f t x n x 01)()()!1(1)(φ 的1-n 阶导数存在 , 且 )()()(x f x n =φ.(P376定理15.1.4) 例4 求⎰++=yb y a dx x yxy F sin )(的导数例5 研究函数 ⎰+=10 22)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数。
解 令22)(),(yx x yf y x g +=,则),(y x g 在],[]1,0[d c ⨯连续,其中],[0d c ∉。
从而)(y F 在0≠y 连续。
当0=y 时,0)0(=F当0>y 时,记 0)(min ]1,0[>=∈x f m x ,则⎰+=10 22)()(dx y x x yf y F ⎰+≥1 0 22dx y x y m y m 1arctan = 若)(lim 0y F y +→存在,则 ≥+→)(lim 0y F y y m y 1arctanlim 0+→)0(02F m =>=π故)(y F 在0=y 不连续。
或用定积分中值定理,当0>y 时, ]1,0[∈∃ξ,使⎰+=10 22)()(dx y x x yf y F ⎰+=1 0 22)(dx y x yf ξ yf yxf 1arctan )(arctan)(1ξξ==若)(lim 0y F y +→存在,则=+→)(lim 0y F y y f y 1arctan)(lim 0ξ+→02>≥m π故)(y F 在0=y 不连续。
问题1 上面最后一个式子能否写为y f y 1arctan)(lim 0ξ→0)(2>=ξπf 。
事实上,ξ是依赖于y 的,极限的存在性还难以确定。
例6 设)(x f 在],[b a 连续,求证⎰-=xcdt t x k t f k x y )(sin )(1)( (其中 ],[,b a c a ∈)满足微分方程 )(2x f y k y =+''。
证 令)(sin )(),(t x k t f t x g -=,则)(cos )(),(t x k t kf t x g x -=, )(sin )(),(2t x k t f k t x g xx --=它们都在],[],[b a b a ⨯上连续,则⎰-='xcdt t x k t f x y )(cos )()()()(sin )()( x f dt t x k t f kx y xc+--=''⎰y k y 2+'')()(sin )( x f dt t x k t f k x c +⎰--=⎰-+x c dt t x k t f k )(sin )()(x f =例7 设)(x f 为连续函数,ξηηξd d x f x F hh ])([)(00⎰⎰++=求)(x F ''。
解 令u x =++ηξ,则ξηηξd d x f x F hh ])([)(00⎰⎰++=⎰⎰+++=hx x hdu u f d ξξξ)(0])()([)(0⎰⎰+-++='hhd x f d h x f x F ξξξξ在第一项中令u h x =++ξ,在第二项中令u x =+ξ,则])()([)(2⎰⎰+++-='hx xhx hx du u f du u f x F)]()(2)2([)(x f h x f h x f x F ++-+=''问题2 是否有ξηηξd d x f x x F h h ])([)(00⎰⎰++∂∂='ξηηξd d x f x hh ])([00⎰⎰++∂∂=例8 利用积分号下求导法求积分dx xx a a I ⎰=2/0tan )tan arctan()(π, 1||<a解 令 xx a a x f tan )tan arctan(),(=2,0π=x 时,f 无定义,但a a x f x =+→),(lim 0,0),(lim 2=-→a x f x π,故补充定义a a f =),0(, 0),2(=a f π则f 在],[]2,0[b b -⨯π连续(10<<b ),从而)(a I 在)1,1(-连续。
⎪⎪⎩⎪⎪⎨⎧<=<∈+=1|| ,2,0 ,01|| ),2,0( ,tan 11),(22a x a x x a a x f a ππ显然)0,(x f a 在2π=x 点不连续,但),(a x f a 分别在)0,1(]2,0[-⨯π和)1,0(]2,0[⨯π连续,故有⎰='2/0),()(πdx a x f a I a ⎰+=2/022tan 11πdx xa , )0,1(-∈a 或)1,0(∈a令t x =tan⎰+∞++='0222)1)(1(1)(dt t a t a I ⎰+∞++--+-=0222222222)1)(1(111dt t a t a t a t a a ⎰+∞+-+-=022222])1()1(1[11dt t a a t a |)|1(2a +=π, )0,1(-∈a 或)1,0(∈a积分之1)1ln(2)(C a a I ++=π, )1,0(∈a2)1ln(2)(C a a I +--=π, )0,1(-∈a因为)(a I 在)1,1(-连续,故0)(lim )0(0==+→a I I a )(lim 0a I a -→=得021==C C ,从而得 |)|1ln(sgn 2)(a a a I +=π, 1||<a作业:P378----379 2、3、5、6、8(2)(3)、11§2 含参变量的反常积分教学目的1 理解含参变量的反常积分的一致收敛的定义;2 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;3 能利用参变量的反常积分的分析性质求函数的导数、积分等;教学过程1 含参变量的反常积分的一致收敛含参变量的反常积分有两种: 无穷区间上的含参变量的反常积分和无界函数的含参变量的反常积分.定义P379---381 无穷积分⎰+∞adx y x f ),(在区间],[d c :一致收敛: ],[,,0,000d c y A A A ∈∀>∀>∃>∀ε有ε<⎰+∞Adx y x f ),(;非一致收敛: ],[,,0,0000d c y A A A ∈∃>∃>∀>∃ε有00),(ε≥⎰+∞A dx y x f .2 一致收敛性的判别法 (Cauchy 收敛原理) P381 (s Weierstras 判别法)P382 例1 证明:无穷积分⎰+∞+122cos dx y x xy在R 一致收敛.(Abel 判别法和Dirichlet 判别法) P382----385(Dini 定理)P3853 一致收敛积分的分析性质 连续性定理积分次序交换定理 积分号下求导定理例 2 利用积分号下求导求积分⎰+∞++=12)()(n n a x dxa I , (n 为正整数,0>a ) 解 因为10212)(1)(1+++≤+n n a x a x , 00>≥a a而 ⎰+∞++0102)(n a x dx收敛,故 ⎰+∞++=012)()(n n a x dxa I 在00>≥a a 一致收敛。