4第四章 试验数据的回归分析
- 格式:ppt
- 大小:18.55 MB
- 文档页数:66
南通⼤学《试验设计与数据处理》复习要点《试验设计与数据处理》复习要点第⼀章误差分析⼀、真值与平均值1、真值:指在某⼀时刻和某⼀状态下,某量的客观值或实际值。
2、平均值(1)算术平均值:x =x1+x2+?+x nn =x in同样试验条件下,多次试验值服从正态分布,算术平均值是这组等精度试验值中的最佳值或最可信赖值。
(2)加权平均值:x w=w1x1+w2x2+?+w n x nw1+w2+?+w n =w i x iw i(3)对数平均值:x L=x1?x2ln x12=x2?x1ln x21,试验数据的分布曲线具有对称性(4)⼏何平均值:lg x G=lg x in(5)调和平均值:H=n1i⼆、误差的基本概念1、绝对误差=测得值-真值,结果可正可负。
2、相对误差=绝对误差/真值≈绝对误差/测得值,结果可正可负。
3、算术平均误差?=x i?xn4、标准误差(1)样本标准差s=(x i?x )2n?1=x i2?x i2/nn?1(2)总体标准差σ=(x i?x )2n =x i2?x i2/nn三、误差来源及分类根据误差的性质或产⽣原因,可分为随机误差、系统误差、粗⼤(过失)误差。
1、随机误差:在⼀定试验条件下,以不可预知的规律变化着的误差;2、系统误差:在⼀定试验条件下,由某个或某些因素按照某⼀确定的规律起作⽤⽽形成的误差;3、粗⼤(过失)误差:⼀种显然与事实不符的误差。
四、试验数据的精准度1、精密度:反映随机误差⼤⼩的程度,是指在⼀定的试验条件下,多次试验值的彼此符合程度或⼀致程度;2、正确度:指⼤量测试结果的(算术)平均值与真值或接受参照值之间的⼀致程度,反映了系统误差的⼤⼩,是指在⼀定的试验条件下,所有系统误差的综合;3、准确度:反映系统误差和随机误差的综合,表⽰了试验结果与真值或标准值的⼀致程度。
五、试验数据误差的统计检验1、随机误差的检验随机误差的⼤⼩可⽤试验数据的精密程度来反映,⽽精密度的好坏⼜可⽤⽅差来度量,所以对测试结果进⾏⽅差检验,即可判断随机误差之间的关系。
实验四回归分析预测实验(3个学时)2010302330013 张秋子 10信一【实验目的】1.了解Microsoft Excel 提供的数据分析工具。
2.掌握EXCEL提供的3种回归分析方法。
3.掌握通过回归分析进行预测的方法。
【实验内容】1.熟悉Microsoft Excel 提供的分析工具库。
2.使用“数据分析”方法进行回归分析。
3.使用“函数”方法进行回归分析,包括直线回归函数、预测函数、指数曲线趋势函数。
4.使用“趋势线”方法进行回归分析。
【实验步骤】第一部分:利用分析工具1、在EXCEL2007中,通过设置EXCEL选项,选择加载项中的分析工具进行加载。
2、选择数据分析工具中的回归分析,设置Y区域为C2-C12,X区域为D2-D12,并且勾选标志。
勾选残差和拟合图。
得到如下结果:第二部分:利用函数一、利用线性回归函数1、利用直线回归函数LINEST(known_y's,known_x's,const,stats)。
在EXCEL2007输入如下数据:2、在A7单元格输入公式“=LINEST(A2:A5,B2:B5,,FALSE)”,得到如下结果:其中2是直线的斜率。
3、选择以公式单元格开始的区域A7:B7。
按F2,再按Ctrl+Shift+Enter。
结果如下:如果公式不是以数组公式输入,则返回单个结果值2,无法获得y轴截距。
当以数组输入时,将返回斜率2和y轴截距1。
4、通常,SUM({m,b}*{x,1}) 等于mx + b,所以可以用SUM和LINEST共同来估计某一个月的预测值。
5、多重线性回归可以看出,y = 27.64*x1 + 12,530*x2 + 2,553*x3 - 234.24*x4 + 52,318二、利用预测函数1、语法:FORECAST(x,known_y's,known_x's)参数说明:X 为需要进行预测的数据点。
Known_y's 为因变量数组或数据区域。
试验设计与优化教学大纲Experimental Design and OptimizationSyllabus 课程代码:01学分:2学时:其中:讲课学时:26 实践或实验学时:上机学时:8先修课程:要求先修完无机化学、分析化学、高等数学适用专业:化学、化学教育、化学工艺、制药工程建议教材:自编教材开课系部:化学与生物工程系一、课程的性质与任务课程性质:试验设计与优化是研究试验设计方法与实验数据分析方法的一门应用数学课程,主要内容包括试验设计的正交设计方法与其它的一些常用优化方法;本课程是化学专业本科班专业基础课,选修课程;课程任务:学完本课程后,可使学生掌握基本的数据处理方法,并用它来设计实验、优化实验;学生要会处理实验数据并能独立设计试验,并为学生在以后的学习、科研或工作中灵活运用打下坚实的基础;二、课程的基本内容及要求第一章统计学基础课程教学内容:1. 正态分布绪论基本概念真值基本单位和标准参考物质加和号的运算随机误差的正态分布正态分布表的使用正态分布的数字特征;2.分析结果的合理表达有限次测定的统计处理区间估计和分析结果的表达预测分析数据和置信度总体平均值的区间估计测定结果不确定度和分析结果的表达有效数字的取舍课程的重点、难点:重点:1.正态分布的数字特征2.总体平均值的区间估计难点:1.数字的正态分布2.分析数据的表达方法课程教学要求:1.了解正态分布相关的基本概念以及正态分布的数字特征;2.理解真值基本单位和标准参考物质,随机误差的正态分布,分析数据的表达方法;3.掌握正态分布表的使用,学会预测分析数据的置信度及总体平均值的区间估计;第二章数据的统计检验课程教学内容:1.偶然误差的检验概况小概率事件原则方差的检验;2.系统误差的检验t检验方差检验离群值的检验课程的重点、难点:重点:1.各种检验基础思想2.各种检验基础思想难点:1.方差的检验2.t检验课程教学要求:1.了解偶然误差检验和系统误差检验的方法;2.理解误差检验和系统误差检验的基础思想;3.掌握t检验和方差检验及离群值检验的方法;第三章方差分析课程教学内容:1.单因素方差分析变差平方和的加和性单因素试验的方差分析;2.二因素方差分析双因素试验的方差分析课程的重点、难点:重点:双因素实验的方差分析难点:1.两因素交叉分组全面试验的方差分析2.变差平方和的加和性课程教学要求:1.了解两两多重比较问题;2.理解单因素与双因素有重复问题与无重复问题进行方差分析的基本原理;3.掌握方差分析的基本原理及分析方法;第四章试验数据的回归分析课程教学内容:1.一元线性回归基本概念一元线性回归;2.多元线性及多项式回归多元线性回归非线性回归课程的重点、难点:重点:1.一元线性回归2.多元线性回归和多项式回归难点:1.非线性回归的线性转化2.多项式回归课程教学要求:1.了解一元及多元线性回归的基本概念;2.理解多元线性回归和非线性回归的问题;3.掌握一元及多元线性回归方程的建立和检验的方法;第五章正交试验设计课程教学内容:1.正交试验设计和正交表基本概念;2.正交试验设计结果的直观分析正交试验设计结果的直观分析;3.正交试验设计结果的均衡评定正交试验设计结果的均衡评定4.正交试验设计结果的方差分析正交试验设计结果的方差分析课程的重点、难点:重点:1.进行正交试验设计的方法2.条件求和及极差的计算3.进行正交试验结果的均衡评定4.正交试验设计结果的方差分析难点:1.正交性和正交表2.直观分析结果的表述3.评分法和均衡评定4.变差平方和的计算课程教学要求:1.了解多指标问题的各种解决方法;2.理解正交试验设计的方法;3.掌握正交表的使用,会用直观分析与方差分析方法分析试验结果;第六章均匀设计课程教学内容:1.均匀设计和均匀表均匀设计表;均匀设计的基本步骤;2.均匀设计的结果处理均匀设计的应用;课程的重点、难点:重点:1.进行均匀设计2.进行均匀设计并对实验结果进行分析难点:1.均匀设计表的选择2.均匀设计结果分析时,回归方程的建立和规划求解课程教学要求:1.了解多元回归分析方法;2.理解均匀设计的步骤与结果分析;3.掌握均匀表的使用,会构造一张均匀表;第七章回归正交试验设计课程教学内容:1.回归正交试验设计的方法一次回归正交试验设计;2.回归正交试验设计的结果处理一次回归正交试验设计的结果分析;课程的重点、难点:重点:1.进行一次回归正交试验设计2.进行一次回归正交试验设计并分析其结果难点:1.一次回归正交试验设计正交表的填写2.回归方程的计算方法课程教学要求:1.了解多指标问题的各种解决方法;2.理解正交试验设计的方法;3.掌握正交表的使用及正交试验设计的方法,会用直观分析与方差分析方法分析试验结果;三、实践教学要求通过上机实践,本课程要求学生在真正意义上掌握正交试验设计的直观分析、方差分析方法与解决正交设计表头问题的方法,熟悉正交设计与均匀设计的应用条件及区别;四、课程学时分配五、大纲说明1、在本门课程的教学过程中主要采用多媒体教学方法,结合上机实践,利用理论与实际相结合的方法,才能使学生掌握正交试验设计的直观分析、方差分析方法与解决正交设计表头问题的方法;2、考核方式:考查,最终考核70%、平时考核包括上机、作业、小测验、提问、出勤等占30%;3、本教学大纲课程内容的第1-2章是基础性内容,教师可多参考一些数理统计方面的书籍和文献,使其丰富并易于接受;第3-7章讲解时尽量与实验结果结合,要求学生掌握基本理论,并且能够灵活应用;课程进行时可以根据所选教材适当增减内容,安排习题内容;六、参考书目1.试验设计与数据处理,李云雁、胡传荣编,化学工业出版社,出版时间2008年;2.数理统计在分析化学中的应用, 高俊杰等编,校外讲义;3.试验设计与数据处理, 编,中国科学技术大学出版社,出版时间2008年;4.试验设计与数据处理,, 编,东南大学出版社, 出版时间2008年;5.均匀设计,方开泰主编,高等教育出版社,出版时间1988年;6.实验设计与分析,袁志发主编,高等教育出版社,出版时间2000年;七、制定人:审定人:批准人:。
《试验设计与数据处理》教学大纲课程编码:0413105002课程名称:试验设计与数据处理学时/学分:24/1.5先修课程:《高等数学》适用专业:化学工程与工艺、制药工程、化学开课教研室:化工教研室一、课程性质与任务1.课程性质:本课程是面向化学工程与工艺、制药工程及化学专业学生的专业选修课程。
2.课程任务:本课程的基本任务是在学生学习《高等数学》等专业基础课程的前提下,向学生介绍工程技术和科研试验中常用的试验设计与数据处理方法,为其后续专业实验、毕业论文环节的顺利进行打下良好基础。
二、课程教学基本要求通过本课程的教学,使学生了解并掌握科学试验中试验前的试验方案设计以及对试验所获得数据进行分析和处理的基本理论和知识,学会使用科学的试验设计方法设计试验并对试验得到的大量数据进行正确的分析和处理,同时能够合理地设计试验,使试验次数尽可能少并在较短的时间内以较少的成本来达到预期的试验目标,进而摸索出较优的工艺条件或配方。
通过培养学生合理设计化学工程试验,并对试验数据进行科学分析和处理的技能,最终达到提高学生分析问题和解决问题的能力(如确定最优工艺条件或配方)的目的。
成绩考核形式:期末成绩(70%)+平时成绩(作业、课堂提问等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容第一章绪论1.教学基本要求了解试验设计与数据处理的概念和发展,学习此门课程的目的与意义;掌握试验设计的三个基本要素。
2.要求学生掌握的基本概念、理论、技能通过本章教学,使学生能准确理解指标、因素、水平等基本概念,掌握试验设计与数据处理的基本要素。
3.教学重点和难点教学重点是试验设计的基本要素。
教学难点是试验设计中因素与水平的选取原则。
4.教学内容(1)试验与试验设计的基本概念(2)试验设计与数据处理的发展概况(3)试验设计的基本要素主要知识点:指标;因素;水平。
(4)试验设计与数据处理的目的第二章试验数据的误差分析1.教学基本要求理解误差分析的重要性,各种试验误差的来源,误差理论的基本问题,掌握误差的检验与控制方法;掌握有效数字的修约标准与运算规则;能够运用误差的传递公式判断间接测量或函数误差的主要来源,选择合适的测量仪器或方法;能够根据具体情况运用合适的方法对数据进行显著性检验,并对数据中可能存在的异常值进行检验和处理。
《实验设计与数据处理》课程教学大纲课程代码:010332012课程英文名称:Experiment Design and Data Processing课程总学时:24 讲课:20 实验:4 上机:0适用专业:工业工程大纲编写(修订)时间:2017.7一、大纲使用说明(一)课程的地位及教学目标该课程是为机械学院工业工程专业本科生开设的专业基础课,是工业工程专业本科生的选修课程,设置本课程旨在使学生了解并掌握科学实验中实验前的实验方案设计以及对实验所获得数据进行分析和处理的基本理论和知识,培养学生合理设计工业工程与人因工程的实验,并掌握实验数据进行科学分析和处理的技能,最终达到提高学生分析问题和解决问题的能力(如确定最优综合环境数据)的目标。
(二)知识、能力及技能方面的基本要求该课程要求学生掌握一定的数学知识,尤其是统计学与高数知识。
另外,该课程与工业工程专业中实验课程结合最佳,安排时间最佳为大三下学期或者大四上学期。
学生需要有一定实验经历。
(三)实施说明1. 本大纲编写适用于本科工业工程专业学生,课程以授课为主,以实验为辅,着重强调实际应用。
2.考虑到该课程教材可能发生变化,教师在授课过程中可对学时分配在小范围内进行适当调整。
3.教师在授课过程中发现部分与其他课程内容部分重叠或缺失的可以自行删减、或增加。
(四)对先修课的要求该课程需要高等数学、线性代数、应用统计学、概率论与数理统计等方面的数学基础。
(五)对习题课、实践环节的要求习题课以课后题为主,着重考察学生的解决问题能力,实验环节要求学生掌握具体的实验合理安排与数据处理。
(六)课程考核方式1.考核方式:考查。
2.考核目标:使学生掌握合理设计工业工程与人因工程的实验,并对实验数据进行科学分析和处理的技能。
3.成绩构成:期末成绩60%、平时成绩(包括作业、出勤率等)30%,实验成绩10%。
(七)参考书目《试验设计与数据处理》(第二版),李云雁,化学工业出版社,2012年《化工试验设计与数据处理》,曹贵平,华东理工大学出版社,2009年《试验设计与数据处理》,吴贵生,冶金工业出版社,1997年二、中文摘要实验设汁与数据处理是以数理统计及线性代数为理论基础,经济地、科学地安排实验和分析处理实验结果的一项科学技术。
测试数据回归方程
回归方程是统计学中常用的一种模型,用于描述自变量和因变
量之间的关系。
在回归分析中,我们通常使用最小二乘法来拟合数据,并得到回归方程。
回归方程的一般形式可以表示为,Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y表示因变量,X1,
X2, ..., Xn表示自变量,β0, β1, β2, ..., βn表示回归系数,ε表示误差项。
回归方程的意义在于通过对已知数据进行拟合,得到一个可以
用来预测因变量的数学模型。
通过回归分析,我们可以了解自变量
对因变量的影响程度,以及它们之间的关系是正向还是负向。
此外,回归方程还可以用来检验自变量对因变量的影响是否显著,以及预
测未来的数据。
在实际应用中,回归方程可以用于市场营销预测、经济预测、
风险管理等领域。
通过对历史数据的分析,我们可以建立回归方程
来预测未来的趋势和变化,从而指导决策和规划。
总之,回归方程是统计学中非常重要的工具,它可以帮助我们
理解变量之间的关系,进行预测和决策。
希望这个回答能够满足你的要求。
第4篇试验设计与回归分析第4篇试验设计与回归分析回归分析的种类与简单回归分析第1节回归分析的任务和种类1.回归分析仅哪些问题当人们从一组对象上获得2个或多个指标的观测值时,往往需要回答下述几个问题:①如何实现预测,即如何由1个或多个指标自变量的值去推算另1个或多个指标因变量的值;②如何实现控制,即事先给锄品质量应达到的标准(因变量的取值范围),根据变量之间的数量关系去控制那些影响产品质量的因素(自变量)的变化区间;③如何实现修匀,由于所研究的指标带有变异性,当用散布图将变量之间的关系呈现出来时,散点所形成的轨迹并非像数学中初等函数那样有规律,需要用合适的数学方法(如用直线或某种光滑曲线)对资料进行修匀,使变量之间本质联系更清楚地呈现出来。
回归分析正是回答上述问题的一种最常用最有效的统计分析方法之一。
2.回归分析的种类如果因变量是非时间的连续变量(即一般定量资料),设自变量的个数为k,当k=1时,回归分析的种类有:①直线回归分析;②通过直线化实现的简单曲线回归分析(以下简称为曲线拟合);③非线性曲线拟合;④一般多项式曲线拟合;⑤正交多项式曲线拟合。
当k≥2时,称为多元回归分析(注:前面的④、⑤2种情况实质上是用多元回归分析仅只含1个自变量时较复杂的曲线拟合问题)。
当同时对多个因变量进行回归分析时,称之为多重回归分析。
在多元回归分析中,简单而又实用的则是多元线性回归分析(其中某些自变量可以是原观测指标经过某种初等变换的结果,如对数变换、开平根变换等,因为这里所说的线性是指∶函数fx相对于回归参数是线性的,并非相对于自变量而言)。
这是本篇中要论述的问题。
如果因变量是与时间有关的连续变量且未被离散化(如:生存时间、复发时间、死亡时间等),而自变量可以是定量的,也可以是定性的。
此时需用生存分析中的半参数或参数回归分析方法,将在本书第5篇中论述。
如果因变量是名义或有序变量,无论它取二个离散值(如:死与活、复发与未复发等)还是多个离散值(自变量可以是定性和定量的)时,都可选用logistic 回归分析;如果把列联表中每个格内的理论频数的对数当作因变量,把分组变量(包含影响因素和观测结果变量2类)当作自变量,可用对数线性模性分析。
《试验设计与数据处理》复习要点第一章误差分析一、真值与平均值1、真值:指在某一时刻和某一状态下,某量的客观值或实际值。
2、平均值(1)算术平均值:x̅=x1+x2+⋯+x nn =∑x in同样试验条件下,多次试验值服从正态分布,算术平均值是这组等精度试验值中的最佳值或最可信赖值。
(2)加权平均值:x̅w=w1x1+w2x2+⋯+w n x nw1+w2+⋯+w n =∑w i x i∑w i(3)对数平均值:x̅L=x1−x2ln x1x2=x2−x1ln x2x1,试验数据的分布曲线具有对称性(4)几何平均值:lg x̅G=∑lg x̅in(5)调和平均值:H=n∑1x i二、误差的基本概念1、绝对误差=测得值-真值,结果可正可负。
2、相对误差=绝对误差/真值≈绝对误差/测得值,结果可正可负。
3、算术平均误差∆=∑|x i−x̅|n4、标准误差(1)样本标准差s=√∑(x i−x̅)2n−1=√∑x i2−(∑x i)2/nn−1(2)总体标准差σ=√∑(x i−x̅)2n =√∑x i2−(∑x i)2/nn三、误差来源及分类根据误差的性质或产生原因,可分为随机误差、系统误差、粗大(过失)误差。
1、随机误差:在一定试验条件下,以不可预知的规律变化着的误差;2、系统误差:在一定试验条件下,由某个或某些因素按照某一确定的规律起作用而形成的误差;3、粗大(过失)误差:一种显然与事实不符的误差。
四、试验数据的精准度1、精密度:反映随机误差大小的程度,是指在一定的试验条件下,多次试验值的彼此符合程度或一致程度;2、正确度:指大量测试结果的(算术)平均值与真值或接受参照值之间的一致程度,反映了系统误差的大小,是指在一定的试验条件下,所有系统误差的综合;3、准确度:反映系统误差和随机误差的综合,表示了试验结果与真值或标准值的一致程度。
五、试验数据误差的统计检验1、随机误差的检验随机误差的大小可用试验数据的精密程度来反映,而精密度的好坏又可用方差来度量,所以对测试结果进行方差检验,即可判断随机误差之间的关系。
测试数据回归方程全文共四篇示例,供读者参考第一篇示例:回归方程是一种统计学方法,用于研究一个或多个自变量与一个因变量之间的关系。
在实际应用中,回归方程可以用来预测未来的数值,分析变量之间的相关性以及评估变量对因变量的影响程度。
在进行回归分析时,我们需要使用测试数据来验证回归方程的准确性和可靠性。
测试数据是用来验证回归方程的准确性和可靠性的关键。
在进行回归分析时,我们通常会将原始数据分成两部分:训练数据和测试数据。
训练数据用来建立回归方程,而测试数据则用来验证回归方程的预测能力。
通过对测试数据进行回归分析,我们可以评估回归方程的拟合程度和预测精度,从而确定回归方程是否适合用于预测未来的数值。
在实际应用中,测试数据的选取和处理对回归分析的结果具有重要影响。
为了确保回归方程的准确性和可靠性,我们需要采取一定的步骤来处理测试数据。
我们需要确保测试数据具有代表性和完整性,即测试数据必须涵盖整个数据集的特征和变化范围。
我们需要对测试数据进行预处理和清洗,包括处理缺失值、异常值和重复值等。
我们还需要对测试数据进行分割,将其划分为训练集和测试集,并进行交叉验证以确保结果的稳定性和可靠性。
除了数据的选取和处理,测试数据的量级和精度也对回归分析的结果产生影响。
通常情况下,测试数据的量级越大,回归方程的预测精度越高。
测试数据的精度和准确性也是影响回归分析结果的关键因素。
在实际应用中,我们通常会对测试数据进行多次重复测试,以评估回归方程的稳定性和可靠性。
测试数据在回归分析中起着非常重要的作用。
只有通过对测试数据的充分验证和检验,我们才能确保回归方程的准确性和可靠性,从而为数据分析和预测提供更加可靠的依据。
通过不断优化测试数据的选取和处理方法,我们可以提高回归方程的预测准确度,为决策和应用提供更多可靠的参考依据。
【结束】第二篇示例:测试数据是数据科学中的重要环节,用于验证模型的准确性和稳定性。
而回归方程则是一种用于建立变量之间关系的数学模型,用于预测或解释一个变量对另一个变量的影响。