五年级奥数:加法、乘法原理
- 格式:doc
- 大小:60.50 KB
- 文档页数:5
学科培优数学“加法原理和乘法原理综合”学生姓名授课日期教师姓名授课时长知识定位本讲力求让学生懂得并运用加法乘法原理来解决问题,掌握常见的计数方法,会使用这些方法来解决问题知识梳理乘法原理我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法 ,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.加法原理无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法 ,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1 + m2 +…+mk 种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.例题精讲【试题来源】【题目】从五年级8个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?【试题来源】【题目】用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?【试题来源】【题目】北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?【试题来源】【题目】7个相同的球放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?【试题来源】【题目】如图所示,沿线段从A 走最短路线到B 有多少种走法?【试题来源】【题目】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?GD F CE BA106343211111BA【试题来源】【题目】用1,2,3,4这4个数字,组成各位数字互不相同的四位数,例如1234,4321等,求全体这样的四位数之和.【试题来源】【题目】某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?【试题来源】【题目】用0~9这十个数字可组成多少个无重复数字的四位数.【试题来源】【题目】12个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?【试题来源】【题目】A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种.【试题来源】【题目】在2000到2999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?【试题来源】【题目】将一些数字分别填入下列各表中,要求每个小格中填入一个数字,表中的每横行中从左到右数字由小到大,每一竖列中从上到小数字也由小到大排列。
1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不...可的..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 由数字1,2,3 可以组成多少个没有重复数字的数?【考点】加乘原理之综合运用 【难度】2星 【题型】解答【解析】 因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有326⨯=个;⑶组成三位数:与组成二位数道理相同,有326⨯=个三位数;所以,根据加法原理,一共可组成36615++=个数.【答案】15【例 2】 用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是 。
加法原理与乘法原理加法原理:完成一件工作共有N类方法。
在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。
运用乘法原理计数,关键在于合理分步。
完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。
这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。
运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。
计数时要注意区分是分类问题还是分步问题,正确运用两个原理。
灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。
小学阶段只学习两个原理的简单应用。
【题目1】:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法【解析】:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。
②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。
1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?教学目标例题精讲知识要点7-3-1.加乘原理之综合运用【考点】加乘原理之综合运用 【难度】1星 【题型】解答【解析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326⨯=种方法.【答案】⑴5 ⑵6【例 2】 从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。
五年级奥数:加法、乘法原理加法原理在日常生活与实践中,我们经常会遇到分组、计数的问题。
解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。
熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。
什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。
假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。
那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。
因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。
我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和。
即N = m1 + m2+ … + mn(N代表完成一件工作的方法的总和,m1,m2, … m n表示每一类完成工作的方法的种数)。
这个规律就乘做加法原理。
例题与方法:例1 书架上有10本故事书,3本历史书,12本科普读物。
志远任意从书架上取一本书,有多少种不同的取法?例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?例3、4 x 4的方格图中(如下图),共有多少个正方形?例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?练习与思考:从甲城到乙城,可乘汽车,火车或飞机。
已知一天中汽车有2班,火1.车有4班,甲城到乙城共有()种不同的走法。
一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准2.备____种不同的车票。
3.下面图形中共有____个正方形。
4.图中共有_____个角。
5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。
加法原理和乘法原理知识方法一、分类计数原理(加法原理)1、完成一件事情,有n类方法,在第1类方法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……在第n类方法中有mn种不同的方法,则完成这件事有N=m1+m2+……+m n 种不同的方法2、分类计数原理的特点:针对的是“分类”问题,各类方法是相互独立的。
二、分步计数原理(乘法原理)1、完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有有m2种不同的方法,……做第n步有mn种不同的方法,则完成这件事有N=m1×m2×……×m n 种不同的方法2、分不计数原理的特点:针对的是“分步”问题,各类方法是相互依存的。
例1:从资阳到成都可乘火车,也可乘汽车,一天中,火车有3列,汽车有12辆,一天中乘坐这些交通工具从资阳到成都有多少种不同的方法?例2:陈老师从资阳到美国,第1天,乘高铁到成都有3辆,次日,从成都乘飞机到美国有5班,陈老师从资阳到美国有多少种不同的乘车方法?变式:一个盒子里装有5个小球。
另一个盒子里装有9个小球。
所有这些小球的颜色各不相同。
(1)从两个盒子中任取一个小球,有多少种不同的取法?(2)从两个盒子中各取一个球,有多少种不同的取法?例3:4个数字3、5、6、8可以组成多少个没有重复数字的四位数?变式:有7、3、6三个数字卡片,能组成几个不同的三位数?(每个数字只能用1次)例4、用4种不同颜色给下面的图形涂色。
使相邻两个长方形颜色不相同,有多少种不同的涂法?变式:在A 、B 、C 、D 四个长方形区域中涂上红黄蓝黑这4种不同颜色,使相邻两个长方形颜色不相同,有多少种不同的涂法?例5、南京与上海的动车组特快列车,中途只停靠常州,无锡,苏州三个火车站。
共要准备多少种不同的车票?(考虑往返)变式:北京到广州的火车中间要停靠8个大站。
火车站要准备多少种不同的车票?有多少种不同的票价?(考虑往返)练习题1、小军小蓝和小红三个朋友排成一排照相,有多少种不同的排法?2、书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书,如果从中各取一本科技书,一本故事书和一本英语书,那么总共有多少种取法?3、有8、0、2、4、6五个数字,可以组成几个不同的五位数?4、五一前夕,学校举行亲子活动。
加乘法原理月日姓名【知识要点】1.加法原理:如果完成某一种工作可以有几类方法,一类方法中又有若干种不同的方法,那么,完成这件工作方法的总数就等于各类完成这件工作的方法的总和。
2.乘法原理:做一件事如果要分成几步,每步又各有若干种方法,把每一步可能的方法连乘,得到的积就是不同搭配方法的总数。
【精典例题】例1 书架上层放有7种不同的故事书,中层有6本不同的科技书,下层有4种不同的画册,如果从书架上任取1本书,有多少种不同的取法?如果从每一层各取1本,有多少种不同的取法?例2 由1、2、3、4这四个数字组成许多四位数:(1)共有多少个没有重复数字的四位数?(2)共有几个四位数?将它们从小到大排列起来,那么4231是第几个?例3 A、B、C、D、E、F六人排成一排照相:(1)如果C必须站在中间,那么共有多少种排法?(2)如果A、B 两人必须站在两端,那么一共有多少种不同的排法?例4 如右图,正方形ACEF 的边界上共有6个点,A 、B 、C 、D 、E 、F ,其中B 、D 分别在边AC 、CE 上,那么,以这6个点中的三个点为顶点,组成的不同的三角形的个数是多少?例5 从学校到少年宫有4条东西的马路和3条南北的马路相通(如图)。
福娃从学校出发,步行到少年宫(只许向东或向南行进),最多有多少种不同的行走路线?随堂小测姓 名 成 绩1.动物园里有3只猴子去坐5把不同的椅子(每只猴子只能坐一把),有多少种不同的坐法?2.A 、B 、C 、D 、E 、F 六个人排成一排照相: (1)如果A 、B 两人必须相邻,共有多少种排法? (2)如果A 不在两端,那么共有多少种排法?少年宫北3.某铁路线上,在起点和终点之间有7个车站(包括起点和终点站),现在新增加了3个车站,铁路上两站之间往返的车票不一样,这样需要增加多少种不同的车票?4.由数字1、2、3、4、5可以组成多少个没有重复数字且比40000小的自然数?(提示:要考虑1位,2位,3位,4位,5位的自然数)5.这是一个棋盘(如图),将一个白子和一个黑子放在棋盘线的交叉点上,但不能在同一条棋盘线上,共有多少种不同的放法?课后作业姓名家长签名成绩1.“IMO”是国际数学奥林匹克的缩写,要求把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”。
小学奥数乘法原理与加法原理HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有n1种不同的方法,做第二步有n2种不同的方法,…,做第n步有n n种不同的方法,那么,完成这件事一共有n=n1×n2×……×n n种不同的方法.这就是乘法原理.例1. 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2. 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3. 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4. 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5. 由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6. 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8. 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有n类方法,第一类方法中有n1种不同做法,第二类方法中有n2种不同做法,…,第n类方法中有n n种不同的做法,则完成这件事共有n=n1+n2+⋯…+n n种不同的方法.这就是加法原理.例1. 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2. 一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3. 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.第二类,由甲地直接到丙地.例4. 如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.例5. 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6. 从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7. 如图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。
乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有种不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有种不同的方法.这就是乘法原理.例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7.右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张"。
加法原理
在日常生活与实践中,我们经常会遇到分组、计数的问题。
解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。
熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。
什么叫做加法原理呢?我们先来看这样一个问题:
从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。
假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。
那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?
我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。
因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。
我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总
和。
即N = m
1 + m
2
+ … + m
n
(N代表完成一件工作的方法的总和,m1,m2, … m n
表示每一类完成工作的方法的种数)。
这个规律就乘做加法原理。
例题与方法:
例1 书架上有10本故事书,3本历史书,12本科普读物。
志远任意从书架上取一本书,有多少种不同的取法?
例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?
例3、4 x 4的方格图中(如下图),共有多少个正方形?
例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?
练习与思考:
从甲城到乙城,可乘汽车,火车或飞机。
已知一天中汽车有2班,火1.
车有4班,甲城到乙城共有()种不同的走法。
一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准2.
备____种不同的车票。
3.下面图形中共有____个正方形。
4.图中共有_____个角。
5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。
如果从书架上任取一本书,有____种不同的取法。
6.平面上有8个点(其中没有任何三个点在一条直线上),经过每两个点画一条直线,共可以画_____条直线。
7.图中共有_____个三角形。
8.图中共有____个正方形.
9.从2,3,5,7,11,13,这六个数中,每次取出两个数分别作为一个分数的分子和分母,一共可以组成_____个真分数.
10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的火车准备_____种不同的车票,其中票价不相同的火车票有_____种。
乘法原理
上一讲我们学习了用“加法原理”计数,这一讲我们学习“乘法原理”。
什么是乘法原理呢?我们来看这样一个问题:
从甲地到乙地有3条不同的道路,从乙地到丙地有4条不同的道路。
从甲地经过乙地到丙地,共有多少种走法?
我们这样思考:从甲地到乙地的3条道路中任意选一条都可以从甲地到乙地,再从乙地大丙地的4条道路中任意选一条都可以从乙地到丙地,那么,从甲地到乙地的3条道地第一条到达乙地后,可以走从乙地到丙地的任意一条路,这样就有了4种不同的走法。
从甲地到乙地的第二条、第三条路到达乙地后,仍可以从乙地到丙地的4条路中任选一条到丙地,如图所示:
从图中可以看出,从甲地到丙地共有3 X 4 =12(种)走法。
如果完成一件事情需要几个步,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…那么,完成这件工作共有N =m1 x m2 x m3 x … x m n 种不同的方法。
这就是乘法原理。
例题与方法:
例1 书架上有4本故事书,7本科普书,志远从书架上任取一本故事书和一本科普书,共有多少种不同的取法?
例2 从2、3、5、7、11这五个数字中每次取出2个数字,分别作为一个分数的分子和分母,一共可以组从多少个分数?其中有多少个真分数?
例3 用9、8、7、6这四个数可以组成多少个没有重复数字的三位数?这些位数的和是多少?
例4 如图,A、B 、C、D四个区域分别用红、黄、蓝、白四种颜色中的某一种染色。
若要求相邻的区域染不同的颜色,问:共有多少种不同的染色方法?
练习与思考:
1.从甲地到乙地有两条河,从乙地到丙地有3条路可走,从甲地经乙地到丙地共有
种走法。
2.书架的上、中、下层各有3本、5本、、4本故事书。
若要从每层书架上任取一个本书,共有种不同的取法。
3.有1,2,3,三数字,一共可以组成个没有重复数字的三位数。
4.两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛场。
5.从5,7,11,13这四个数中每次取2个数组成分数,一共可以组成个分数,其中真分数有个。
6.图中一共有个不同的长方形。
7.一个口袋里装有5个小球,另7一个口袋里装有4个小球。
这些小球的颜色互不相同。
(1)从两个口袋里任意取一个小球,有种不同的取法。
(2)从两个口袋内各取一个小球,有种不同的取法。
8.某信号兵用红、黄、蓝三面棋从上到下挂在旗杆上的三个位置表示信号。
每次可挂一面、二面或三面,并且不同的顺序、不同的位置表示不同的信号。
一共可以表示种不同的信号。