初中数学 8.2 分式的基本性质(2)教学案
- 格式:doc
- 大小:64.04 KB
- 文档页数:2
分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。
内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。
二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。
2. 学会简化分式,并能运用简化后的分式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。
三、教学难点与重点教学难点:分式的基本性质的理解与应用。
教学重点:分式的定义、简化分式的方法以及分式的实际应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。
2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。
(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
(3)简化分式:讲解如何将分式简化,并举例说明。
3. 例题讲解结合教材例题,详细讲解分式的简化过程。
4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。
(2)小组讨论,解决实际问题,培养学生的合作意识。
5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。
2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。
重点和难点解析1. 分式的基本性质的理解与应用。
2. 简化分式的方法。
3. 实际问题的解决。
4. 板书设计。
5. 作业设计与答案。
一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
课题:分式的基本性质 教材:浙江版七年级下册教学目标: 知识技能目标:1. 让学生理解分式的基本性质及其内涵要点;2. 让学生灵活运用分式的基本性质进行分式的恒等变形;3. 让学生了解类比、归纳、分类等思维方法; 过程性目标:4. 让学生体会学习分式基本性质的必要性及其意义;5. 让学生经历观察、实验、推理等活动,类比、归纳得到分式基本性质及运用其进行恒等变形时的注意要点,并且在这一过程中获得一些探索数学性质的初步经验。
教学重点:组织学生探索发现并掌握(运用)分式的基本性质。
教学难点:从“形”的角度解释分式的变形;分式的负号变化特征和分子、分母是多项式的分式的约分。
教学方法和手段:发现探究 小组合作 主体性讲解 教学过程:一、 创设情景,引入主题(让学生了解学习分式基本性质的必要性)由欣赏“利郎男装的广告”“简约美”过渡到数学的美;齐声朗读“数学因简约、对称、和谐而美”。
引入分式32201R R ,由学生根据“简约、对称、和谐”这一“审美”标准来审视以上分式的和谐性,从而引出用来“美化”这些分式的必需的知识——分式的基本性质。
(设计说明:“追求分式的简约、和谐美”是整节课的主线) 二、 探究发现分式的基本性质1.复习分数的基本性质(为通过“类比”得到分式的基本性质及其运用作铺垫)引出三个等分数41、82、164,通过以下问题组来复习分数的基本性质及其运用:(1) 根据我们的“审美标准”,哪个分数最具“简约美”?(2) 从164、82到41,我们是通过怎样的变形实现的?(3) 请问约分的依据是什么?(分数的基本性质的内容是什么?) 2.探究分式的变形(为通过“归纳”得到分式的基本性质及其运用作铺垫)问题探究:以下分式的变形是否成立?请简要说明理由。
m m 221= mm 122=让学生从“欣赏”的角度来看“矩形模型”:(1)m m 221=(在原来的矩形上拼上(宽重合)相同的矩形,所得面积为2的矩形与原矩形的宽相等)(1)mm 122=(面积为2的矩形沿长的中间部位分开,所得面积为1的小矩形与原矩形宽相等) 注:抽象出矩形,在矩形上分割进行(设计说明:在浙江版的教材中多处(例如:合并同类项、多项式的乘法、乘法公式等)出现了用几何图形的面积来解释代数恒等式,因此这里用图形的面积来解释分式的变形,这是一种学生易于接受的方式,也是对“数形结合”思想的进一步渗透。
初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章第一节,主要内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解分式的概念,掌握分式的基本性质,能够运用这些性质简化分式。
2. 学会分式的约分方法,能够正确约分。
3. 能够解决实际问题中涉及分式的计算问题。
三、教学难点与重点教学难点:分式的基本性质及其应用。
教学重点:分式的概念、约分方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入小明和小华一起做数学题,题目是:计算下列分数的值:(1)3/4(2)5/10引导学生思考:这些分数有什么共同特点?如何简化分数?2. 例题讲解(1)分式的概念分式是指形如a/b(a、b是整数,且b不为0)的表达式。
(2)分式的基本性质性质1:分子分母同时乘以或除以同一个不为0的数,分式的值不变。
性质2:分式的分子和分母同时乘以或除以同一个分式,分式的值不变。
(3)分式的约分约分原则:将分子和分母同时除以它们的最大公因数。
3. 随堂练习(1)6/9(2)12/18(3)20/254. 讲解与示范针对练习中的题目,讲解约分的方法和步骤。
5. 巩固练习(1)计算下列分式的值:1/2 + 3/42/3 1/6(2)已知分式3/4,将其简化为最简分式。
六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分方法4. 例题及解答七、作业设计1. 作业题目(1)计算下列分式的值:1/3 + 2/54/7 1/14(2)将分式8/12简化为最简分式。
2. 答案(1)7/15(2)9/14(3)2/3八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解分式的概念和基本性质,通过讲解和练习,使学生掌握分式的约分方法。
课后,教师应关注学生的作业完成情况,了解他们对知识的掌握程度,并对学生在学习中遇到的问题进行解答和指导。
《分式的基本性质》教学设计第2课时分式的基本性质是分式运算的基础,它们是后续学习分式运算的强有力武器.分数与分式关系密切,它们是具体与抽象、特殊与一般的关系,所以在教学分式的基本性质时,要利用学生已有的分数基础,通过分数类比,并注意从具体到抽象、从特殊到一般的认识过程,引导学生理解分式的基本性质,要充分突显类比方法在教学中的统帅作用.分式的约分和通分,是进行分式四则运算中不可或缺的变形.分式的约分找出公因式是关键,约分时,一定要约去分子、分母的所有公因式;分式的通分找出最简公分母是是关键,确定最简公分母先要将各分母分解因式,然后确定公倍式.所教学分式基本性质的运用时,要引导学生观察、分析题目的特点,选择恰当的方法给分式进行变形.如不改变分式的值,使分子、分母里的系数变为整数的题,分子分母系数既有小数的,又有分数的,引导学生思考分子分母既要化整,又要最简.在约分或通分的过程中,要依据分式的性质,千万不能改变分式值的大小.1. 理解分式的基本性质;并能灵活运用这些性质进行分式的恒等变形.2. 通过分式的恒等变形的过程提高学生的运算能力.3. 通过类比、探索分数的基本性质,初步掌握类比的思想方法,积累数学活动经验. 【教学重点】理解分式的基本性质,对分式基本性质的初步运用.【教学难点】灵活运用分式的基本性质对分式进行化简、变形.多媒体课件、教具等.一、提出问题,思考引入问题1 喜羊羊和美羊羊共同去一块面积为a 的草地吃草,吃草前,二位决定平分地盘,喜羊羊说:“我要把它平分2份,我要1份.”美羊羊说:“我要把它平分4n 份,我要2n 份.”聪明的同学,你知道他们的分地方案分到的面积都是一样多的吗?追问1:按照喜羊羊的分地方案,喜羊羊分地多少?喜羊羊分地是2a . 追问2:按照美羊羊的分地方案,美羊羊分地多少?美羊羊分地是n na 42. 追问3:2a 与nna 42相等吗? 通过有趣的问题情景引出问题,激发学生的学习兴趣,为学习分式的基本性质做好铺垫.二、合作交流,探究新知问题2 请同学们思考:32与64相等吗?276与92相等吗?为什么? 32与64相等,因为32262464=÷÷=. 276与92相等,因为9232736276=÷÷=. 追问1:通过32与64,276与92之间的变形过程,你能说出这样变形的依据是什么吗? 根据分式的性质,分式的分子、分母同时除了同一个不等于零的数,分式的值不变. 追问2:分数的基本性质是什么?你能类比猜想出分式的基本性质吗?分数的基本性质:分数的分子、分母乘(或除以)同一个不等于0的数,分数的值不变. 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.追问3:你能说出分数的基本性质与分式的基本性质的区别吗?在分数的基本性质中,“数”是一个具体的、唯一确定值.在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.追问4:你能尝试用符号语言表示分式的基本性质吗?分式的基本性质:MB M A B A M B M A B A ÷÷=⨯⨯=;(M 是不等于零的整式) 追问5:上面的等式中,M B A ,,三个字母分别表示什么?M 的取值范围为什么不等于零?归纳:M B A ,,三个字母分别表示整式,M 是不等于零的整式.三、运用新知例1 下列等式的右边是怎样从左边得到的?(1)()022≠=c bcac b a ;(2)y x xy x 23=;(3)()01≠++=+z z xy z xz xy x . (1)解:∵c ≠0,∴bcac c b c a b a 222=⋅⋅=; 追问:为什么“c ≠0”?(2)解:∵x ≠0,∴yx x xy x x xy x 233=÷÷=; 追问:为什么题目没有给出x ≠0的条件?(3)解:∵z ≠0,∴()zxy z xz z xy z x xy x ++=⋅⋅+=+11. 例2 填空(在括号内填入适当的整式,使分式的值不变):(1)()ba ab b a 2=+;(2)()b a ab a b a +=--222. 分析:(1)从左边分式到右式,要保证分式的值不变,需根据分式的基本性质对分式的分子、分母同时乘以a . (2)先将分式的分子、分母分解因式,其中隐含0≠-b a ,要使分子变为b a +,就要分子分母同除以b a -.解:(1)∵()ba ab a a ab a b a ab b a 22+=⋅⋅+=+,∴括号内填ab a +2. (2)∵()()()a b a b a a b a b a aba b a +=--+=--222,∴括号内填a . 归纳约分定义:在例2(2)中,我们利用分式的基本性质,约去aba b a --222的分子、分母的公因式b a -,这就是约分.即:把分式分子、分母的公因式约去,这种变形叫分式的约分.追问:分式约分的依据是什么?分式约分的依据:分式的分子与分母都除以同一个不等于零的整式,分式的值不变. 归纳通分定义:在例2(1)中,我们利用分式的基本性质,将分式abb a +的分子、分母同时乘以a ,把ab b a +和b a ab a 22+化成同分母的分式,这就是通分.即: 把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分. 追问:分式通分的依据是什么?分式通分的依据:分式的分子与分母都乘以同一个不等于零的整式,分式的值不变.例3 约分:(1)c ab bc a 2321525- (2)96922++-x x x (3)y x y xy x 33612622-+- 分析:约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.解:(1)b ac b abc ac abc cab bc a 353555152522232-=⋅⋅-=-; (2)()()()33333969222+-=+-+=++-x x x x x x x x ; (3)()()()y x y x y x y x y xy x -=--=-+-236336126222. 追问:现在会解决课前提出的问题吗?(2a 与n na 42是否相等) 相等.理由如下:2242242a n n n na n na =÷÷=. 例4 通分:(1)b a 223与cab b a 2-;(2)52-x x 与53+x x . 分析:通分之前,首先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.解:(1)cb a bc bc b a bc b a 2222232323=⋅⋅=,()c b a ab a a c ab a b a c ab b a 2222222222-=⋅⋅-=-; (2)()()()2510255525222-+=+-+=-x x x x x x x x x ,()()()25153********--=-+-=+x x x x x x x x x . 四、巩固新知1. 约分:(1)c ab b a 2263;(2)2228mn n m ;(3)532164xyz yz x -;(4)x y y x --3)(2.答案:(1)bc a 2;(2)n m 4;(3)24zx -;(4)-2(x -y )2.2. 通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b (3)223ab c 和28bca - (4)11-y 和11+y 答案:(1)321ab = c b a ac 32105,c b a 2252= c b a b 32104;(2)xy a 2= y x ax 263,23x b = y x by 262;(3)223ab c = 223812c ab c , 28bc a -= 228c ab ab ;(4)11-y =)1)(1(1+-+y y y ,11+y =)1)(1(1+--y y y .3. 不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x --;(2) 2317b a ---;(3) 2135x a --; (4) m b a 2)(--.答案:(1) 233ab y x ;(2) 2317b a -;(3) 2135x a ; (4) m b a 2)(--. 五、归纳小结1. 分式的基本性质.(1)分式的基本性质MB M A B A M B M A B A ÷÷=⨯⨯=;(M B A ,,均为整式,且0≠M ) (2)分式的基本性质的作用:分式进行变形的依据.2. 运用基本性质需要注意的问题;3. 分式基本性质的研究方法.从分数→分式,从特殊→一般.4. 利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.略.。
分式的基本性质教案分式的基本性质教案分式的基本性质教案1一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:教学重点:理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简、变形3、教材的处理学习是学生主动构建知识的过程。
学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。
学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。
本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。
让学生自我构建新知识。
通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。
为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:1、知识技能:1)了解分式的基本性质2)能灵活运用分式的`基本性质进行分式变形2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
三、教法分析1、教学方法数学是一门培养人的思维,发展人的思维的重要学科。
初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。
2. 能够运用约分与通分的方法对分式进行运算。
3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。
三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。
难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。
2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。
(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。
(3)通过例题讲解,演示如何运用基本性质简化分式。
3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。
4. 例题讲解:(1)分式的乘除法运算。
(2)分式的乘方运算。
(3)含有绝对值的分式简化。
5. 课堂小结:六、板书设计1. 分式的定义与结构。
2. 分式的基本性质。
3. 分式的约分与通分。
4. 分式的乘除法及乘方运算。
5. 例题及解题步骤。
七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。
(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。
(3)计算分式的乘方:(x^24)/(x+2)^2。
2. 答案:(1)1/(2x4)。
(2)3x(x2)/(2(x+2)(x2))。
(3)(x2)^2/(x+2)^2。
八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。
初中数学精品教案《分式的基本性质》教案:《分式的基本性质》一、教学内容1. 分式的概念:分式是形如a/b的表达式,其中a和b是整式,且b不为0。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
3. 分式的约分和通分:根据分式的基本性质,可以将分式约分或通分。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会运用分式的基本性质对分式进行约分和通分。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:分式的基本性质的理解和运用。
2. 教学重点:分式的基本性质的运用,包括约分和通分。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:练习本、尺子、圆规。
五、教学过程1. 实践情景引入:情景:小红购买了一本书,原价是24元,现在打8折,问小红实际支付了多少钱?解答:原价24元,打8折后的价格是240.8=19.2元,小红实际支付了19.2元。
2. 例题讲解:例题1:计算分式2/3+4/5。
解答:找到分母3和5的最小公倍数是15,然后将两个分式的分母都变为15,得到25/35+43/53=10/15+12/15=22/15。
例题2:计算分式6/83/4。
解答:找到分母8和4的最小公倍数是8,然后将两个分式的分母都变为8,得到6/832/42=6//8=0。
3. 随堂练习:练习1:计算分式3/5+2/7。
练习2:计算分式4/91/3。
4. 分式的基本性质:引导学生发现,在例题1和例题2中,我们可以将分式的分子和分母同时乘以(或除以)同一个不为0的整式,使得分式的值不变。
这就是分式的基本性质。
5. 分式的约分和通分:根据分式的基本性质,我们可以将分式约分或通分。
六、板书设计1. 分式的概念:a/b,其中a和b是整式,且b不为0。
2. 分式的基本性质:分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
《分式的基本性质》教学设计第2课时一、教学目标1.理解分式的约分和通分的意义,以及最简分式和最简公分母的概念.2.掌握分式的约分和通分的方法和步骤.二、教学重点及难点重点:如何对分式进行约分和通分.难点: 确定几个异分母分式的最简公分母.三、教学用具电脑、多媒体、课件四、相关资源微课、图片五、教学过程(一)类比引新1.约分:(1)1464;(2)201 280. 解:(1)1414276464232÷==÷; (2)20202011 280 1 2802064÷==÷. 你做上述题目的根据是什么?(分数的基本性质)2.与分数的约分类似,你能把分式22336x xy x +约分吗? 解:根据分式的基本性质,分式22336x xy x +约去分子与分母的公因式3x ,并不改变分式的值,可以得到2x y x+. 像上面这样,利用分式的基本性质,不改变分式的值,把分式的分子与分母中的公因式约去,叫做分式的约分.3.如何计算:1124+. 先通分,后相加. 即1121213244444++=+==. 4.想一想:该如何计算11x y +,要分几步来计算? 学生会回答类比分数的计算,先通分后相加,教师给于肯定,引出本节所学内容. 设计意图:通过第1、3题复习分数的约分和通分,在学生已有的基础上设问引入,提高学生的学习兴趣.通过观察第2、4题,引导学生类比探究,发现分式与分数类似,也可以约分和通分,从而顺势引入课题.(二)探究新知1.怎样进行分式的约分?分式约分的依据是什么?学生思考、议论后在小组内交流,得出约分的步骤:(1)确定分子和分母的公因式;(2)依据分式的基本性质,分子和分母同时除以公因式.分式约分的依据是分式的基本性质.2.在前面对分式22336x xy x +进行约分时,有学生得到结果是336x y x +,这个结果和2x y x+有什么区别? 得到结果是336x y x+的学生,没找全公因式,约分不彻底. 分式2x y x+,其分子和分母没有公因式,像这样分子和分母没有公因式的分式,叫做最简分式. 分式的约分,一般要约去分子和分母所有的公因式,使所得结果成为最简分式或整式.3.你能把1x ,1y 这两个分式通分吗?它们的最简公分母是什么呢? 学生思考、讨论、交流之后得出: 分式1x ,1y 的最简公分母是xy . 11y y x x y xy⋅==⋅, 11x x y y x xy⋅==⋅. 4.什么叫做分式的通分?引导学生类比分数的通分概念得到分式的通分概念:与分数的通分类似,也可以利用分式的基本性质,将分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.5.通分应注意什么?学生思考、讨论、交流之后得出:(1)各分式与原分式相等;(2)各分式分母相等.6.通分的依据是什么?(分式的基本性质)7.通分的关键是什么?(确定几个分式的最简公分母)设计意图:利用问题逐层深入,引导学生思考,并帮助学生归纳,培养学生的数学归纳能力.通过类比、联想、比较,让新知识与学生认知结构中原有的知识联系,新旧知识互相作用,使新知识的意义同化.(三)例题解析【例1】约分:(1)2322515a bc ab c -;(2)22969x x x -++;(3)22612633x xy y x y -+-. 分析:为约分,要先找出分子和分母的公因式,当分子分母是多项式的时候,先进行分解因式,再约分.解:(1)232225551553a bc abc ac ab c abc b -⋅=-⋅253ac b=-; (2)2229(3)(3)69(3)x x x x x x -+-=+++33x x -=+;(3)()()22266126333x y x xy y x y x y --+=--2()22x y x y =-=-. 设计意图:通过例题的讲解,总结出分式约分的具体步骤,关键是找出分子和分母的公因式,当分子分母是多项式的时候,先进行分解因式(即化成乘积的形式),再约分.【例2】通分:(1)232a b 与2a b ab c -;(2)25x x -与35x x +. 思考:(1)分母的系数各不相同如何解决?(2)在分母中出现的字母因式有几个?(3)字母因式的指数不同如何选择?(4)最简公分母应该怎么确定呢?学生分组讨论,由代表发言讨论结果,小组间比对.学生可能会出现最简公分母错误或分子漏乘的情况,应该抓住机会着重讲解.学生归纳一般分式通分的步骤,教师补充完整.(1)将各个分式的分母分解因式;(2)取各分母系数的最小公倍数;(3)凡出现的字母或含有字母的因式都要取;(4)相同字母或含字母的因式的幂取指数最大的;(5)将上述取得的式子都乘起来,就得到了最简公分母;(6)原来各分式的分子和分母同乘一个适当的整式,使各分式的分母都化为最简公分母. 例如本例(1)中22a b 的因式有2,2a ,b ;2ab c 的因式有a ,2b ,c .两式中所有因式的最高次幂的积是222a b c .分式通分的关键:先确定各分式的公分母.一般取各个分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.解:(1)最简公分母是222a b c . 223322bc a b a b bc ⋅=⋅2232bc a b c=, 22()22a b a b a ab c ab c a--⋅=⋅222222a ab a b c -=. (2)最简公分母是55x x (-)(+).22(5)5(5)(5)x x x x x x +=--+2221025x x x +=-,33(5)5(5)(5)x x x x x x -=++-2231525x x x -=-. 设计意图:通过实例设疑,启发学生的思维活动,促进学生运用已有知识和能力去主动思考、发现、获取新知识.通过对例题的讨论,理清分母在各种情况下的最简公分母的找法,同时让学生在解决完例题后,在脑海中构筑一个通分的步骤,弄懂通分的本质是利用分式的基本性质作恒等变换.在此过程中通过合作讨论学习使学生智慧互补,平等交流,发扬团队精神.(四)课堂练习1.分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( ). A .1个 B .2个 C .3个 D .4个2.分式22(1)x x --,323(1)x x --,51x -的最简公分母为( ). A .2(1)x - B .3(1)x - C .1x - D .23(1)(1)x x --学生独立完成.答案:1.C .2.B .设计意图:加强对最简分式的理解及掌握以及练习如何找各分式的最简公分母.六、课堂小结1.什么是分式的约分?怎样进行分式的约分?什么是最简分式?利用分式的基本性质,不改变分式的值,把分式的分子与分母中的公因式约去,叫做分式的约分.约分的步骤:(1)确定分子和分母的公因式;(2)依据分式的基本性质,分子和分母同时除以公因式分子和分母没有公因式的分式,叫做最简分式.2.什么是分式的通分?怎样进行分式的通分?什么是最简公分母?不改变分式的值,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分的步骤(1)将各个分式的分母分解因式;(2)取各分母系数的最小公倍数;(3)凡出现的字母或含有字母的因式都要取;(4)相同字母或含字母的因式的幂取指数最大的;(5)将上述取得的式子都乘起来,就得到了最简公分母;(6)原来各分式的分子和分母同乘一个适当的整式,使各分式的分母都化为最简公分母.一般取各个分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.设计意图:通过小结,使学生梳理本节所学内容,理解分式的约分和约分的意义,以及最简分式和最简公分母的概念,并能准确进行分式的约分和通分.七、板书设计15.1分式15.1.2分式的基本性质(2)分式的约分:根据分式的基本性质,把一个分式的分子与分母中的公因式约去,叫做分式的约分.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.最简公分母:各个分母的所有因式的最高次幂的积作公分母,这个公分母叫做最简公分母.。
15.【教学目标】1.了解分式的基本性质,体会类比的思想方法;掌握分式的约分,了解最简分式的概念.2.经历对分式基本性质及符号法则的探究过程,通过分式的恒等变形提高学生的运算能力,渗透类比转化的数学思想方法.3.在探究中获得一些探索性质的初步经验,感受成功的快乐,体验解决数学问题的过程,有克服困难的勇气,具备学好数学的信心.【教学重难点】重点:使学生理解并掌握分式的基本性质;难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.【教学方法】类比、情境教学.【教学过程】新课导入:问题:1.下列分数是否相等?2.这些分数相等的依据是什么?3.它们如何实现相互转化?.下列两式成立吗?为什么?(1)33(0)44ccc=≠;(2)55(0)66ccc=≠可以,式子变形符合分数的基本性质.分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.即对于任意一个分数ab有:()()00a a c a a c=c=cb bc b b c⋅÷≠≠⋅÷;.分数的约分:约去分子与分母的最大公约数,化为最简分数.分数的通分:先找分子与分母的最简公分母,再使分子与分母同乘最简公分母,计算即可.新课讲授:(一)分式的基本性质答:相等.类比分数的基本性质,你能得到分式的基本性质吗?说说看! 分式的基本性质分式的分子与分母乘(或除以)同一个不为0的整式,分式的值不变.A A CB BC ⋅=⋅,A A CB B C÷=÷ (C ≠0),其中A ,B ,C 是整式. 数学探究:下列等式成立吗?右边是怎样从左边得到的? 解: (1)成立.因为m ≠0,所以;222b b m bma a m am⋅==⋅ (2) 成立.因为n ≠0,所以.an an n a bn bn n b÷==÷ 例1:填空.解:32223316x x x xy x y xy y x x ()(),;(2)++==观察比较区分分子、分母的变化,归纳利用分式的基本性质的注意事项. (1)“都”;(2)“同一个”; (3)“不为0”.课堂练习: 1.把分式2()a b ab+中的a 和b 都扩大5倍,那么分式的值( C ) A.扩大为原来的5倍 B.扩大为原来的2倍C.缩小为原来的15D.不变2.下列运算正确的是( C ) A.y y x y x y =--- B.2233x y x y +=+C.221y x x y x y-=--+ D.22x y x y x y +=++例2:不改变分式的值,使下列分子与分母都不含“”号 5(1)6b a --;(2)3x y -;3(3)b a -;2(4).mn--解:55(1)66b ba a-=-;(2)33x x y y =--; 33(3)b b a a -=-;22(4)m mn n--=. 根据体验观察归纳分式的符号法则:分式的分子、分母与分式本身这三处的正负号,同时改变两处,分式的值不变.用式子表示为:A -A A -A --B B -B -B ===;或A -A A -A--B B -B -B===.课堂练习:不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.()0.01510.30.04x x -+;()50.63220.75a ba b--. 解:(1)原式=(0.015)100500(0.30.04)100304x x x x -⨯-==+⨯+; (2)原式=5(0.6)301850322112(0.7)305a b a b a b a b -⨯-==--⨯. (二)分式的约分 想一想:联想分数的约分,由例1你能想出如何对分式进行约分吗?分数的约分:把一个分数的分子、分母同时除以公因数,分数的值保持不变,这个过程叫做分数的约分.类比得分式的约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分. 分子与分母没有公因式的分式,叫做最简分式. 因此,约分的关键是确定分子分母的公因式. 例3:约分:(1) 2322515-a bc ab c ; (2) 22-969x x x ++ ; (3) 22612633x -xy y x-y + .解:(1)232222555515533-a bc abc ac ac --ab c abc b b ⋅==⋅; (2)22293336933x -(x )(x-)x-x x (x )x +==++++; (3)()()()222661262333x-y x -xy y x-y x-y x-y +==.小结:分式的约分的一般方法:(1)若分式的分子、分母都是单项式,就直接约去分子、分母的公因式,即分子、分母系数的最大公约数和分子、分母中的相同字母的最低次幂的乘积;(2)若分式的分子或分母含有多项式,应先分解因式,再确定公因式并约去. 课堂练习:给下列分式约分:(1)22812ab c a b --;(2)22444a a a ++-+. 解:(1)原式=4(2)4(3)ab bc ab a -⨯=-⨯23bc a;(2)原式=22(2)(4)a a +=--2(2)(2)(2)a a a +-=+-22a a +--. 在化简分式2520xyx y时,小颖和小明的做法出现了分歧:小颖:22552020xy xx y x=;小明:255120454xy xy x y x xy x ==⋅. 你对他们俩的解法有何看法?说说看!分析:小明解法正确.一般约分要彻底,使分子、分母没有公因式. 根据练习归纳: 分式约分的注意事项: (1)约分前后分式的值要相等.(2)约分的关键是确定分式的分子和分母的公因式.(3)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.(4)约分要彻底. (三)分式的通分 思考:1.通分:12和13;23和34. 追问1:分数通分的依据是什么?追问2:如何确定异分母分数的最小公分母?分数的通分:把分母不同的分数化成分母相同的分数,这个过程叫做分数的通分. 类比分数的通分,概括分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分时,一般取各分母的所有因式的最高次幂的积作公分母,这样的分母叫做最简公分母.在确定几个分式的最简公分母时,不要遗漏只在一个分式的分母中出现的字母及其指数.例4:通分:(1)232a b 与2a-b ab c; (2)25x x-与35x x +.解:(1)最简公分母是222a b c ,2222333222bc bc a b a b bc a b c ⋅==⋅;22222()22222a-b a-b a a -abab c ab c aa b c ⋅==⋅. (2)最简公分母是(x 5)(x +5).2222(5)2105(5)(5)25x x x x x x-x-x x -++==+;2233(-5)3-155(5)(-5)-25x x x x xx x x x ==++. 小结:确定最简公分母的一般方法:(1)若各分母是单项式,最简公分母是各分母系数的最小公倍数、相同字母的最高次幂和所有不同字母及其指数的乘积;(2)若各分母中有多项式,一般要先分解因式,再按照分母都是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面确定最简公分母.约分和通分的联系与区别课堂练习: 1.填空.2.把下列各式通分.解:222224166b aa b a b ,();---()()()()2222222222x x x x x x x ,();+--+-+ 3. 222448x y x xy--x =12,y =1.解:()()()222224244842x y x y x y x yxx xyx x y +--+==--,将x =12,y =1代入原式=121521442.+⨯=⨯课堂小结:说一说本节课都有哪些收获.学习分式的概念,理解并掌握分式有意义、值为0和值为正的条件; 能利用分式的基本性质解题. 作业布置: 完成本节配套习题. 【板书设计】 分式的基本性质:分式的分子与分母乘(或除以)同一个不为0的整式,分式的值不变.A A CB BC ⋅=⋅,A A CB B C÷=÷ (C ≠0),其中A ,B ,C 是整式. 分式的约分与通分的练习与区别:【课后反思】先探究分式的基本性质,然后顺势探究分式变号法则. 在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习,一步一步的来完成既定目标;学习分式的性质注重提高在验证、交流环节中学生的参与率,注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.。
分式分式 分式 分式的基本性质1教学目标:1、 理解分式的基本性质;会运用分式的基本性质解题;2、 培养学生类比的推理能力教学重点:分式的基本性质的理解和掌握 教学难点:分式基本性质的简单运用 教学过程: 一、预习展示1、分数的性质;如果分数的分子和分母都乘(或除以)一个 的数,那么分数的值 。
2、有一列匀速行使的火车,如果t h 行使s km ,那么2t h 行使2s km 、3t h 行使3s km 、…33s tn th 行使ns km ,火车的速度可以分别表示为s tkm/h 、22s tkm/h 、33s tkm/h 、…n s n tkm/h这些分式的值相等吗? 3、分式也有类似1的性质吗?(二) 合作探索:通过探索,归纳出分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于......0.的整式...,分式的值不变。
用式子表示就是 A B =A ×M B ×M ,A B =A ÷M B ÷M (其中M ≠0)。
1、填空:(1)a b =ab ( ) ; (2)12 a 2+b2(a+b) =( )2a+2b ;(3)3a a+6 =6ab ( )≠0);(4)3x -2=( )3x+2 (x ≠-23;(5)( )x 2-4y 2 =x x+2y ; (6)6a 2-2ab ( ) =3a-b. 2、23---中有3个“—”分别表示什么意义?分式A B--中有2个“—”分别表示什么意义?(不改变分式的值,使下列分式的分子和分母的最高次项的系数是正数)(1)21x x-(2)22y y y y-+(3)2-x 2-1-x (4)-x 2-x+11-x 3三、当堂盘点 1.判断正误并改正: ①ba b a ++-=)(b a b a +-+=1 ( ) ②11--xz xy =11--z y ( )③ba a --3=ba a --3 ( ) ④22nm =nn m m ÷÷22=nm ( )2.填空:写出等式中未知的分子或分母: ①xy 3=()y x 23 ②)()).(().(2x xy y x x yx x +=+=+③yx xy 257=()7④)()).(()(1b a b a ba +=-=-;3.不改变分式的值,使分式的分子与分母都不含负号:= = ①=--y x 25 ②=---b a 3 ; 4、不改变下列分式的值,使分式的分子和分母的最高次项的系数为正数 (1)222107xx x -+- (2)235231x x x++-(3)22314aa a --- (4)mm mm +---2235、不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数(1)42.05.0-+x y x (2)xx x x 24.03.12.001.022+- ⑶yx yx 6125131+-6、将3a a b- 中的a 、b 都变为原来的3倍,则分式的值 _______________ 7、把分式yx 中的字母x 的值变为原来的2倍,而y 缩小到原来的一半,则分式的值___________5(1) 6ba--(2) 3xy -。
初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。
具体内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。
2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。
3. 学会分式的约分方法,能够熟练地进行分式的约分。
三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。
教学重点:分式的概念、分式的约分。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。
2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。
(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。
(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。
3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。
六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。
(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。
2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。
2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。
重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。