内蒙古中考试题及答案汇总-中考.doc
- 格式:doc
- 大小:126.50 KB
- 文档页数:133
2024年内蒙古通辽市中考数学试卷(附答案解析)一、选择题(本题包括12道小题,每小题3分,共36分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)某地区某日最高气温是零上8℃,记作+8℃,最低气温是零下3℃,应该记作()A.﹣3℃B.+3℃C.﹣5℃D.+5℃【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,某地区某日最高气温是零上8℃,记作+8℃,最低气温是零下3℃,应该记作﹣3℃.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.(3分)如图,这个几何体的俯视图是()A.B.C.D.【分析】根据简单几何体的三视图的画法画出它的俯视图即可.【解答】解:这个几何体的俯视图是,故选:D.【点评】本题考查简单几何体的三视图,理解视图的定义,掌握简单几何体三视图的画法和形状是正确解答的关键.3.(3分)在学校文艺汇演中,7名参加舞蹈表演的女生身高(单位:cm)如下:170175169171172170173这组数据的中位数是()A.175B.172C.171D.170【答案】C.4.(3分)下列运算结果正确的是()A.4xy﹣3xy=1B.(﹣a2)3=﹣a6C.=﹣5D.+=【答案】B.5.(3分)剪纸是我国民间艺术之一,如图放置的剪纸作品,它的对称轴与平面直角坐标系的坐标轴重合,则点A(﹣4,2)关于对称轴对称的点的坐标为()A.(﹣4,﹣2)B.(4,﹣2)C.(4,2)D.(﹣2,﹣4)【分析】根据所给图形,得出y轴为其对称轴,再根据轴对称的性质即可解决问题.【解答】解:由所给图形可知,此图形关于y轴对称,所以点A(﹣4,2)关于对称轴对称的点的坐标为(4,2).故选:C.【点评】本题主要考查了坐标与图形变化﹣对称、坐标确定位置及关于x轴、y轴对称的点的坐标,熟知轴对称的性质是解题的关键.6.(3分)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2(其中k1k1≠0,k1,k2,b1,b2为常数)的图象分别为直线l1,l2.下列结论正确的是()A.b1+b2>0B.b1b2>0C.k1+k2<0D.k1k2<0【分析】根据函数图象,可以得到b1=2,b2=﹣1,k1>0,k2>0,然后即可判断各个选项中的说法是否正确.【解答】解:由图象可得,b1=2,b2=﹣1,k1>0,k2>0,∴b1+b2>0,故选项A正确,符合题意;b1b2<0,故选项B错误,不符合题意;k1+k2>0,故选项C错误,不符合题意;k1k2>0,故选项D错误,不符合题意;故选:A.【点评】本题考查一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.(3分)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是()A.B.C.D.【分析】列表可得出所有等可能的结果数以及两次都摸出白球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红白白红(红,红)(红,白)(红,白)白(白,红)(白,白)(白,白)白(白,红)(白,白)(白,白)共有9种等可能的结果,其中两次都摸出白球的结果有4种,∴两次都摸出白球的概率为.故选:C.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.8.(3分)将三角尺ABC按如图位置摆放,顶点A落在直线l1上,顶点B落在直线l2上,若l1∥l2,∠1=25°,则∠2的度数是()A.45°B.35°C.30°D.25°【分析】由平行线的性质推出∠3=∠1=25°,即可求出∠2的度数.【解答】解:∵l1∥l2,∴∠3=∠1=25°,∴∠2=60°﹣25°=35°.故选:B.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠3=∠1.9.(3分)如图,▱ABCD的对角线AC,BD交于点O,以下条件不能证明▱ABCD是菱形的是()A.∠BAC=∠BCA B.∠ABD=∠CBDC.OA2+OB2=AD2D.AD2+OA2=OD2【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠BAC=∠BCA,∴AB=BC,∴▱ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD,∵∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴▱ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OB=OD,∵OA2+OB2=AD2,∴OA2+OD2=AD2,∴∠AOD=90°,∴AC⊥BD,∴▱ABCD是菱形,故选项C不符合题意,D、∵AD2+OA2=OD2,∴∠OAD=90°,∴OA⊥AD,∴不能证得▱ABCD是菱形,故选项D符合题意;故选:D.【点评】本题考查了菱形的判定、平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.10.(3分)如图,小程的爸爸用一段10m长的铁丝网围成一个一边靠墙(墙长5.5m)的矩形鸭舍,其面积为15m2,在鸭舍侧面中间位置留一个1m宽的门(由其它材料成),则BC长为()A.5m或6m B.2.5m或3m C.5m D.3m【答案】C.11.(3分)如图,圆形拱门最下端AB在地面上,D为AB的中点,C为拱门最高点,线段CD经过拱门所在圆的圆心,若AB=1m,CD=2.5m,则拱门所在圆的半径为()A.1.25m B.1.3m C.1.4m D.1.45m【分析】如图,连接OA,先证明CD⊥AB,AD=BD=0.5,再进一步的利用勾股定理计算即可.【解答】解:如图,连接OA,∵D为AB的中点,C为拱门最高点,线段CD经过拱门所在圆的圆心,AB=1m,∴CD⊥AB,AD=BD=0.5,设拱门所在圆的半径为rm,∴OA=OC=r,而CD=2.5m,∴OD=2.5﹣r,∴r2=0.52+(2.5﹣r)2,解得:r=1.3,∴拱门所在圆的半径为1.3m;故选B.【点评】本题考查的是垂径定理的实际应用、勾股定理等内容,熟练掌握相关知识点是解题的关键.12.(3分)如图,平面直角坐标系中,原点O为正六边形ABCDEF的中心,EF∥x轴,点E在双曲线y=(k为常数,k>0)上,将正六边形ABCDEF向上平移个单位长度,点D恰好落在双曲线上,则k的值为()A.4B.3C.2D.3【解答】解:如图,作DG⊥EF交EF的延长线于点G,DG交反比例函数图象于点H,∵原点O为正六边形ABCDEF的中心,EF∥x轴,∴∠EDO===60°,∴EDG=30°,∴EG=ED,GD=设正六边形ABCDEF的边长为a,则E(,),H(a,),∵点EH都在反比例函数图象上,∴,解得a=4,∴H(4,),∴k=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征、正六边形的性质,熟练掌握反比例函数图象上点的坐标特征是关键.二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)分解因式:3ax2﹣6axy+3ay2=.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.14.(3分)如图,根据机器零件的设计图纸,用不等式表示零件长度L的合格尺寸(L的取值范围)【分析】从图上可以看出:合格尺寸最小应是40﹣0.01=39.99;最大应是40+0.01=40.01.【解答】解:根据题意,得.39.99≤L≤40.01.故答案为:39.99≤L≤40.01.【点评】本题考查了有理数的加减混合运算,理解40±0.01的意义是解题的关键.15.(3分)分式方程的解是.【解答】解:去分母得:3x=2x﹣4,解得:x=﹣4,经检验x=﹣4是分式方程的解.故答案为:x=﹣416.(3分)如图,为便于研究圆锥与扇形的关系,小方同学利用扇形纸片恰好围成一个底面半径为5cm,母线长为12cm的圆锥的侧面,那么这个扇形纸片的面积是cm2(结果用含π的式子表示).【分析】根据圆锥的侧面积=底面周长×母线长÷2计算即可.【解答】解:这个扇形纸片的面积是为×2π×5×12=60π(cm2).故答案为:60π.17.(3分)关于抛物线y=x2﹣2mx+m2+m﹣4(m是常数),下列结论正确的是(填写所有正确结论的序号).①当m=0时,抛物线的对称轴是y轴;②若此抛物线与x轴只有一个公共点,则m=﹣4;③若点A(m﹣2,y1),B(m+1,y2)在抛物线上,则y1<y2;④无论m为何值,抛物线的顶点到直线y=x的距离都等于2.【分析】依据题意,根据二次函数的图象与性质,逐个进行判断即可得解.【解答】解:当m=0时,抛物线为y=x2﹣4,∴抛物线的对称轴是y轴,故①正确.又若此抛物线与x轴只有一个公共点,∴Δ=4m2﹣4(m2+m﹣4)=﹣4m+16=0.∴m=4,故②错误.由题意,∵抛物线为y=x2﹣2mx+m2+m﹣4,∴对称轴是直线x=﹣=m.又抛物线开口向上,∴抛物线上的点离对称轴越近函数值越小.又∵A(m﹣2,y1),B(m+1,y2),∴m﹣(m﹣2)=2>m+1﹣m=1.∴y1>y2,故③错误.由题意,∵抛物线y=x2﹣2mx+m2+m﹣4的对称轴是直线x=m,∴顶点为(m,m﹣4).∴顶点在直线y=x﹣4上.又直线y=x与y=x﹣4平行,∴顶点到直线y=x的距离等于两条平行线间的距离.又直线y=x﹣4与y轴的夹角为45°,且y=x﹣4是y=x向下平移4个单位得到的,∴两平行线间的距离为4sin45°=4×=2.∴顶点到直线y=x的距离为2,故④正确.故答案为:①④.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出解答各题的文字说明、证明过程或计算步骤18.(5分)计算:|﹣2|+2sin60°﹣(﹣π)0.【分析】首先计算零指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|﹣2|+2sin60°﹣(﹣π)0=2﹣+2×﹣1=2﹣+﹣1=1.19.(6分)先化简,再求值:(2a+b)(2a﹣b)﹣(a+b)(4a﹣b),其中a=﹣,b=2.【分析】根据平方差公式、多项式乘多项式的运算法则去括号,再合并同类项得到最简结果,最后将a,b的值代入计算即可.【解答】解:原式=4a2﹣b2﹣(4a2﹣ab+4ab﹣b2)=4a2﹣b2﹣4a2+ab﹣4ab+b2=﹣3ab.当a=﹣,b=2时,原式==.【点评】本题考查整式的混合运算—化简求值,熟练掌握运算法则是解答本题的关键.20.(6分)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C点测得杨树底端B 点的仰角是30°,BC长6米,在距离C点4米处的D点测得杨树顶端A点的仰角为45°,求杨树AB 的高度(精确到0.1米,AB,BC,CD在同一平面内,点C,D在同一水平线上,参考数据:≈1.73).【分析】延长AB交DC于H,得到∠AHD=90°,解直角三角形即可得到结论.【解答】解:延长AB交DC于H,则∠AHD=90°,∵∠BCH=30°,BC=6米,∴BH=BC=3米,CH=BC=3米,∵∠ADC=45°,∴AH=DH=CD+CH=(4+3)米,∴AB=AH﹣BH=4+3﹣3=1+3≈6.2(米),答:杨树AB的高度约为6.2米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确地作出辅助线是解题的关键.21.(8分)为迎接2024年5月26日的科尔沁马拉松赛事,某中学七年级提前开展了一次“马拉松”历史知识测试.七年级600名学生全部参加本次测试,调查研究小组随机抽取50名学生的测试成绩(百分制)作为一个样本.【收集数据】调查研究小组收集到50名学生的测试成绩:6061629473738585877263647066746567757671949384917682838392848080829291867786887270719390819074788175【整理描述数据】通过整理数据,得到以下尚不完整的频数分布表、频数分布直方图和扇形统计图:组别成绩分组频数A60≤x<70aB70≤x<8016C80≤x<9016D90≤x≤100b(1)频数分布表中a=8,b=10,并补全频数分布直方图;(2)扇形统计图中m=20,D所对应的扇形的圆心角度数是72°.【应用数据】(3)若成绩不低于90分为优秀,请你估计参加这次知识测试的七年级学生中,成绩为优秀的人数.【分析】(1)根据所给的数据即可得a和b的值,即可补全频数分布直方图;(2)利用D组的人数除以总人数即可得m的值,用360°乘以D组的人数所占的百分比即可求出D 所对应的扇形的圆心角度数;(3)用总人数乘以样本中成绩不低于90分是人数所占的百分比即可.【解答】解:(1)频数分布表中a=8,b=10,补全频数分布直方图如下:故答案为:8,10;(2)∵m%=×100%=20%,∴m=20,D所对应的扇形的圆心角度数是360°×20%=72°;故答案为:20,72°;(3)600×20%=120(人),答:估计参加这次知识测试的七年级学生中,成绩为优秀的人数为120人.【点评】本题考查频数(率)分布直方图,频数(率)分布表,扇形统计图和用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,△ABC中.∠ACB=90°,点O为AC边上一点,以点O为圆心,OC为半径作圆与AB相切于点D,连接CD.(1)求证:∠ABC=2∠ACD;(2)若AC=8,BC=6,求⊙O的半径.【分析】(1)连接OD,如图,先根据切线的性质得到∠ODA=∠ODB=90°,再根据四边形的内角和与等角的补角相等得到∠ABC=∠AOD,接着根据圆周角定理得到∠AOD=2∠ACD,从而得到结论;(2)设⊙O的半径为r,则OD=OC=r,OA=8﹣r,先利用勾股定理计算出AB=10,再证明△AOD∽△ABC,则利用相似比得到=,然后解方程即可.【解答】(1)证明:连接OD,如图,∵AB为⊙O的切线,∴OD⊥AB,∴∠ODA=∠ODB=90°,∵∠ACB=90°,∴∠ABC+∠COD=180°,∵∠AOD+∠COD=180°,∴∠ABC=∠AOD,∵∠AOD=2∠ACD,∴∠ABC=2∠ACD;(2)解:设⊙O的半径为r,则OD=OC=r,OA=8﹣r,在Rt△ACB中,∵∠ACB=90°,AC=8,BC=6,∴AB==10,∵∠OAD=∠BAC,∠ADO=∠ACB,∴△AOD∽△ABC,∴=,即=,解得r=3,即⊙O的半径为3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和相似三角形的判定与性质.23.(10分)某中学为加强新时代中学生劳动教育,开辟了劳动教育实践基地.在基地建设过程中,需要采购煎蛋器和三明治机.经过调查,购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元.(1)求煎蛋器和三明治机每台价格各是多少元;(2)学校准备采购这两种机器共50台,其中要求三明治机的台数不少于煎蛋器台数的一半.请你给出最节省费用的购买方案.【分析】(1)设每台煎蛋器的价格是x元,每台三明治机的价格是y元,根据“购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m台煎蛋器,则购买(50﹣m)台三明治机,根据购买三明治机的台数不少于煎蛋器台数的一半,可列出关于m的一元一次不等式,解之可得出m的取值范围,设学校采购这两种机器所需总费用为w元,利用总价=单价×数量,可找出w关于m的函数关系式,再利用一次函数的性质,即可找出最节省费用的购买方案.【解答】解:(1)设每台煎蛋器的价格是x元,每台三明治机的价格是y元,根据题意得:,解得:.答:每台煎蛋器的价格是65元,每台三明治机的价格是110元;(2)设购买m台煎蛋器,则购买(50﹣m)台三明治机,根据题意得:50﹣m≥m,解得:m≤.设学校采购这两种机器所需总费用为w元,则w=65m+110(50﹣m),即w=﹣45m+5500,∵﹣45<0,∴w随m的增大而减小,又∵m为正整数,∴当m=33时,w取得最小值,此时50﹣m=50﹣33=17,∴最节省费用的购买方案为:购买33台煎蛋器,17台三明治机.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.24.(8分)【实际情境】手工课堂上,老师给每个制作小组发放一把花折伞和制作花折伞的材料及工具.同学们认真观察后,组装了花折伞的骨架,粘贴了彩色伞面,制作出精美的花折伞.【模型建立】(1)如图1,从花折伞中抽象出“牵形图”,AM=AN,DM=DN.求证∠AMD=∠AND.【模型应用】(2)如图2、△AMC中,∠MAC的平分线AD交MC于点D.请你从以下两个条件:①∠AMD=2∠C;②AC=AM+MD中选择一个作为已知条件,另一个作为结论,并写出结论成立的证明过程.(注:只需选择一种情况作答)【拓展提升】(3)如图3,AC为⊙O的直径,=,∠BAC的平分线AD交BC于点E,交⊙O于点D,连接CD.求证AE=2CD.【分析】(1)利用SSS证明△ADM≌△ADN,即可;(2)选择②为条件,①为结论:在AC取点N,使AN=AM,连接DN,证明△ADM≌△ADN,可得DM=DN,∠AMD=∠AND,再由AC=AM+MD,可得DN=CN,从而得到∠C=∠CDN,即可;选择①为条件,②为结论:在AC取点N,使AN=AM,连接DN,证明△ADM≌△ADN,可得DM=DN,∠AMD=∠AND,再由∠AMD=2∠C,可得∠C=∠CDN,从而得到DN=CN,即可;(3)连接BD,取AE的中点F,连接BF,根据圆周角定理可得BD=CD,从而得到∠BCD=∠CBD,再由AC为⊙O的直径,可得AE=2BF=2AF,从而得到∠ABF=∠BAF,然后根据,可得AB =BC,可证明△ABF≌△CBD,从而得到BF=BD=CD,即可.【解答】解:(1)在△ADM和△ADN中,,∴△ADM≌△ADN(SSS),∴∠AMD=∠AND;(2)解:(Ⅰ)选择②为条件,①为结论,如图,在AC取点N,使AN=AM,连接DN,∵AD平分∠MAC,∴∠DAM=∠DAN,在△ADM和△ADN中,∵AM=AN,∠DAM=∠DAN,AD=AD,∴△ADM≌△ADN(SAS),∴DM=DN,∠AMD=∠AND,∵AC=AM+MD,AC=AN+NC,∴DM=CN,∴DN=CN,∴∠C=∠CDN,∴∠AMD=∠AND=∠CDN+∠C=2∠C;(Ⅱ)选择①为条件,②为结论,如图,在AC取点N,使AN=AM,连接DN,∵AD平分∠MAC,∴∠DAM=∠DAN,在△ADM和△ADN中,∵AM=AN,∠DAM=∠DAN,AD=AD,∴△ADM≌△ADN(SAS),∴DM=DN,∠AMD=∠AND,∵∠AMD=2∠C,∴∠AND=2∠C=∠CDN+∠C,∴∠CDN=∠C,∴DN=CN,∴DM=CN,∵AC=AN+NC,∴AC=AM+MD;(3)如图,连接BD,取AE的中点F,连接BF,∵∠BAC的平分线AD,∴,∴BD=CD,∴∠BCD=∠CBD,∵AC为⊙O的直径,∴∠ABC=90°,∴AE=2BF=2AF,∴∠ABF=∠BAF,∵∠BAF=∠BCD,∴∠ABF=∠CBD,∵,∴AB=BC,∴△ABF≌△CBD(ASA),∴BF=BD=CD,∴AE=2CD.【点评】本题主要考查了全等三角形的判定和性质、圆周角定理、等腰三角形的判定和性质、直角三角形的性质、三角形外角的性质等内容,熟练掌握相关知识是解题关键.25.(8分)如图,在平面直角坐标系中,直线与x轴,y轴分别交于点C,D,抛物线(k为常数)经过点D且交x轴于A,B两点.(1)求抛物线表示的函数解析式;(2)若点P为抛物线的顶点,连接AD,DP,CP.求四边形ACPD的面积.【分析】(1)求出D(0,3),可得3=﹣×(0﹣2)2+k,k=4,即可得抛物线表示的函数解析式为y=﹣x2+x+3;(2)连接OP,求出C(2,0),OC=2,A(﹣2,0),OA=2,抛物线顶点P坐标为(2,4),可得S=S△AOD+S△POD+S△POC=10.四边形ACPD【解答】解:(1)在y=﹣x+3中,令x=0得y=3,∴D(0,3),∵抛物线经过点D(0,3),∴3=﹣×(0﹣2)2+k,解得k=4,∴y=﹣(x﹣2)2+4=﹣x2+x+3;∴抛物线表示的函数解析式为y=﹣x2+x+3;(2)连接OP,如图;在y=﹣x+3中,令y=0得x=2,∴C(2,0),OC=2,在y=﹣x2+x+3中,令y=0得0=﹣x2+x+3,解得x=6或x=﹣2,∴A(﹣2,0),OA=2,由y=﹣(x﹣2)2+4可得抛物线顶点P坐标为(2,4),=S△AOD+S△POD+S△POC=×2×3+×3×2+×2×4=3+3+3=10;∴S四边形ACPD∴四边形ACPD的面积为10.【点评】本题考查二次函数综合应用,涉及待定系数法,函数图象上点坐标的特征,三角形面积等知识,解题的关键是用割补法求出四边形ACPD的面积.26.(10分)数学活动课上,某小组将一个含45°的三角尺AEF和一个正方形纸板ABCD如图1摆放,若AE=1,AB=2.将三角尺AEF绕点A逆时针方向旋转α(0°≤α≤90°)角,观察图形的变化,完成探究活动.【初步探究】如图2,连接BE,DF并延长,延长线相交于点G,BG交AD于点M.问题1BE和DF的数量关系是BE=DF,位置关系是BE⊥DF.【深入探究】应用问题1的结论解决下面的问题.问题2如图3,连接BD,点O是BD的中点,连接OA,OG.求证OA=OD=OG.【尝试应用】问题3如图4,请直接写出当旋转角α从0°变化到60°时,点G经过路线的长度.【分析】(1)先证△AEB≌△AFD,得到BE=DF,再根据△AMB和△DMG内角和推导,证∠G=90°即可;(2)利用直角三角形斜边上的中线等于斜边的一半即可得证;(3)由(2)知点OA=OD=OG,则点G的运动轨迹是以O为圆心,OA为半径的弧上,再根据α的变化求圆心角即可得解.【解答】(1)解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△AEF是含有45°的直角三角尺,∴△AEF是等腰直角三角形,∴AE=AF,∠EAF=90°,∵∠BAD﹣∠DAE=∠EAF﹣∠DAE,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,∠ABE=∠ADF,∵∠AMB=∠DMG,∴∠G=∠BAM=90°,即BE⊥DF,故答案为:BE=DF,BE⊥DF.(2)∵△BAD是直角三角形,O是BD中点,∴OA=BD=OD,由(1)知∠G=90°,∴△BGD是直角三角形,∴OG=BD=OD,∴OA=OD=OG.(3)由(2)知,OA=OD=OG,∴点G的运动轨迹是以O为圆心,OA为半径的弧,连接OA,OG,∵旋转角α从0°变化到60°,∴此时点G的运动路线就是,∵∠BAE=60°,∴ABE=30°,∴∠OBG=45°﹣30°=15°,∵OB=OG=BD,∴∠DOG=30°,∴∠AOG=180°﹣∠AOB﹣∠DOG=60°,∵AB=2,∴BD=AB=2,∴OA=OG=,∴的长度==π.即点G经过路线的长度为π.。
2024年内蒙古呼伦贝尔市中考数学真题试卷一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分) 1. 110-的绝对值是( ) A. 110 B. 10 C. 110- D. 10-2. 下列计算正确的是( )A. ()341226aa -=- B. 253a a a -÷= C. 111a a a a+-= D. ()()2233a b a ab b a b +-+=+ 3. 如图是由七个完全相同的小正方体组成的立体图形,选项给出的四个平面图形中不属于其三视图的是( )A. B. C. D. 4. 新时代十年来,我国建成世界上规模最大的社会保障体系,其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为( )A. 813.610⨯B. 81.3610⨯C. 91.3610⨯D. 913.610⨯5. 下列说法正确的是( )A. 任意画一个三角形,其内角和是360︒是必然事件B. 调查某批次汽车的抗撞击能力,适宜全面调查.C. 一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4D. 在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为221.5, 2.5S S ==甲乙,则甲芭蕾舞团的女演员身高更整齐6. 如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A. 3548'︒B. 5512'︒C. 5412'︒D. 5452'︒7. 实数,a b 在数轴上的对应位置如图所示,()2b a --的化简结果是( )A. 2B. 22a -C. 22b -D. -28. 点(),P x y 在直线344y x =-+上,坐标(),x y 是二元一次方程5633x y -=的解,则点P 的位置在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如图,在ABC 中,90,30C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧分别交,AB AC 于点M 和点N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .若ACD 的面积为8,则ABD △的面积是( )A. 8B. 16C. 12D. 2410. A,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30千克,A 型机器人搬运900千克所用时间与B 型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?( )A. 60,30B. 90,120C. 60,90D. 90,6011. 如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O .E 是BC 边上一点,F 是BD 上一点,连接,DE EF .若DEF 与DEC 关于直线DE 对称,则BEF △的周长是( )A.B. 2+C. 4-D.12. 已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x 表示时间,y 表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a 的值是3.75;其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(本题5个小题,每小题3分,共15分)13. 分解因式:22a ab ab ++= ______.14. 如图,点()0,2A -,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是_____.15. 为了促进城乡协调发展,实现共同富裕,某乡镇计划修建公路.如图:AB 与CD 是公路弯道的外、内边线,它们有共同的圆心O,所对的圆心角都是72︒,点A,C,O 在同一条直线上,公路弯道外侧边线比内侧边线多36米,则公路宽AC 的长是____米.(π取3.14,计算结果精确到0.1)16. 对于实数a ,b 定义运算“※”为3a b a b =+※,例如5253211=+⨯=※,则关于x 的不等式2x m <※有且只有一个正整数解时,m 的取值范围是____.17. 如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)k y x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是_____.三、解答题(本题4个小题,每小题6分,共24分)18. 计算:301tan602(π2024)2-⎛⎫--+︒+- ⎪⎝⎭. 19. 先化简,再求值:22422324x x x x x -⎛⎫+-÷+ ⎪+-⎝⎭,其中72x =-. 20. 综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都在同一平面内,参考数据1.7≈)21. 从一副普通的扑克牌中取出五张牌,它们的牌面数字分别是4,4,5,5,6.(1)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张,则抽取的这张牌的牌面数字是4的概率是多少?(2)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张(不放回),再从中随机抽取第二张.请用列表或画树状图的方法,求抽取的这两张牌的牌面数字之和为奇数的概率.四、解答题(本题7分)22. 如图,在平行四边形ABCD 中,点F 在边AD 上,AB AF =,连接BF ,点O 为BF 的中点,AO 的延长线交边BC 于点E ,连接EE(1)求证:四边形ABEF 是菱形:(2)若平行四边形ABCD 的周长为22,1,120CE BAD =∠=︒,求AE 的长.五、解答题(本题7分)23. 某市某校组织本校学生参加“市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的学生只参加其中一项.为了解各项目参与情况,该校随机调查了部分参加志愿者服务的学生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的学生共有______人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角的度数;(3)该校共有2000名学生,若有60%的学生参加志愿者服务,请你估计参加“文明宣传”项目的学生人数.六、解答题(本题8分)24. 如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=,求扇形OBD 的面积.七、解答题(本题10分)25. 某超市从某水果种植基地购进甲、乙两种优质水果,经调查,这两种水果的进价和售价如表所示:该超市购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元.(1)求,a b 的值;(2)该超市决定每天购进甲、乙两种水果共150千克进行销售,其中甲种水果的数量不少于50千克,且不大于120千克.实际销售时,若甲种水果超过80千克,则超过部分按每千克降价5元销售.求超市当天销售完这两种水果获得的利润y (元)与购进甲种水果的数量x (千克)之间的函数关系式(写出自变量x 的取值范围),并求出在获得最大利润时,超市的进货方案以及最大利润.八、解答题(本题13分)26. 如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB交于点D,设点P的横坐标为m.※m为何值时线段PD的长度最大,并求出最大值;※是否存在点P,使得BPD△与AOC相似.若存在,请求出点P坐标;若不存在,请说明理由.2024年内蒙古呼伦贝尔市中考数学真题试卷答案一、选择题.1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】D6.【答案】C7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】A12.【答案】C二、填空题.13.【答案】2(1)a b +14.【答案】()4,4-15.【答案】28.716.【答案】103m ≤<17.【答案】12三、解答题.18.【答案】1119.【答案】3x +,12-20.【答案】楼BC 的高度为()40米. 21.【答案】(1)25 (2)35四、解答题.22.【答案】(1)见解析 (2)5AE =五、解答题.23.【答案】(1)200,画图略 (2)144︒(3)360人六、解答题.24.【答案】(1)见解析 (2)43π 七、解答题.25.【答案】(1)14a =,19b =(2)()()290050803130080120x x y x x ⎧+≤≤⎪=⎨-+<≤⎪⎩,购进甲种水果80千克,乙种水果70千克,最大利润为1060元八、解答题.26.【答案】(1)24y x x =-+,()0,4C (2)※当52m =时,PD 有最大值为94;※当P 的坐标为()2,4或()3,3时,BPD △与AOC 相似。
2024年内蒙古赤峰市中考数学试题+答案详解(试题部分)温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D. 2. 央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A. 95.210⨯B. 110.5210⨯C. 95210⨯D. 105.210⨯ 3. 将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A. 100︒B. 105︒C. 115︒D. 120︒ 4. 下列计算正确的是( )A. 235a a a +=B. 222()a b a b +=+C. 632a a a ÷=D. ()236a a = 5. 在数据收集、整理、描述的过程中,下列说法错误..的是( ) A. 为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B. 了解某校一个班级学生的身高情况,适合全面调查C. 了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D. 甲、乙二人10次测试的平均分都是96分,且方差2 2.5S =甲,22.3S =乙,则发挥稳定的是甲6. 解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A. B.C. D.7. 如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是( )A. 5B. 6C. 8D. 108. 某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )A. 120B. 200C. 6960D. 9600 9. 等腰三角形的两边长分别是方程210210x x −+=的两个根,则这个三角形的周长为( )A. 17或13B. 13或21C. 17D. 13 10. 如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB于点E,42BOC∠=︒,则OED ∠的度数是( )A. 61︒B. 63︒C. 65︒D. 67︒11. 用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为( )A. 32404558x y x y +=⎧⎨+=⎩B. 35404258x y x y +=⎧⎨+=⎩C. 35584240x y x y +=⎧⎨+=⎩D. 34585240x y x y +=⎧⎨+=⎩12. 如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是( )A. ①②③④B. ①②③C. ①③④D. ②④13. 如图,数轴上点A ,M ,B 分别表示数aa b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A. a b +B. a b −C. abD. a b −14. 如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A. 1m n +=B. 1m n −=C. 1mn =D. 1m n= 二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15. _____________16. 因式分解:233am a −=______.17. 综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).18. 编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:则收割最快的一台收割机编号是________.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19. (1()0π12sin 602+++︒+;(2)已知230a a −−=,求代数式2(2)(1)(3)a a a −+−+的值.20. 如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.21. 某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:整理、描述数据分析数据样本数据的平均数、众数、中位数如下表:解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率. 22. 一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?23. 在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____;(2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1k y x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1k y x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标. 24. 如图,ABC 中,90ACB ∠=︒,AC BC =,O 经过B ,C 两点,与斜边AB 交于点E ,连接CO 并延长交AB 于点M ,交O 于点D ,过点E 作EF CD ∥,交AC 于点F .(1)求证:EF是O的切线;(2)若BM=,1tan2BCD∠=,求OM的长.25. 如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A处沿水滑道下滑至点B处腾空飞出后落入水池.以地面所在的水平线为x轴,过腾空点B与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B与地面的距离为2米,水滑道最低点C与地面的距离为78米,点C到点B的水平距离为3米,则水滑道ACB所在抛物线的解析式为______;(2)如图1,腾空点B与对面水池边缘的水平距离12OE=米,人腾空后的落点D与水池边缘的安全距离DE不少于3米.若某人腾空后的路径形成的抛物线BD恰好与抛物线ACB关于点B成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD的解析式;②此人腾空飞出后的落点D是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M处竖直支撑的钢架MN,另一条是点M与点B之间连接支撑的钢架BM.现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM 平行,且与水滑道有唯一公共点,一端固定在钢架MN 上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).26. 数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在ABC 中,AB AC =,点D 是AC 上的一个动点,过点D 作DE BC ⊥于点E ,延长ED 交BA 延长线于点F .请你解决下面各组提出的问题:(1)求证:AD AF =;(2)探究DF DE 与AD DC的关系; 某小组探究发现,当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =. 请你继续探究: ①当76AD DC =时,直接写出DF DE的值; ②当AD m DC n =时,猜想DF DE 的值(用含m ,n 的式子表示),并证明; (3)拓展应用:在图1中,过点F 作FP AC ⊥,垂足为点P ,连接CF ,得到图2,当点D 运动到使ACF ACB ∠=∠时,若AD m DC n =,直接写出AP AD的值(用含m ,n 的式子表示).2024年内蒙古赤峰市中考数学试题+答案详解(答案详解)温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.是轴对称图形,故A符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.不是轴对称图形,故D不符合题意.故选:A.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2. 央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为()A. 9⨯ D. 105.210⨯5.2105210⨯ C. 9⨯ B. 110.5210【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ⨯(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:1052000000000 5.210=⨯,故选:D .3. 将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A. 100︒B. 105︒C. 115︒D. 120︒【答案】B【解析】 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:由题意得:3230∠=∠=︒∴1180345105∠=︒−∠−︒=︒故选:B .4. 下列计算正确的是( )A. 235a a a +=B. 222()a b a b +=+C. 632a a a ÷=D. ()236a a =【答案】D【解析】【分析】此题考查了同底数幂的除法,完全平方公式,合并同类项,幂的乘方.根据同底数幂的除法法则,完全平方公式,合并同类项,幂的乘方的运算法则,可得答案.【详解】解:A 、2a 与3a 不是同类项,不能合并,故此选项不符合题意;B 、()222222a b a ab b a b +=++≠+,故此选项不符合题意;C 、6332a a a a ÷=≠,故此选项不符合题意;D 、()236a a =,故此选项符合题意.故选:D .5. 在数据收集、整理、描述的过程中,下列说法错误..的是( ) A. 为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B. 了解某校一个班级学生的身高情况,适合全面调查C. 了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D. 甲、乙二人10次测试的平均分都是96分,且方差2 2.5S =甲,2 2.3S =乙,则发挥稳定的是甲【答案】D【解析】【分析】本题考查了全面调查与抽样调查、判断事件发生的可能性、根据方差判断稳定性,根据全面调查与抽样调查的定义、方差的意义逐项判断即可得出答案.【详解】解:A 、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;B 、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;C 、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;D 、甲、乙二人10次测试的平均分都是96分,且方差2 2.5S =甲,22.3S =乙,则发挥稳定的是乙,故原说法错误,符合题意;故选:D . 6. 解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A. B.C.D.【答案】C【解析】 【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可.【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <,解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .7. 如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是( )A. 5B. 6C. 8D. 10【答案】B【解析】 【分析】本题考查了正多边形,求出正多边形的每个外角度数,再用外角和360︒除以外角度数即可求解,掌握正多边形的性质是解题的关键.【详解】解:如图,直线l m 、相交于点A ,则60A ∠=︒,∵正多边形的每个内角相等,∴正多边形的每个外角也相等, ∴1806012602︒−︒∠=∠==︒, ∴360660n ︒==︒, 故选:B .8. 某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )A. 120B. 200C. 6960D. 9600 【答案】D【解析】【分析】本题考查的是统计表,用样本估计总体,求出不低于4.8的人数所占的百分比是解决此题的关键.求出不低于4.8的人数所占的百分比再乘16000即可求出结论.【详解】解:334047160009600200++⨯=, ∴视力不低于4.8的人数是9600,故选:D .9. 等腰三角形的两边长分别是方程210210x x −+=的两个根,则这个三角形的周长为( )A. 17或13B. 13或21C. 17D. 13 【答案】C【解析】【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x −+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .10. 如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A. 61︒B. 63︒C. 65︒D. 67︒【答案】B【解析】 【分析】本题考查了垂径定理,圆周角定理以及三角形的外角性质.先根据垂径定理,求得42AOC BOC ∠=∠=︒,利用圆周角定理求得1212D AOC ∠=∠=︒,再利用三角形的外角性质即可求解. 【详解】解:∵半径OC AB ⊥,∴AC BC =,∴42AOC BOC ∠=∠=︒,84AOB ∠=︒,∵AC AC =, ∴1212D AOC ∠=∠=︒, ∴63OED AOB D ∠=∠−∠=︒,故选:B .11. 用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为( )A. 32404558x y x y +=⎧⎨+=⎩B. 35404258x y x y +=⎧⎨+=⎩C. 35584240x y x y +=⎧⎨+=⎩D. 34585240x y x y +=⎧⎨+=⎩【答案】C【解析】 【分析】此题主要考查了二元一次方程组的应用.根据题意设用A 型钢板x 块,用B 型钢板y 块,再利用现需要58块C 型钢板、40块D 型钢板分别得出方程组即可.【详解】解:设用A 型钢板x 块,用B 型钢板y 块,由题意得:35584240x y x y +=⎧⎨+=⎩, 故选:C .12. 如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是( )A. ①②③④B. ①②③C. ①③④D. ②④【答案】A【解析】 【分析】本题考查了相似三角形的判定和性质,旋转的性质,弧长公式,等腰三角形的判定和性质,三角形内角和定理.根据旋转的性质结合等腰三角形的性质求得各角的度数,再逐一判断各项,即可求解.【详解】解:∵AB BC =,72C ∠=︒,∴72BAC C ∠=∠=︒,180236ABC C ∠︒=︒−∠=,由旋转的性质得36AB C ABC ︒'∠=∠=,72B AC BAC ︒''∠=∠=,72AC B C ''∠︒=∠=,72AC B ADC ︒''∠=∠=,AC AC '=,∴72AC C C '∠=∠=︒,∴36CAC '∠=︒,∴36CAC BAC ''∠=∠=︒,∴723636B AB '∠=︒−︒=︒,由旋转的性质得AB AB '=, ∴()118036722ABB AB B ''∠=∠=︒−︒=︒,①点B 在旋转过程中经过的路径长是36111805ππ⋅=;①说法正确; ②∵36B AB ABC '∠=∠=︒,∴B B A C '∥;②说法正确;③∵18027236DC B '∠=︒−⨯︒=︒,∴36DC B ABC '∠=∠=︒,∴BD C D '=;③说法正确;④∵36BB D ABC '∠=∠=︒,72B BD BAC '∠=∠=︒,∴B BD BAC '∽△△, ∴AB B B AC BD'=.④说法正确; 综上,①②③④都是正确的,故选:A .13. 如图,数轴上点A ,M ,B 分别表示数aa b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A. a b +B. a b −C. abD. a b −【答案】A【解析】【分析】本题主要考查了列代数式、数轴、正数和负数、绝对值等知识点,得到a<0,0b >且a b <是解题的关键. 数轴上点A ,M ,B 分别表示数aa b b +,,,则AM a b a b =+−=、()BM b a b a =−+=−,由AM BM >可得原点在A 、M 之间,由它们的位置可得a<0,0a b +>,0b >且a b <,再根据整式的加减乘法运算的计算法则逐项判断即可.【详解】解:数轴上点A ,M ,B 分别表示数aa b b +,,, ∴AM a b a b =+−=、()BM b a b a =−+=−,∵AM BM >,∴原点在A ,M 之间,由它们的位置可得a<0,0b >且a b <,∴0a b +>,0a b −<,00ab a b <−<,, 故运算结果一定是正数的是a b +.故选:A .14. 如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A. 1m n +=B. 1m n −=C. 1mn =D. 1m n= 【答案】B【解析】 【分析】本题主要考查了二次函数的图象与性质、正方形的性质、全等三角形的判定与性质,解题时要熟练掌握并能灵活运用是关键.依据题意,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,先证明(AAS)ANB DMA ≌.可得AM NB =,DM AN =.点A 、C 的横坐标分别为m 、n ,可得2()4,A m m −+,2()4,C n n −+.(2m n E +,22)82m n −+−,2(0,)4M m +−,设(0,)D b ,则22(,)8B m n m n b ++−−−,2()4,N m n m ++−,24BN n b =−+−,AM m =,AN n =,24DM m b =−+.再由AM NB =,DM AN =进而可以求解判断即可.【详解】解:如图,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,四边形ABCD 是正方形,AC ∴、BD 互相平分,AB AD =,90BAD ∠=︒,90BAN DAM ∴∠+∠=︒,90DAM ADM ∠+∠=︒,BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒,BA AD =,(AAS)ANB DMA ∴≌.AM NB ∴=,DM AN =.点A 、C 的横坐标分别为m 、n ,24(,)A m m ∴+−,2()4,C n n −+.(2m n E +∴,22)82m n −+−,2(0,)4M m +−, 设(0,)D b ,则22(,)8B m n m n b ++−−−,2()4,N m n m ++−,24BN n b ∴=−+−,AM m =,AN n =,24DM m b =−+.又AM NB =,DM AN =,24n m b +−−∴=,24n m b =−+.24b n m ∴=−−+.2244n m n m ∴=−−−+.∴()()m n m n m n +−=+.点A 、C 在y 轴的同侧,且点A 在点C 的右侧,0m n ∴+≠.1m n ∴−=.故选:B .二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15. _____________【答案】1(或2)【解析】243=<<=,满足条件的数为小于或等于2的整数均可.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法.16. 因式分解:233am a −=______.【答案】()()311a m m +−【解析】【分析】先提取公因式3a ,再利用平方差公式分解因式.【详解】解:()()()223331311am a a m a m m −=−=+−,故答案为:()()311a m m +−.【点睛】此题考查了综合利用提公因式法和公式法分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式)是解题的关键.17. 综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).【答案】11.5【解析】【分析】本题考查了解直角三角形的应用.过点D 作DM AB ⊥,由题意知:10DM AC ==米,45BDM ∠=︒,65ADM ∠=︒,推出BDM 是等腰直角三角形,在Rt ADM △中,利用正切函数求出AM 的值,根据AB AM BM =−计算求解可得AB 的值.【详解】解:如图,过点D 作DM AB ⊥,交AB 的延长线于点M ,∴四边形ACDM 是矩形,∴10DM AC ==米,∵45BDM ∠=︒,65ADM ∠=︒,90M ∠=︒,∴BDM 是等腰直角三角形,∴10BM DM ==米,在Rt ADM △中,tan 10tan 6510 2.14521.45AM DM ADM =⋅∠=⋅︒≈⨯≈(米),∴21.451011.4511.5AB AM BM =−=−=≈(米),∴古树AB 的高度约为11.5米.故答案为:11.5.18. 编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:则收割最快的一台收割机编号是________.【答案】C【解析】【分析】本题考查推理能力.利用同时启动其中的两台收割机,收割面积相同的田地所需时间分析对比,能求出结果.【详解】解:同时启动A ,B 两台收割机,所需的时间为23小时,同时启动B ,C 两台收割机,所需的时间为19小时, 得到C 比A 快;同时启动B ,C 两台收割机,所需的时间为19小时,同时启动C ,D 两台收割机,所需的时间为20小时,得到B 比D 快;同时启动A 、B 两台收割机,所需的时间为23小时,同时启动A ,E 两台收割机,所需的时间为18小时,得到E 比B 快;同时启动C ,D 两台收割机,所需的时间为20小时,同时启动D ,E 两台收割机,所需的时间为22小时,得到C 比E 快.综上,收割最快的一台收割机编号是C .故答案为:C .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19. (1()0π12sin 602+++︒+;(2)已知230a a −−=,求代数式2(2)(1)(3)a a a −+−+的值.【答案】(1)6;(2)7.【解析】【分析】(1)利用算术平方根、零指数幂、特殊角的三角函数值、绝对值的性质分别运算,再合并即可求解;(2)由230a a −−=得23a a −=,化简代数式可得()()()()2221321a a a a a −+−+=−+,代入计算即可求解;本题考查了实数的混合运算,代数式化简求值,掌握实数和整式的运算法则是解题的关键.【详解】解:(1)原式3122=+++42=+,6=;(2)∵230a a −−=,∴23a a −=,∴()()()2213a a a −+−+ 224423a a a a =−+++−,2221a a =−+,()221a a =−+, 231=⨯+,7=.20. 如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了尺规作图,中位线的性质,平行四边形的判定.(1)利用尺规作图作出线段AC 的垂直平分线l 即可;(2)由D ,E 分别为AB ,AC 的中点,根据中位线的性质,得到DE BC ∥,12DE BC =,结合2EF DE =,得到EF BC =,即可证明结论成立.【小问1详解】解:直线l 如图所示, ;【小问2详解】证明:补全图形,如图,由(1)作图知,E 为AC 的中点,∵D ,E 分别为AB ,AC 的中点,∴DE BC ∥,12DE BC =, ∵2EF DE =,即:12DE EF =, ∴EF BC =,∵EF BC ∥, ∴ 四边形BCFE 是平行四边形.21. 某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:整理、描述数据分析数据样本数据的平均数、众数、中位数如下表:解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率.【答案】(1)5;2;75(2)78;80 (3)A ,B 两名队员恰好同时被选中的概率为16.【解析】【分析】本题主要考查画树状图或列表法求随机事件的概率,统计表,众数和中位数的意义.(1)根据统计表直接写出a 和b 的值,根据众数的意义可求解c 的值;(2)根据中位数和平均数的意义即可求解;(3)画树状图或列表法把所有等可能结果表示出来,再运用概率公式即可求解.【小问1详解】解:根据收集的数据知5a =;2b =;出现最多的是75分,有5人,众数为75分,则75c =;故答案为:5;2;75;【小问2详解】解:∵由统计图可知中位数为78分,∴如果想让一半左右的队员都能达到成绩目标,成绩目标应定为78分,如果想确定一个较高的目标,成绩目标应定为80分,因为在样本的众数,中位数和平均数中,平均数最大,可以估计,如果成绩目标定为80分,努力一下都能达到成绩目标.故答案为:78;80;【小问3详解】解:画树状图表示所有等可能结果如图所示,共有12种等可能结果,A ,B 两名队员恰好同时被选中的情况有2种,∴A ,B 两名队员恰好同时被选中的概率为21126==, 答:A ,B 两名队员恰好同时被选中的概率为16. 22. 一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;(2)15天的工期,两队最多能修复公路105千米.【解析】【分析】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用.(1)设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米,根据“甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等”列分式方程求解即可;(2)设甲队的工作时间为m 天,则乙队的工作时间为()15m −天,15天的工期,两队能修复公路w 千米,求得w 关于m 的一次函数,再利用“甲队的工作时间不少于乙队工作时间的2倍”求得m 的范围,利用一次函数的性质求解即可.【小问1详解】解:设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米, 由题意得60903x x =+, 解得6x =,经检验,6x =是原方程的解,且符合题意,39x +=,答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;【小问2详解】解:设甲队的工作时间为m 天,则乙队的工作时间为()15m −天,15天的工期,两队能修复公路w 千米,由题意得()69153135w m m m =+−=−+,()215m m ≥−,解得10m ≥,∵30−<,∴w 随m 的增加而减少,∴当10m =时,w 有最大值,最大值为310135105w =−⨯+=,答:15天的工期,两队最多能修复公路105千米.23. 在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____;(2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1k y x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1k y x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标. 【答案】(1)()14,2N 和()30,2N −;。
内蒙中考试题及答案**内蒙中考试题及答案**一、语文试题及答案**(一)选择题**1. 下列词语中加点字的读音完全正确的一项是()A. 倔强(jué)蹒跚(pán)应接不暇(yīng)拈轻怕重(niān)B. 剽悍(piāo)踌躇(chú)恣意妄为(zì)呱呱坠地(gū)C. 筵席(yán)瞠目结舌(chēng)叱咤风云(zhà)锲而不舍(qiè)D. 舐犊情深(shì)恣意妄为(zì)叱咤风云(zhà)锲而不舍(qiè)答案:C2. 下列句子中没有语病的一项是()A. 通过这次活动,使我们开阔了视野,增长了知识。
B. 为了防止这类交通事故不再发生,我们加强了交通安全教育。
C. 他虽然年轻,但是工作能力很强。
D. 我们要把改善民生、保障民生作为一切工作的出发点和落脚点。
答案:D**(二)阅读理解**阅读下面的文言文,完成3-5题。
《岳阳楼记》范仲淹庆历四年春,滕子京谪守巴陵郡。
越明年,政通人和,百废俱兴,乃重修岳阳楼,增其旧制,刻唐贤今人诗赋于其上;属予作文以记之。
予观夫巴陵胜状,在洞庭一湖。
衔远山,吞长江,浩浩汤汤,横无际涯,朝晖夕阴,气象万千。
此则岳阳楼之大观也,前人之述备矣。
然则北通巫峡,南极瑶池,抚绥四方,观行天下之民,多会于此,览物之情,得无异乎?3. “政通人和,百废俱兴”中“通”和“兴”的意思分别是()A. 通达,兴盛B. 通行,兴起C. 通达,兴起D. 通行,兴盛答案:C4. “此则岳阳楼之大观也”中的“大观”指的是()A. 壮观的景象B. 伟大的景观C. 宏伟的建筑D. 壮丽的景色答案:D5. “览物之情,得无异乎?”这句话的意思是()A. 观赏景物时的心情,难道没有不同吗?B. 观赏景物时的心情,难道都是一样的吗?C. 观赏景物时的心情,难道不是一样的吗?D. 观赏景物时的心情,难道没有相同之处吗?答案:A**(三)作文**请以“我眼中的家乡”为题,写一篇不少于600字的作文。
内蒙古自治区兴安盟、呼伦贝尔市2024年中考语文真题试卷姓名:__________班级:__________考号:__________题号一二三四总分评分一、积累与运用(24分)1.下列句子中,没有错别字且加点字注音正确的一项是()A.傍晚时候,上灯了,一点点黄晕.(yùn)的光,烘拖出一片安静而和平的夜。
B.有几个园里有古老的藤萝,盘曲嶙峋的枝干就是一幅.(fú)好画。
C.轻捷的叫天子(云雀)忽然从草间直窜.(chuàn)向云霄里去了。
D.天上闪烁.(shuò)的星星好像黑色幕上点辍着的宝石,它跟我们这样地接近哪!2.下列句子中加点词语使用不恰当的一项是()A.北雁南飞,活跃在田间草际的昆虫也都销声匿迹....。
B.对这一转变做出了巨大贡献的人,是一位长期以来鲜为人知....的科学家——邓稼先。
C.国家公祭日之长鸣警钟震耳欲聋....,那些装睡梦游的罪恶灵魂无处遁形。
D.富有创造力的人总是孜孜不倦....地汲取知识,使自己学识渊博。
3.下列关于语法知识判断错误的一项是()A.“我的母亲虽然高大,然而很瘦,自然不算重……”中“高大”是形容词,“自然”是名词。
B.“中国人民志愿军高举着保卫和平的正义旗帜,经过浴血奋战,拼出了山河无恙、家国安宁”中的“山河无恙”“家国安宁”都是主谓短语。
C.“和我们来往的朋友也都是老老实实的贫苦农民”一句的主干是“朋友是农民”。
D.“倘若用手指按住它的脊梁,便会拍的一声,从后窍喷出一阵烟雾。
”这是假设复句。
4.将下列句子组成语意连贯的一段话,语序排列正确的一项是()①围棋有“三得”,即“得好友、得人和、得心语”。
②围棋以其丰富的文化底蕴在我国传统文化中占有重要地位。
③不仅如此,围棋还常被人们称作“头脑体操”,能使头脑得到锻炼,促进健康,可“得天寿”。
④也就是说,围棋可以使人们广交朋友,教人们和谐相处,让人们能够进行心灵的沟通。
2024年内蒙古包头中考数学试题及答案注意事项:1.本试卷共6页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1. 所得结果是( )A. 3 C. D. ±【答案】C【解析】【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.===;故选C .2. 若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A. 14 B. 12 C. 2 D. 4【答案】B【解析】【分析】本题主要考查了倒数的定义,根据,m n 互为倒数,则1⋅=m n ,把1⋅=m n 代入3m mn +=,即可得出m 的值,进一步即可得出n 的值.【详解】解:∵,m n 互为倒数,∴1⋅=m n ,∵3m mn +=,∴2m =,则12n =,故选:B .3.如图,正方形ABCD 边长为2,以AB 所在直线为轴,将正方形ABCD 旋转一周,所得圆柱的主视图的面积为( )A. 8B. 4C. 8πD. 4π【答案】A【解析】【分析】本题考查三视图,根据题意,得到主视图为长为4,高为2的长方形,进行求解即可.【详解】解:由图可知:圆柱体的主视图为长为4,高为2的长方形,∴面积为248⨯=;故选A .4.如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查了平行线的性质,对顶角的性质,补角的定义等知识,利用平行线的性质得出180AEF CGE +∠=︒∠,得出结合对顶角的性质180AEF DGF ∠+∠=︒,根据邻补角的定义得出180AEF BEG ∠+∠=︒,即可求出中与AEF ∠互补的角,即可求解.详解】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,【又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .5.为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取一个.则他们恰好抽到同一个阅读项目的概率是( )A. 116 B. 112 C. 16 D. 14【答案】D【解析】【分析】本题考查概率的计算,掌握画树状图法或列表法是关键,事件发生的概率=事件发生的次数÷所有可能出现的次数,解题的易错点是分清题目中抽签是否放回.先画树状图求出两位同学恰好都抽到同一个阅读项目的情况,再根据概率公式求解即可.【详解】解:设《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目分别为A B C D 、、、,画树状图如下:一共有16种等可能的结果,其中恰好抽到同一个阅读项目的结果有4种可能,∴他们恰好抽到同一个阅读项目的概率是41164=,故选:D .6. 将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为( )A. ()213y x =+- B. ()=+-2y x 12 C. ()213y x =-- D. ()212y x =--【答案】A【解析】【分析】本题主要考查了二次函数的平移以及顶点式,根据平移的规律“上加下减.左加右减”可得出平移后的抛物线为222y x x =+-,再把222y x x =+-化为顶点式即可.【详解】解:抛物线22y x x =+向下平移2个单位后,则抛物线变为222y x x =+-,∴222y x x =+-化成顶点式则为 ()213y x =+-,故选:A .7.若21m -,m ,4m -这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( )A. 2m < B. 1m < C. 12m << D. 513m <<【答案】B【解析】【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m -<<-,解得:1m <;故选B .8.如图,在扇形AOB 中,80AOB ∠=︒,半径3OA =,C 是 AB 上一点,连接OC ,D 是OC 上一点,且OD DC =,连接BD .若BD OC ⊥,则 AC 的长为( )A. π6 B. π3 C. π2 D. π【答案】B【解析】【分析】本题考查了弧长公式,等边三角形的判定与性质,线段垂直平分线的性质;连接BC ,根据OD DC =,BD OC ⊥,易证OBC △是等腰三角形,再根据OB OC =,推出OBC △是等边三角形,得到60BOC ∠=︒,即可求出20AOC ∠=︒,再根据弧长公式计算即可.【详解】解:连接BC ,OD DC =,BD OC ⊥,OB BC ∴=,∴OBC △是等腰三角形,OB OC =,∴OB OC BC ==,OBC △是等边三角形,∴60BOC ∠=︒,80AOB ∠=︒,∴20AOC AOB BOC ∠=∠-∠=︒,3OA =,∴ 203ππ1803AC ⨯==,故选:B .9. 如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()1,2A ,()3,3B ,()5,0C ,则四边形OABC 的面积为( )A. 14B. 11C. 10D. 9【答案】D【解析】【分析】本题考查了坐标与图形,过A 作AM OC ⊥于M ,过B 作BN OC ⊥于N ,根据A 、B 、C 的坐标可求出OM ,AM ,MN ,BN ,CN ,然后根据M OABC AO BCN AMNB S S S S ++=形梯形四边 求解即可.【详解】解∶过A 作AM OC ⊥于M ,过B 作BN OC ⊥于N ,∵()0,0O ,()1,2A ,()3,3B ,()5,0C ,∴1OM =,2AM =,3ON BN ==,5CO =,∴2MN ON OM =-=,2CN OC ON =-=,∴四边形OABC 的面积为AOM BCNAMNB S S S ++梯形 ()1111223232222=⨯⨯+⨯+⨯+⨯⨯9=,故选:D .10.如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为( )C. 13 D. 23【答案】A【解析】【分析】本题考查矩形的性质,相似三角形的判定和性质,求角的正弦值:过点G 作GH BC ⊥,证明AGD FGE ∽,得到13FG EF AG AD ==,再证明GHF ABF ∽,分别求出,HG FH 的长,进而求出BH 的长,勾股定理求出BG 的长,再利用正弦的定义,求解即可.【详解】解:∵矩形ABCD ,BE EF FC ==,4AB =,6BC =,∴6,AD BC AD BC ==∥,2BE EF FC ===,∴AGD FGE ∽,4BF =,∴13FG EF AG AD ==,∴14FG AF =过点G 作GH BC ⊥,则:GH AB ∥,∴GHF ABF ∽,∴14FH GH FG BF AB AF ===,∴114FH BF ==,114GH AB ==,∴3BH BF FH =-=,∴BG ==,∴sin HG GBF BG ∠===故选A .二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11. ()20241-=______.【答案】3【解析】【分析】本题考查实数的混合混算,先进行开方和乘方运算,再进行加法运算即可.【详解】解:原式213=+=;故答案为:3.12. 已知一个n 边形的内角和是900︒,则n =________.【答案】7【解析】【分析】本题考查根据多边形的内角和计算公式求多边形的边数,多边形的内角和可以表示成()2180n -⋅︒,依此列方程可求解.【详解】解:根据题意,得()2180900n -︒=⋅︒,解得7n =.故答案为:713.在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的表达式______.【答案】1y x =+(答案不唯一)【解析】【分析】本题考查的是一次函数的性质,能根据题意判断出k 、b 的符号是解答此题的关键.先根据一次函数的图象经过一、二、三象限判断出函数k 及b 的符号,再写出符合条件的一次函数解析式即可.【详解】解:设一次函数解析式为()0y kx b k =+≠,∵一次函数的图象经过一、二、三象限,∴0,0k b >>,∴符合该条件的一个一次函数的表达式是:1y x =+(答案不唯一).故答案为:1y x =+(答案不唯一).14.如图,四边形ABCD 是O 的内接四边形,点O 在四边形ABCD 内部,过点C 作O 的切线交AB 的延长线于点P ,连接,OA OB .若140AOB ∠=︒,35BCP ∠=︒,则ADC ∠的度数为______.【答案】105︒##105度【解析】【分析】本题考查了切线的性质,等腰三角形的性质,圆内接四边形的性质等知识,连接OC ,利用等边对等角得出20OAB OBA ∠=∠=︒,OCB OBC ∠=∠,利用切线的性质可求出55OBC OCB ∠=∠=︒,然后利用圆内接四边形的性质求解即可.【详解】解∶连接OC ,的∵OA OB OC ==,140AOB ∠=︒,∴()1180202OAB OBA AOB ∠=∠=︒-∠=︒,OCB OBC ∠=∠,∵CP 是切线,∴90OCP ∠=︒,即90OCB BCP ∠+∠=︒,∵35BCP ∠=︒,∴55OBC OCB ∠=∠=︒,∴75ABC ABO OBC ∠=∠+∠=︒,∵四边形ABCD 是O 的内接四边形,∴180105ADC ABC ∠=︒-∠=︒,故答案:105︒.15. 若反比例函数12y x =,23y x =-,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a =______.【答案】12##0.5【解析】【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入b a 进而得出答案.【详解】解: 函数12y x =,当13x ≤≤时,函数1y 随x 的增大而减小,最大值为a ,1x ∴=时,12y a ==,23y x=- ,当13x ≤≤时,函数2y 随x 的增大而减大,函数2y 的最大值为21y b =-=,1122b a -∴==.故答案为:12.16. 如图,在菱形ABCD 中,60ABC ∠=︒,6AB =,AC 是一条对角线,E 是AC 上一点,过点E 作EF AB ⊥,垂足为F ,连接DE .若CE AF =,则DE 的长为______.为【答案】【解析】【分析】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识,过D 作DH AC ⊥于H ,先判断ABC ,ACD 都是等边三角形,得出60EAF ∠=︒,6AC AB ==,132AH CH AC ===,利用含30︒的直角三角形的性质可得出22AE AF CE ==,进而求出CE ,HE ,然后利用勾股定理求解即可.【详解】解∶过D 作DH AC ⊥于H ,∵菱形ABCD 中,60ABC ∠=︒,6AB =,∴AB BC CD AD ===,60ADC ABC ∠=∠=︒,∴ABC ,ACD 都是等边三角形,∴60EAF ∠=︒,6AC AB ==,132AH CH AC ===,∵EF AB ⊥,∴30AEF ∠=︒,∴2AE AF =,又CE AF =,∴2AE CE =,∴2CE =,∴1HE CH CE =-=,在Rt CDH △中,22227DH CD CH =-=,∴DE ==故答案为:.三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17. (1)先化简,再求值:()()2121x x +-+,其中x =(2)解方程:2244x x x x --=--.【答案】(1)21x -,7;(2)3x =【解析】【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x 的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)()()2121x x +-+22122x x x =++--21x =-,当x =(217=-=;(2)2244x x x x --=--去分母,得()224x x x ---=,解得3x =,把3x =代入43410x -=-=-≠,∴3x =是原方程的解.18. 《国家学生体质健康标准(2014年修订)》将九年级男生的立定跳远测试成绩分为四个等级:优秀(240x ≥),良好(225240x ≤<),及格(185225x ≤<),不及格(185x <),其中x 表示测试成绩(单位:cm ).某校为了解本校九年级全体男生立定跳远测试的达标情况,精准找出差距,进行科学合理的工作规划,整理了本校及所在区县九年级全体男生近期一次测试成绩的相关数据,信息如下:a .本校测试成绩频数(人数)分布表:等级优秀良好及格不及格频数(人数)40706030b .本校测试成绩统计表:平均数中位数优秀率及格率222.5228p85%c.本校所在区县测试成绩统计表:平均数中位数优秀率及格率218.722323%91%请根据所给信息,解答下列问题:(1)求出p的值;(2)本校甲、乙两名同学本次测试成绩在本校排名(从高到低)分别是第100名、第101名,甲同学的测试成绩是230cm,请你计算出乙同学的测试成绩是多少?(3)请你结合该校所在区县测试成绩,从平均数、中位数、优秀率和及格率四个方面中任选两个,对该校九年级全体男生立定跳远测试的达标情况做出评价,并为该校提出一条合理化建议.【答案】(1)20%(2)乙同学的测试成绩是226cm(3)见解析【解析】【分析】本题考查的是频率分布表,中位数,平均数的意义.读懂统计图,从统计表中得到必要的信息是解决问题的关键.(1)先根据本校测试成绩频数(人数)分布表求出本次测试的总人数,利用优秀率=成绩为优秀的人数除以总人数即可求解;(2)根据第100名、第101名成绩的平均值为该校本次测试成绩的中位数,即可求解;(3)根据优秀率和平均数的意义说明即可.【小问1详解】+++=(人),解:本次测试的总人数为:40706030200成绩为优秀的人数为:40人,p=÷⨯=;则优秀率为:40200100%20%【小问2详解】解: 第100名、第101名成绩的平均值为该校本次测试成绩的中位数,中位数为228,⨯-=,则2228230226cm答:乙同学的测试成绩是226cm;【小问3详解】解:本校测试成绩的平均数为222.5,本校所在区县测试成绩平均数为218.7,本校测试成绩的优秀率为20%,本校所在区县测试成绩优秀率为23%,222.5218.7,20%23%>< ,从平均数角度看,该校九年级全体男生立定跳远的平均成绩高于区县水平,整体水平较好;从优秀率角度看,该校九年级全体男生立定跳远成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的优秀率低于区县水平;建议:该校在保持学校整体水平的同时,多关注接近优秀的学生,提高优秀成绩的人数.19.如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).【答案】(1)见解析 (2)()tan tan m αβ+【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)将测角仪放在D 处,用皮尺测量出D 到AB 的距离为m ,用测角仪测出A 的仰角为α,测出B 的俯角为β即可;(2)过C 作CEAB ⊥于E ,分别在Rt BCE 和Rt ACE 中,利用正切的定义求出BE 、AE ,即可求解.【小问1详解】解:如图,将测角仪放在D 处,用皮尺测量出D 到AB 的距离为m ,用测角仪测出A 的仰角为α,测出B 的俯角为β;【小问2详解】解:如图,过C 作CE AB ⊥于E ,则四边形CDBE 是矩形,ACE α∠=,BCE β∠=,∴CE BD m ==,BE CD =,在Rt BCE 中,tan tan BE CE ECB m β=⋅∠=,在Rt ACE 中,tan tan BE CE ECA m α=⋅∠=,∴()tan tan AB AE BE m αβ=+=+,答:教学楼AB 的高度为()tan tan m αβ+.20.图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y (单位:cm )随着碗的数量x (单位:个)的变化规律.下表是小亮经过测量得到的y 与x 之间的对应数据:/x 个1234/cmy 68.410.813.2(1)依据小亮测量的数据,写出y 与x 之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm ,求此时碗的数量最多为多少个?【答案】(1) 2.4 3.6y x =+(2)10个【解析】【分析】本题考查了一次函数的应用,解题的关键是:(1)求出每只碗增加的高度,然后列出表达式即可解答;(2)根据(1)中y 和x 的关系式列出不等式求解即可.【小问1详解】解:由表格可知,每增加一只碗,高度增加2.4cm ,∴()6 2.41 2.4 3.6y x x =+-=+,检验∶当1x =时,6y =;当2x =时,8.4y =;当3x =时,10.8y =;当4x =时,13.2y =;∴ 2.4 3.6y x =+;【小问2详解】解:根据题意,得2.4 3.628.8x +≤,解得10.5x ≤,∴碗的数量最多为10个.21. 如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =,求O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)【答案】(1)3 (2)见解析【解析】【分析】(1)利用等边对等角、三角形内角和定理求出()11802OBC OCB BOC ∠=∠=︒-∠,结合2BOC BCE ∠=∠,可得出90OBC BCE ∠+∠=︒,在Rt OCE 中,利用勾股定理求解即可;(2)法一:过O 作OF BD ⊥于F ,利用垂径定理等可得出12BF BD OE ==,然后利用HL 定理证明Rt Rt CEO OFB ≌ ,得出COE OBF ∠=∠,然后利用平行线的判定即可得证;法二:连接AD ,证明CEO ADB ∽ ,得出COE ABD ∠=∠,然后利用平行线判定即可得证【小问1详解】解∶∵OC OB =,∴()11802OBC OCB BOC ∠=∠=︒-∠,∵2BOC BCE ∠=∠,∴()11802902OBC BCE BCE ∠=︒-∠=︒-∠,即90OBC BCE ∠+∠=︒,∴90OEC ∠=︒,∴222OC OE CE =+,∴()2221OC OC =-+,解得3OC =,即O 的半径为3;【小问2详解】证明:法一:过O 作OF BD ⊥于F,的∴12BF BD =,∵2BD OE=∴OE BF =,又OC OB =,90OEC BFO ∠=∠=︒,∴()Rt Rt HL CEO OFB ≌,∴COE OBF ∠=∠,∴BD OC ∥;法二:连接AD ,∵AB 是直径,∴90ADB ∠=︒,∴2AD CE ====,∴12OC CE OE AB AD BD ===,∴CEO ADB ∽ ,∴COE ABD ∠=∠,∴BD OC ∥.【点睛】本题考查了垂径定理,相似三角形的判定与性质,等腰三角形的性质,三角形的内角和定理,全等三角形的判定与性质等知识,明确题意,灵活运用所学知识解题是解题的关键.22. 如图,在ABCD Y 中,ABC ∠为锐角,点E 在边AD 上,连接,BE CE ,且ABE DCE S S = .(1)如图1,若F 是边BC 的中点,连接EF ,对角线AC 分别与,BE EF 相交于点,G H .①求证:H 是AC 的中点;②求::AG GH HC ;(2)如图2,BE 的延长线与CD 的延长线相交于点M ,连接,AM CE 的延长线与AM 相交于点N .试探究线段AM 与线段AN 之间的数量关系,并证明你的结论.【答案】(1)①见解析;②::2:1:3AG GH HC =(2)3AM AN =,理由见解析【解析】【分析】(1)①根据ABE DCE S S = ,得出E 为AD 的中点,证明出AHE CHF ≌即可;②先证明出AGB HGE ∽得到2AB AG EH GH==,然后再根据平行四边形的性质找到线段的数量关系求解;(2)连接BD 交CN 于点F ,证明()AAS AEB DEM ≌,进一步证明出四边形ABDM 为平行四边形,得出DF 为CMN 的中位线,得到12DF MN =,再证明出AEN DEF ≌得到DF AN =,再通过等量代换即可求解.【小问1详解】解:①ABE DCE S S = ,E ∴为AD 的中点,AE DE ∴=,F 是边BC 的中点,BF CF ∴=,AE CF ∴=,在ABCD Y 中,AD BC∴EAH FCH ∠=∠,AH CH ∴=,H ∴是AC 的中点;②,AE BF AE BF =∥ ,∴四边形ABFE 为平行四边形,AB EF ∴∥,AGB HGE ∴ ∽,AB AG EH GH∴=,∵AHE CHF ≌,EH FH ∴=,2AB AG EH GH∴==,2AG GH ∴=,1133GH AH HC ∴==,::2:1:3AG GH HC ∴=;【小问2详解】解:线段AM 与线段AN 之间的数量关系为:3AM AN =,理由如下:连接BD 交CN 于点F ,如下图:由题意,BE 的延长线与CD 的延长线相交于点M ,连接,AM CE 的延长线与AM 相交于点N ,,AE DE AEB DEM =∠=∠ ,又AB CD ∥ ,AB CM \∥,AB DM ∴=,∴四边形ABDM 为平行四边形,,AM BD AB MD ∴==,AB CD =,DM CD ∴=,D ∴为CM 的中点,DF MN ∥ ,12CD CF CM CN ∴==,F ∴为CN 的中点,DF ∴为CMN 的中位线,12DF MN ∴=,,,AE DE AEN DEF NAE FDE =∠=∠∠=∠ ,()ASA AEN DEF ∴ ≌,DF AN ∴=,12DF AN MN ∴==,2MN AN ∴=,3AM AN MN AN ∴=+=,3AM AN ∴=.【点睛】本题考查了平行四边形的性质,三角形全等的判定及性质,三角线相似的判定及性质,三角形的中位线等知识,解题的关键是添加适当的辅助线构造全等三角形来求解.23.如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫ ⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.【答案】(1)2286y x x =-+-(2)见解析 (3)相等,理由见解析【解析】【分析】(1)根据顶点为()2,M d ,利用()2222b b a -=-=⨯-求出8b =,再将()1,0A 代入解析式即可求出6c =-,即可得出函数表达式;(2)延长MC 交x 轴于点D ,由(1)知抛物线的解析式表达式为2286y x x =-+-,求出()2,2M ,再利用待定系数法求出直线MC 的解析式为3142y x =+,进而求出2,03D ⎛⎫- ⎪⎝⎭,则53AD =,利用两点间距离公式求出105,36DM CD ==,易证ACD MAD ∽ ,得到ACD MAD ∠=∠,由180ACD ACM MAD BAM ∠+∠=∠+∠=︒,即可证明ACM BAM ∠=∠;(3)过点D 作DG x ⊥轴,交x 轴于点G ,利用抛物线解析式求出()3,0B ,求出3,2OB AB ==,根据OE DG ∥,易证BDG BEO ∽ ,得到=BG BD DG OB BE OE =,由87BD DE =,即815BD BE =,求出85BG =,得到75OG =,即点D 的横坐标为75,由折叠的性质得到()2,2M '-,求出直线AM '的解析式为22y x =-+,进而求出74,55D ⎛⎫- ⎪⎝⎭,得到45DG =,利用三角形面积公式求出1425ABD S AB DG =⋅= ,则146255M BD ABM ABD M S S S AB y '''=-=⋅-= ,即可证明结论.【小问1详解】解: 该抛物线的顶点为()2,M d ,即该抛物线的对称轴为2x =,∴()2222b b x a =-=-=⨯-,∴8b =,将()1,0A 代入解析式228y x x c =-++,则028c =-++,∴6c =-,∴抛物线的解析式表达式为2286y x x =-+-;【小问2详解】证明:如图1,延长MC 交x 轴于点D ,由(1)知抛物线的解析式表达式为2286y x x =-+-,则2228262M y =-´+´-=,∴()2,2M ,点C 的坐标为10,2⎛⎫ ⎪⎝⎭,设直线MC 的解析式为()0y kx b k =+≠,则1222b k b⎧=⎪⎨⎪=+⎩,解得:1234b k ⎧=⎪⎪⎨⎪=⎪⎩∴直线MC 的解析式为3142y x =+,则31042D x =+,23D x ∴=-,∴2,03D ⎛⎫- ⎪⎝⎭,()1,0A ,∴53AD =,∴105,36DM CD ====,551136,1052233ADCD DMAD ==== ,∴ADCD DM AD=,ADM ADM ∠=∠ ,∴ACD MAD ∽ ,∴ACD MAD ∠=∠,180ACD ACM MAD BAM ∠+∠=∠+∠=︒,∴ACM BAM ∠=∠;小问3详解】解:过点D 作DG x ⊥轴,交x 轴于点G ,【令22860x x -+-=,即2430x x -+=,解得:121,3x x ==,根据题意得:()3,0B ,∴3,2OB AB ==,DG x ⊥轴,OE x ⊥轴,∴OE DG ∥,∴BDG BEO ∽ ,∴=BG BD DG OB BE OE=, 87BD DE =,即815BD BE =,∴88155BG OB ==,∴75OG =,∴点D 的横坐标为75,由折叠的性质得到()2,2M '-,设直线AM '的解析式为()0y mx n m =+≠,则220m n m n -=+⎧⎨=+⎩,解得:22m n =-⎧⎨=⎩,∴直线AM '的解析式为22y x =-+,742255D y ∴=-⨯+=-,∴74,55D ⎛⎫- ⎪⎝⎭,∴45DG =,∴1425ABD S AB DG =⋅= ,∴146255M BD ABM ABD M S S S AB y '''=-=⋅-= ,∴4123355ABDS =⨯=△,6122255M BD S '=⨯=△,∴32ABD M BD S S '=△△.【点睛】本题考查二次函数综合问题,涉及二次函数的性质,二次函数解析式,一次函数的解析式,折叠的性质,二次函数与三角形相似的综合问题,二次函数与面积综合问题,正确作出辅助线构造三角形相似是解题的关键.。
2023年内蒙古呼和浩特市中考语文真题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分。
考试时间150分钟。
一、积累与运用(25分)全国青少年读书活动已启动,中华大地书香飘溢。
学校团委举行“少年正是读书时”主题活动,让我们一起参与吧。
【读书·宣传】1.宣传组为学校微信公众号写了一段推文,请你按要求完成任务。
在卷帙浩繁的书海中,我们借助书籍跨越时空与先贤对话,同赏美景,互诉zhōnɡ情。
你无法到达的地方,书籍载.你前往。
你可以在钱塘湖“①,②”禽鸟争树筑巢的景象中感受江南早春的勃勃生机(白居易《钱塘湖春行》);你可以在“荡胸生曾云,③”中体悟泰山的雄伟壮丽和震撼人心的力量(杜甫《望岳》);你也可以在“忽如一夜春风来,④”中欣赏边塞奇丽壮美的雪景(岑参《白雪歌送武判官归京》)。
从江南到塞北,祖国风光美如画。
你无法经历的人生,书籍带你体验。
你与(作者甲)同行,“斯是陋室,⑤”,文人雅士高尚情操的芬芳馥郁浸染了你(《陋室铭》);你与王勃同送友,“海内存知己,⑥”让你体会到一扫离别愁云的乐观(《送杜少府之任蜀州》);你与苏轼同出猎,“⑦。
鬓微霜,又何妨!”,东坡胸宽胆壮的疏狂令你钦叹(《江城子·密州出猎》)。
从雅致情趣到壮怀胸jīn,先贤情怀感人心。
一本书就是一个世界,一次阅读就是一趟心灵之旅。
阅读对一个人成长的作用乙(不用说就能明白)。
青少年正处在成长的关键时期,只有多读书、读好书、善读书才能帮助我们扩大知识面,陶冶.情操,提升能力,为未来的精彩人生打下坚实的基础。
(1)请根据拼音写出汉字,并给文中加点字注音。
(2)请在甲处填出作者,请根据括号内的解释在乙处填出相应的成语。
(3)请根据语境用正楷填写文中空缺的古诗文。
【读书·调查】2.信息组搜集了2023年4月中国新闻出版研究院发布的第二十次未成年人图书阅读量调查统计表。
呼和浩特市中考语文试题及答案(word版)内容预览:内蒙古呼和浩特市中考语文试卷(本试卷满分120分,考试时间l50分钟)一、积累和运用(15分)阅读下面文字,完成1、2题。
(5分)踏着晨光,走进了渴望已久的鲁迅故居——百草园。
刚刚接受过肃杀的冰雪,百草园内却依然一片苍翠葱笼。
随风摇曳的竹子,在初生的阳光下,洒落一片淡淡的影子;鲁迅先生儿时摘桑葚吃的老桑树,虽然枝干上被风刀霜箭镂刻得瘢痂交错,但仍然显得,生机勃勃。
1.上面一段话中有三个错别字,请你找出来并改正。
(3分)(1) 改为(2) 改为(3) 改为2.将下列词语依次填人文中横线处,最恰当的一项是( ) (2分)A.不管挺拔巍然 B.尽管挺拔巍然c.尽管苍劲傲然 D.不管苍劲傲然3.名著阅读。
(3分)天已经亮了,我没有向国王道贺就跑回家来。
因为虽然我建了一件奇功,可是说不定皇帝会对这样的行为感到愤慨,根据这个国家的法令,任何人不管他的名位怎样,如果在皇宫院内小便一律处死。
选段中的“我”是指。
“我建了一件奇功”,“我”建的一件奇功是。
4.默写。
(7分)(1)正入万山圈子里,。
(杨万里《过松源晨炊漆公店》) (1)树树皆秋色,。
(王绩《野望》)(3)此地一为别,。
,落日故人情。
(李白《送友人》)(4)大道之行也,天下为公,选贤与能,。
(《礼记?大道之行也》)(5)岑参《白雪歌送武判官归京》运用新奇的比喻,描写雪景的千古名句是:,。
二、综合性学习(8分)在“脚踏一方土”综合性学习活动中,同学们搜集到相关的材料。
请你按照要求完成5、6题。
(8分)5.下面是我国有关“土地”的诗歌和故事,阅读后从文化层面说说土地的象征意义。
(6分)[材料一] 假如我是一只鸟,我也应该用嘶哑的喉咙歌唱:这被暴风雨所打击着的土地,这永远汹涌着我们的悲愤的河流,这无止息地吹刮着的激怒的风,和那来自林间的无比温柔的黎明……——然后我死了,连羽毛也腐烂在土地里面。
为什么我的眼里常含泪水?因为我对这土地爱得深沉……(艾青《我爱这土地》)[材料二](重耳)去,过五鹿,饥而从野人乞食,野人盛土器中进之。
内蒙古赤峰市中考数学试卷一、选择题:每小题3分,共30分1.的倒数是()A.﹣B.C. D.﹣2.等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是()A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km25.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交7.一个长方体的三视图如图所示,则这个长方体的体积为()A.30 B.15 C.45 D.208.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π9.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.10.8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A.东风 B.百惠 C.两家一样 D.不能确定二、填空题:每小题3分,共18分11.分解因式:4x2﹣4xy+y2=.12.数据499,500,501,500的中位数是.13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是.14.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是(填序号)15.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.16.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.三、解答题:共102分17.计算:(﹣)﹣1+3tan30°﹣+(﹣1).18.化简:÷并任选一个你认为合理的正整数代入求值.19.在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)20.下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).慧慧116 124 130 126 121 127 126 122 125 123聪聪122 124 125 128 119 120 121 128 114 119回答下列问题:(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.21.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A 岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.23.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.24.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.25.如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P 点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)26.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.的倒数是()A.﹣B.C. D.﹣【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:的倒数是.故选:C.2.等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°【考点】等腰三角形的性质.【分析】由于等腰三角形的两底角相等,所以90°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.【解答】解:∵等腰三角形的两底角相等,∴两底角的和为180°﹣90°=90°,∴两个底角分别为45°,45°,故选B.3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【解答】解:平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.故选:B.4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是()A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km2【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:370000×=185000=1.85×105,故选D.5.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再找出组成的数是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中组成的数是偶数的结果数为4,所以组成的数是偶数的概率==.故选A.6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交【考点】平行线的判定.【分析】根据同旁内角互补,两直线平行即可求解.【解答】解:∵∠ABC=150°,∠BCD=30°,∴∠ABC+∠BCD=180°,∴AB∥DC.故选:C.7.一个长方体的三视图如图所示,则这个长方体的体积为()A.30 B.15 C.45 D.20【考点】由三视图判断几何体.【分析】易得该长方体长为3,宽为2,高为5,根据长方体的体积=长×宽×高列式计算即可求解.【解答】解:观察图形可知,该几何体为长3,宽2,高5的长方体,长方体的体积为3×2×5=30.故选:A.8.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π【考点】圆的认识.【分析】将下面阴影部分进行对称平移,根据半圆的面积公式列式计算即可求解.【解答】解:π×12×=π×1×=π.答:图中阴影部分的面积为π.故选:B.9.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】将一次函数解析式展开,可得出该函数图象与y轴交于负半轴,分析四个选项可知,只有C选项符合,由此即可得出结论.【解答】解:一次函数y=k(x﹣k)=kx﹣k2,∵k≠0,∴﹣k2<0,∴一次函数与y轴的交点在y轴负半轴.A、一次函数图象与y轴交点在y轴正半轴,A不正确;B、一次函数图象与y轴交点在y轴正半轴,B不正确;C、一次函数图象与y轴交点在y轴负半轴,C可以;D、一次函数图象与y轴交点在y轴正半轴,D不正确.故选C.10.8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A.东风 B.百惠 C.两家一样 D.不能确定【考点】一元一次方程的应用.【分析】分析:本题可以直接求出郝爱在两家书店购买学习用品或工具书的钱数,比较一下便可得到答案.【解答】解:依题意,若在东风书店购买,需花费:60+×50%=180(元),若在百惠书店购买,需花费:50+×60%=200(元).∵180<200∴郝爱同学在东风书店购买学习用品或工具书便宜.故选:A二、填空题:每小题3分,共18分11.分解因式:4x2﹣4xy+y2=(2x﹣y)2.【考点】因式分解-运用公式法.【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.【解答】解:4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.12.数据499,500,501,500的中位数是500.【考点】中位数.【分析】先将题中的数据按照从小到大的顺序排列,再根据中位数的概念解答即可.【解答】解:将该组数据按照从小到大的顺序排列为:499,500,500,501,可得改组数据的中位数为:=500,故答案为:500.13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是8cm.【考点】切线的性质.【分析】根据切线的性质以及垂径定理,在Rt△BOC中利用勾股定理求出BC,即可得出AB的长.【解答】解:∵AB是⊙O切线,∴OC⊥AB,∴AC=BC,在Rt△BOC中,∵∠BCO=90°,OB=5,OC=3,∴BC==4(cm),∴AB=2BC=8cm.故答案为:8cm.14.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是①②③④(填序号)【考点】轴对称图形.【分析】结合图象根据轴对称图形的概念解答即可.【解答】解:根据轴对称图形的概念,可得出①②③④均为轴对称图形.故答案为:①②③④.15.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于或cm.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】如图,作DH∥MN,先证明△ADH≌△BAE推出MN⊥AE,在RT△AFM中求出AM即可,再根据对称性求出AM′,由此即可解决问题.【解答】解:如图,作DH∥MN,∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠B=90°,AB∥CD,∴四边形DHMN是平行四边形,∴DH=MN=AE,在RT△ADH和RT△BAE中,,∴△ADH≌△BAE,∴∠ADH=∠BAE,∴∠ADH+∠AHD=∠ADH+∠AMN=90°,∴∠BAE+∠AMN=90°,∴∠AFM=90°,在RT△ABE中,∵∠B=90°,AB=,∠BAE=30°,∴AE•cos30°=AB,∴AE=2,在RT△AFM中,∵∠AFM=90°,AF=1,∠FAM=30°,∴AM•cos30°=AF,∴AM=,根据对称性当M′N′=AE时,BM′=,AM′故答案为或.16.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.【考点】一元一次方程的应用.【分析】直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.【解答】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.三、解答题:共102分17.计算:(﹣)﹣1+3tan30°﹣+(﹣1).【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)的值是多少即可.【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)=﹣3+3×﹣3+1=﹣3+﹣3+1=﹣2﹣218.化简:÷并任选一个你认为合理的正整数代入求值.【考点】分式的化简求值.【分析】根据分式的除法法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=÷=×=﹣,当a=1时,原式=﹣19.在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)【考点】作图—复杂作图.【分析】(1)直接利用坐标系结合圆心的位置以及半径长画出圆即可;(2)直接利用坐标系结合圆心的位置以及半径长画出半圆即可;(3)直接利用坐标系结合圆心的位置以及半径长画出圆即可;(4)直接利用坐标系结合圆心的位置以及半径长画出半圆即可.【解答】解:(1)如图所示:⊙O,即为所求;(2)如图所示:半圆O1,即为所求;(3)如图所示:⊙O2,⊙O3,即为所求;(4)如图所示:半圆O2,半圆O3,即为所求.20.下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).慧慧116 124 130 126 121 127 126 122 125 123聪聪122 124 125 128 119 120 121 128 114 119回答下列问题:(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.【考点】列表法与树状图法;算术平均数;方差.【分析】(1)把慧慧和聪聪的成绩都减去125,然后计算她们的平均成绩;(2)根据方差公式计算两组数据的方差;(3)根据平均数的大小和方差的意义进行判断;(4)画树状图展示所有6种等可能的结果数,再找出两名学生分别在初三•二班和初三•三班的结果数,然后根据概率公式计算.【解答】解:(1)慧慧的平均分数=125+(﹣9﹣1+5+1+6+2+1﹣3+0﹣2)=125(分),聪聪的平均分数=125+(﹣3﹣1+0+3﹣6﹣5+6+3﹣11﹣6)=123(分);(2)慧慧成绩的方差S2= [92+12+52+12+42+22+12+32+02+22]=14.2,聪聪成绩的方差S2= [12+12+22+52+42+32+82+52+92+42]=24.2,(3)根据(1)可知慧慧的平均成绩要好于聪聪,根据(2)可知慧慧的方差小于聪聪的方差,因为方差越小越稳定,所以慧慧的成绩比聪聪的稳定,因此选慧慧参加全国数学竞赛更合适一些.(4)画树状图为:共有6种等可能的结果数,其中两名学生分别在初三•二班和初三•三班的结果数为2,所以两名学生分别在初三•二班和初三•三班的概率==.21.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A 岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)【考点】解直角三角形的应用-方向角问题.【分析】过点B作BD⊥AC于点D,由等腰直角三角形的性质求出AD的长,再由直角三角形的性质即可得出结论.【解答】解:由题意知:∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里;过B点作BD⊥AC于点D,∵∠BAC=45°,∴△BAD为等腰直角三角形;∴BD=AD=50,∠ABD=45°;∴∠CBD=180°﹣30°﹣45°﹣45°=60°,∴∠C=30°;∴在Rt△BCD中BC=100≈141海里,CD=50,∴AC=AD+CD=50+50≈193海里.22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【考点】一元二次方程的应用.【分析】(1)设条纹的宽度为x米,根据等量关系:配色条纹所占面积=整个地毯面积的,列出方程求解即可;(2)根据总价=单价×数量,可分别求出地毯配色条纹和其余部分的钱数,再相加即可求解.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.23.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.【考点】圆的综合题.【分析】(1)先利用勾股定理计算出AB=10,再利用圆周角定理的推理可判断AB为⊙P的直径,则得到⊙P的半径是5,然后利用线段的中点坐标公式得到P点坐标;(2)根据圆周角定理由=,∠OAM=∠MAB,于是可判断AM为∠OAB的平分线;(3)连接PM交OB于点Q,如图,先利用垂径定理的推论得到PM⊥OB,BQ=OQ=OB=4,再利用勾股定理计算出PQ=3,则MQ=2,于是可写出M点坐标,接着证明MQ为△BON 的中位线得到ON=2MQ=4,然后写出N点的坐标.【解答】解:(1)∵O(0,0),A(0,﹣6),B(8,0),∴OA=6,OB=8,∴AB==10,∵∠AOB=90°,∴AB为⊙P的直径,∴⊙P的半径是5∵点P为AB的中点,∴P(4,﹣3);(2)∵M点是劣弧OB的中点,∴=,∴∠OAM=∠MAB,∴AM为∠OAB的平分线;(3)连接PM交OB于点Q,如图,∵=,∴PM⊥OB,BQ=OQ=OB=4,在Rt△PBQ中,PQ===3,∴MQ=2,∴M点的坐标为(4,2);∵MQ∥ON,而OQ=BQ,∴MQ为△BON的中位线,∴ON=2MQ=4,∴N点的坐标为(0,4).24.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上列出m和k 的一元一次方程,求出k和m的值即可;联立两函数解析式,求出交点坐标;(2)设C点的坐标为(0,y c),求出点M的坐标,再根据△ABC的面积为10,知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,求出y C的值即可.【解答】解:(1)∵点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上;∴2=,2=k(3﹣2),解得m=6,k=2;∴反比例函数解析式为y=,和一次函数解析式为y=2x﹣4;∵点B是一次函数与反比例函数的另一个交点,∴=2x﹣4,解得x1=3,x2=﹣1;∴B点的坐标为(﹣1,6);(2)∵点M是一次函数y=2x﹣4与y轴的交点,∴点M的坐标为(0,﹣4),设C点的坐标为(0,y c),由题意知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,解得|y c+4|=5,当y c+4≥0时,y c+4=5,解得Yc=1,当y c+4≤0时,y c+4=﹣5,解得Yc=﹣9,∴点C的坐标为(0,1)或(0,﹣9).25.如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P 点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)【考点】相似形综合题.【分析】(1)根据正方形的性质和相似三角形的判定和性质证明即可;(2)根据全等三角形的判定和性质,利用勾股定理解答即可;(3)根据相似三角形的性质得出函数解析式即可.【解答】(1)证明:∵四边形ABCD为正方形;∴∠BAP+∠QAE=∠B=90°,∵QE⊥AP;∴∠QAE+∠EQA=∠AEQ=90°∴∠BAP=∠EQA,∠B=∠AEQ;∴△ABP∽△QEA(AA)(2)∵△ABP≌△QEA;∴AP=AQ(全等三角形的对应边相等);在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2即32+t2=(2t)2解得t1=,t2=﹣(不符合题意,舍去)答:当t取时△ABP与△QEA全等.(3)由(1)知△ABP∽△QEA;∴=()2∴=()2整理得:y=.26.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.【考点】二次函数综合题.【分析】(1)利用抛物线和x轴的两个交点坐标,设出抛物线的解析式y=a(x﹣x1)(x﹣x2),代入即可得出抛物线的解析式,再设出直线AC的解析式,利用待定系数法即可得出答案;(2)先求得抛物线的顶点D的坐标,再设点P坐标(0,P y),根据A,B,D三点在⊙P 上,得PB=PD,列出关于P y的方程,求解即可得出P点的坐标;(3)假设抛物线上存在这样的点Q使直线AQ与⊙P相切,设Q点的坐标为(m,m2﹣4),根据平面内两点间的距离公式,即可得出关于m的方程,求出m的值,即可得出点Q的坐标.【解答】解:(1)∵A(﹣2,0),B(2,0);∴设二次函数的解析式为y=a(x﹣2)(x+2)…①,把C(3,5)代入①得a=1;∴二次函数的解析式为:y=x2﹣4;设一次函数的解析式为:y=kx+b(k≠0)…②把A(﹣2,0),C(3,5)代入②得,解得,∴一次函数的解析式为:y=x+2;(2)设P点的坐标为(0,P y),由(1)知D点的坐标为(0,﹣4);∵A,B,D三点在⊙P上;∴PB=PD;∴22+P y2=(﹣4﹣P y)2,解得:P y=﹣;∴P点的坐标为(0,﹣);(3)在抛物线上存在这样的点Q使直线AQ与⊙P相切.理由如下:设Q点的坐标为(m,m2﹣4);根据平面内两点间的距离公式得:AQ2=(m+2)2+(m2﹣4)2,PQ2=m2+(m2﹣4+)2;∵AP=,∴AP2=;∵直线AQ是⊙P的切线,∴AP⊥AQ;∴PQ2=AP2+AQ2,即:m2+(m2﹣4+)2=+[(m+2)2+(m2﹣4)2]解得:m1=,m2=﹣2(与A点重合,舍去)∴Q点的坐标为(,).8月10日21 / 21。
内蒙中考试题及答案一、选择题(每题2分,共20分)1. 内蒙古的首府是:A. 呼和浩特B. 包头C. 鄂尔多斯D. 赤峰答案:A2. 内蒙古的面积在全国范围内排名第几?A. 第一B. 第二C. 第三D. 第四答案:B3. 内蒙古的简称是什么?A. 蒙B. 内C. 宁D. 吉答案:A4. 内蒙古的主要民族是:A. 汉族B. 蒙古族C. 回族D. 满族答案:B5. 内蒙古的气候类型是:A. 温带大陆性气候B. 亚热带季风气候C. 热带雨林气候D. 寒带气候答案:A6. 内蒙古的著名景点之一是:A. 呼伦贝尔大草原B. 张家界C. 九寨沟D. 故宫答案:A7. 内蒙古的著名特产是:A. 羊肉B. 茶叶C. 瓷器D. 丝绸答案:A8. 内蒙古的著名历史人物是:A. 成吉思汗B. 孔子C. 李白D. 诸葛亮答案:A9. 内蒙古的著名节日是:A. 那达慕大会B. 春节C. 泼水节D. 中秋节答案:A10. 内蒙古的著名矿产资源是:A. 煤炭B. 石油C. 天然气D. 铁矿答案:A二、填空题(每空1分,共10分)1. 内蒙古的省会城市是______。
答案:呼和浩特2. 内蒙古的地理位置位于中国的______。
答案:北部3. 内蒙古的气候特点是______。
答案:干旱少雨4. 内蒙古的人口数量约为______。
答案:2500万5. 内蒙古的著名历史事件是______。
答案:成吉思汗统一蒙古高原三、简答题(每题5分,共10分)1. 请简述内蒙古的地理特点。
答案:内蒙古位于中国北部,东经97°23′至126°04′,北纬37°24′至53°23′之间,是中国面积第三大的省级行政区,地势由东北向西南倾斜,地形以高原、山地、盆地为主。
2. 请简述内蒙古的经济发展情况。
答案:内蒙古经济以农牧业为基础,工业以煤炭、石油、天然气等矿产资源开发为主,近年来,内蒙古积极发展现代服务业和高新技术产业,经济结构不断优化,经济增长速度保持在全国前列。
2023年初中学业水平考试试卷英语第一部分听力(共两节,20分)听录音,根据各题要求选择最佳答案,并将答题卡上对应题目的答案标号涂黑。
每项内容读两遍。
第一节(共5小题;每小题1分,共5分)听下面5段对话,根据你听到的内容选出相应的图片。
1. ______2. ______3. ______4. ______5. ______第二节(共15小题;每小题1分,共15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
听第6段材料,回答第6至8题。
6. Which room will David clean first?A. The bathroom.B. The bedroom.C. The living room.7. Who will clean the kitchen?A. David.B. Grandma.C. Nobody.8. What can be found on the table?A. Some strawberries.B. Some bananas.C. Some apples.听第7段材料,回答第9至11题。
9. Where does the woman want to go?A. The art museum.B. The science museum.C. The history museum.10. How long will it take the woman to walk there?A. About 30 minutes.B. About 25 minutes.C. About 15 minutes.11. How will the woman go there?A. By bus.B. By train.C. By subway.听第8段材料,回答第12至14题。
内蒙中考试题及答案一、选择题(每题2分,共20分)1. 内蒙古的首府是以下哪个城市?A. 呼和浩特B. 包头C. 鄂尔多斯D. 赤峰答案:A2. 内蒙古是中国的哪个少数民族自治区?A. 藏族B. 维吾尔族C. 蒙古族D. 壮族答案:C3. 内蒙古的草原面积占全区总面积的多少?A. 50%B. 70%C. 90%D. 30%答案:B4. 内蒙古的哪个地方是著名的“天池”?A. 阿尔山B. 呼伦贝尔C. 锡林郭勒D. 乌兰布统答案:A5. 内蒙古的哪个节日被誉为“草原上的奥林匹克”?A. 那达慕大会B. 春节C. 端午节D. 中秋节答案:A6. 内蒙古的哪个地方是中国最大的沙漠?A. 塔克拉玛干沙漠B. 巴丹吉林沙漠C. 腾格里沙漠D. 库布齐沙漠答案:B7. 内蒙古的哪个地方是著名的“草原三宝”之一?A. 马奶酒B. 羊绒C. 蒙古包D. 马头琴答案:B8. 内蒙古的哪个地方是中国最大的草原?A. 呼伦贝尔草原B. 锡林郭勒草原C. 乌兰布统草原D. 阿尔山草原答案:A9. 内蒙古的哪个地方是中国最大的内陆湖?A. 青海湖B. 鄱阳湖C. 呼伦湖D. 太湖答案:C10. 内蒙古的哪个地方是中国最大的沙漠湖泊?A. 巴音布鲁克湖B. 呼伦湖C. 腾格里湖D. 库布齐湖答案:B二、填空题(每空1分,共10分)11. 内蒙古是中国的五个少数民族自治区之一,其简称是“____”。
答案:内蒙古12. 内蒙古的首府呼和浩特,意为“____”。
答案:青城13. 内蒙古的草原面积广阔,其中最著名的是“____”。
答案:呼伦贝尔草原14. 内蒙古的蒙古族是中国的少数民族之一,他们的主要节日是“____”。
答案:那达慕大会15. 内蒙古的马头琴是蒙古族的传统乐器,被誉为“____”。
答案:草原上的小提琴三、简答题(每题5分,共20分)16. 请简述内蒙古的地理位置和气候特点。
答案:内蒙古位于中国北部,东起大兴安岭,西至贺兰山,南界长城,北与俄罗斯、蒙古国接壤。
:2016年内蒙古中考试题及答案汇总-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)第二讲:秦汉必考文学常识梳理第三讲:魏晋南北朝必考文学常识梳理第四讲:宋代文学常识梳理(上)第五讲:宋代文学常识梳理(下)第六讲:明清文学常识梳理课程特色:帮助同学了解每位作者的其人其文;使原本空洞的文学常识,变得鲜活起来。
本课程将逐篇梳理重点作家作品,每节课都安排诗歌讲解分析。
适合学员希望全面掌握文学常识的中学生赠送课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群适合人群:·初一年级同步学生·学习人教版的学生·程度较好,希望进一步提升、冲刺满分的学生·中上等水平学生,冲刺竞赛的学生课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先;·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法;·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群。
适合人群:·初一年级同步学生·学习北师版的学生·程度较好,希望进一步提升、冲刺满分的学生·希望能够2.5年学完中考相关知识,在期中期末考试、中考确保基础、中等题不失分的同时尽可能在难题多拿分的同学。
·提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群:·初一年级同步学生·预习过基础知识的学生·程度较好,希望进一步提升、冲刺满分的学生·适合中上等水平学生,冲刺竞赛的学生。
课程目标:·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法。
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群:·初一年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师版版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生全国各版本初一学生。
如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:学习初一的你:是不是计算经常出现问题?掉数字、掉字母、去括号不变号……是不是看到应用题就犯怵,不知未知数该设什么?如何列等式?是不是看到几何问题就犯晕?德智课程帮助你:1.计算题一步一步细致讲解,指出计算的出错点。
教你理解和熟记运算法则,不仅仅会用,还知道如何用!2.大段文字找关键词,教你如何找到题中的数量关系,用什么建立相等的条件,加强你的建模思想的认识!3.反复进行“几何模型→图形→文字→符号”的练习,让你对几何语言不在陌生!学习效果:(1)重点知识的再次学习,加深理解与记忆。
(2)对运算法则更加灵活运用,掌握计算技巧、简便解决问题。
(3)逐步形成几何语言的组织运用和理解能力,为之后的几何学习打下坚实基础。
(4)方程思想,分类讨论思想等数学重要思想的入门学习。
全国各版本初一年级学生如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:刚升入初一的你们:是不是还沉浸在小学语文学习的内容?是不是对于初中的语文学习一头雾水、茫然无措?是不是渴望找到一种方法能够打牢初中语文学习基础、实现小学到初中的课程衔接?是不是希望摆脱小学灌输式的枯燥无味的学习方式,渴望养成良好的学习习惯?我们的课程特色:初一上学期的语文课程宗旨是:立足基础,科学提升,培养能力。