数理统计统计量及其分布
- 格式:ppt
- 大小:1.16 MB
- 文档页数:10
数理统计基础公式详解样本统计量与抽样分布数理统计作为一门重要的学科,为我们分析和理解数据提供了基础和方法。
在数理统计中,样本统计量和抽样分布是两个关键概念。
本文将详细解释这些概念,并介绍相关的公式和定理。
一、样本统计量样本统计量是从数据样本中计算得到的数值,用于描述总体的特征。
常用的样本统计量有平均值、方差、标准差、相关系数等。
下面我们将详细介绍这些统计量以及它们的计算公式。
1. 平均值平均值是一组数据的总和除以观测数量,用于衡量数据的集中趋势。
样本平均值的计算公式如下:\[ \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \]其中,\( \overline{x} \) 表示样本平均值,\( x_i \) 表示第 i 个观测值,n 表示观测数量。
2. 方差方差衡量了一组数据的离散程度,它表示各观测值与平均值之差的平方和的平均值。
样本方差的计算公式如下:\[ S^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} \]其中,\( S^2 \) 表示样本方差,\( x_i \) 表示第 i 个观测值,\( \overline{x} \) 表示样本平均值,n 表示观测数量。
3. 标准差标准差是方差的平方根,用于衡量数据的离散程度。
样本标准差的计算公式如下:\[ S = \sqrt{S^2} \]其中,S 表示样本标准差,\( S^2 \) 表示样本方差。
4. 相关系数相关系数衡量了两个变量之间的线性关系的强弱和方向。
样本相关系数的计算公式如下:\[ r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i -\overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} \]其中,r 表示样本相关系数,\( x_i \) 和 \( y_i \) 分别表示第 i 个观测值的两个变量,\( \overline{x} \) 和 \( \overline{y} \) 分别表示两个变量的样本平均值,n 表示观测数量。
数理统计知识小结------缪晓丹 20114041056第五章 统计量及其分布§5.1总体与样本一、 总体与样本在一个统计问题中,把研究对象的全体称为总体,构成总体的每个成员称为个体。
对于实际问题,总体中的个体是一些实在的人或物。
这样,抛开实际背景,总体就是一堆数,这堆数中有大有小,有的出现机会多,有的出现机会小,因此用一个概率分布去描述和归纳总体是合适的,从这个意义上说:总体就是一个分布,而其数量指标就是服从这个分布的随机变量。
例5.1.1考察某厂的产品质量,将其产品分为合格品和不合格品,并以0记合格品,以1记不格品,若以p 表示不合格品率,则各总体可用一个二点分布表示:不同的p 反映了总体间的差异。
在有些问题中,我们对每一研究对象可能要观测两个或更多个指标,此时可用多维随机向量及其联合分布来描述总体。
这种总体称为多维总体。
若总体中的个体数是有限的,此总体称为有限总体;否则称为无限总体。
实际中总体中的个体数大多是有限的,当个体数充分大时,将有限总体看作无限总体是一种合理抽象。
二、样本与简单随机样本 1、样本为了了解总体的分布,从总体中随机地抽取n 个个体,记其指标值为 n x x x ,,,21 , 则n x x x ,,,21 称为总体的一个样本,n 称为样本容量或简称为样本量,样本中的个体称为样品。
当30 n 时,称n x x x ,,,21 为大样本,否则为小样本。
首先指出,样本具有所谓的二重性:一方面,由于样本是从总体中随机抽取的,抽取前无法预知它们的数值,因此样本是随机变量,用大写字母 n X X X ,,,21 表示;另一方面,样本在抽取以后经观测就有确定的观测值,因此样本又是一组数值,此时用小写字母n x x x ,,,21 表示。
简单起见,无论是样本还是其观测值,本书中均用n x x x ,,,21 表示,从上下文我们能加以区别。
每个样本观测值都能测到一个具体的数值,则称该样本为完全样本,若样本观测值没有具体的数值,只有一个范围,则称这样的样本为分组样本。
高等教育自学考试辅导《概率论与数理统计(经管类)》第二部分数理统计部分专题一统计量及抽样的分布I.考点分析近几年试题的考点分布和分数分布II.内容总结一、总体与样本1.总体:所考察对象的全体称为总体;组成总体的每个基本元素称为个体。
2.样本:从总体中随机抽取n个个体x1,x2…,x n称为总体的一个样本,个数n称为样本容量。
3.简单随机样本如果总体X的样本x1,x2…,x n满足:(1)x1与X有相同分布,i=1,2,…,n;(2)x1,x2…,x n相互独立,则称该样本为简单随机样本,简称样本。
得到简单随机样本的方法称为简单随机抽样方法。
4.样本的分布(1)联合分布函数:设总体X的分布函数为F(x),x1,x2…,x n为该总体的一个样本,则联合分布函数为二、统计量及其分布1.统计量、抽样分布:设x1,x2…,x n为取自某总体的样本,若样本函数T=T(x1,x2…,x n)不含任何未知参数,则称T为统计量;统计量的分布称为抽样分布。
2.样本的数字特征及其抽样分布:设x1,x2…,x n为取自某总体X的样本,(2)样本均值的性质:①若称样本的数据与样本均值的差为偏差,则样本偏差之和为零,即②偏差平方和最小,即对任意常数C,函数时取得最小值. (5)样本矩(7)正态分布的抽样分布A.应用于小样本的三种统计量的分布的为自由度为n的X2分布的α分位点.求法:反查X 2分布表.III.典型例题[答疑编号918020101]答案:D[答疑编号918020102]答案:[答疑编号918020103]答案:B[答疑编号918020104]答案:1[答疑编号918020105]答案:B[答疑编号918020106]故填20.[答疑编号918020107]解析:[答疑编号918020108]答案:解析:本题考核正态分布的叠加原理和x2-分布的概念。
根据课本P82,例题3-28的结果,若X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y~N(0+0,1+1)=N(0,2)。
计算题、证明题1. 设(x 1,2x ,…,n x )及(1u ,2u ,…,n u )为两组子样观测值,它们有如下关系i u =ba x i -(a b,0≠都为常数)求子样平均值u 与x ,子样方差2u s 与2xs 之间的关系. 解: b ax a x n b b a x n u i nn u i i i-=⎪⎭⎫ ⎝⎛-=-===∑1121121 ().11122222x i i us bb a x b a x n u u n S =⎪⎭⎫ ⎝⎛---∑=-∑= 2. 若子样观测值1x ,2x ,…,m x 的频数分别为1n ,2n ,…,m n ,试写出计算子样平均值x 和子样方差2n s 的公式 (这里n =1n +2n +…+m n ).解: ∑∑∑======m j m j jj j jm j j j x f x n n x n n x 1111()()()221221x x f x x n n x x n n S j j j j m j j j n-=-=-=∑∑∑= 其中nn f j j =,m j ,,2,1Λ=是j x 出现的频率。
3.利用契贝晓夫不等式求钱币需抛多少次才能使子样均值ξ落在0.4到0.6之间的概率至少为0.9 ? 如何才能更精确的计算使概率接近0.9所需抛的次数 ? 是多少? 解: 设需抛钱币n 次,第i 次抛钱币结果为n i i i i ,,2,101Λ=⎩⎨⎧=次抛出反面第次抛出正面第ξ, 则iξ独立同分布.且有分布()1,0,21===x x Piξ 从而41,21==i i D E ξξ。
设∑=i nξξ1是子样均值.则nD E 41,21==ξξ. 由契贝晓夫不等式()()()().9.0410011.011.01.05.01.06.04.02=-=-≥<-=<-<-=<<nD E P P P ξξξξξ2504.0100==∴n , 即需抛250次钱币可保证()9.06.04.0≥<<εP 为更精确计算n 值,可利用中心极限定理()()..9.012.02415.06.0415.0415.04.06.04.0≥-Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛-<-<-=<<n n n n P P ξξ645.12.0≥∴n 68≥∴n . 其中()x Φ是()1,0N 的分布函数.4. 若一母体ξ的方差2σ= 4, 而ξ是容量为100的子样的均值. 分别利用契夫晓夫不等式和极限定理求出一个界限, 使得ξ-μ (μ为母体ξ的数学期望E ξ) 夹在这界线之间的概率为0.9.解:设此界限为.ε由()9.012=-≥<-εξεμξDP由此.6325.04.0.10041.022≈=∴===εσξεnD 由中心极限定理,().9.012=-⎪⎪⎭⎫⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛<-=<-ξεξεξμξεμξD D D P P.645.1.95.0=∴=⎪⎪⎭⎫⎝⎛ΦξεξεD D .329.01004645.1=⨯=ε 5.假定1ξ和2ξ分别是取自正态母体N (μ,2σ)的容量为n 的两个子样(n 11211,,,ξξξΛ),和(n 22221,,,ξξξΛ)的均值,确定n 使得两个子样均值之差超过σ的概率大约为0.01.解: ⎪⎪⎭⎫ ⎝⎛n N i 2,~σμξ .2,1=i 且相互独立.,所以⎪⎪⎭⎫⎝⎛-n N 2212,0~σξξ于是()01.021222222121=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛Φ-=⎪⎪⎪⎪⎪⎭⎫⎝⎛>-=>-n n n P P σσσξξσξξ .005.02=⎪⎪⎭⎫⎝⎛-Φ∴n .258.2⨯=n .14=n 6.设母体ξ~N(μ,4 ),(n ξξξ,,,21Λ)是取自此母体的一个子样, ξ为子样均值,试问:子样容量n应取多大,才能使 (1) E (μξ-2)1.0≤;(2) E (μξ-)1.0≤; (3) P (μξ-1.0≤)95.0≥.解: (1)().401.04.1.042=≥∴≤==-n n D Eξμξ(2)()dx e x nE nx 422221μμπμξ--∞+∞--=-⎰=.1.0242262≤=-∞∞-⎰ndu e nπμπμ .255≥∴n(3)().95.021.021.0≥⎪⎪⎭⎫⎝⎛≤-=≤-n n P P μεμε.96.121.0≥n 1537≥n .7. 设母体()p b ,1~ξ(两点分布), (n ξξξ,,,21Λ)是取自此母体的一个子样, ξ为子样均值,若P =0.2,子样容量n 应取多大,才能使(1)P()1.0≤-p ξ;75.0≥ (2)E (丨p -ξ丨2).01.0≤若P ()1.0∈为未知数,则对每个p ,子样容量n 应取多大才能使E (丨p -ξ丨2).01.0≤解: (1) 要()().75.03.01.01.02.0≥≤≤=≤-ξξP P当n10=时,∑=ni i 1ξ服从二项项分布().2.0,10,k b 查二项分布表知().75.07717.01074.08791.0313.01.0101>=-=⎪⎭⎫⎝⎛≤≤=≤≤∑=i i P P ξξ所以n 应取10.(2)()np p D P E -==1.ξξ当2.0=p 时 ().16.01.016.02≥∴≤==-n n D p E ξξ(3) 当P 未知时,()()01.012≤-==-np p D p E ξξ由此知, ()p p n -≥1100, 要对一切()1,0∈p 此时均成立.只要求p 值使()p p -1最大, 显然当21=p , ()411=-p p 最大,.所以当2541100=⨯≥n 时,对一切p 的不等式均能成立.8 设母体ξ的k 阶原点矩和中心矩分别为k v =E ξk,k μ=E()k E ξξ-,k =1,2,3,4,k1ξ和k m 分别为容量n 的子样k 阶原点矩和中心矩, 求证:(1) E()31νξ-=23nμ; (2) E()41νξ-=223nμ+32243n μμ-.解:()()()()()1213113311313[11νξνξνξνξνξ--+-=⎥⎦⎤⎢⎣⎡-=-∑∑∑≠==j i j i n i i n i E n n E E ++()()()]111γξγξγξ---∑k j iE注意到n ξξξ,,,21Λ独立, 且()0111=-=-νννξi E .,,2,1n i Λ=所以().13231μνξn E=- ()()()()()()+--+--+-=-∑∑∑≠≠=2121131414144134[1νξνξνξνξνξνξj i ji j i j i i i E E n E()()()()()()()]111111216νξνξνξνξνξνξνξ----+---∑∑≠≠≠≠≠l k j ilk j i k j i kj i E E=().3313132242222443nn n n n n μμμμμ-+=-+ 9. 设母体ξ~N ()2,σμ,子样方差2nS =n1()21∑=-ni iξξ, 求E 2n S ,D 2n S 并证明当n 增大时,它们分别为2σ+⎪⎭⎫ ⎝⎛n 1ο和n 42σ+⎪⎭⎫⎝⎛n 1ο.解: 由于().1~222-n nS nχσ所以()()()121.1122-=--=-n n DX n n E χ⎪⎭⎫ ⎝⎛+=-=⎪⎪⎭⎫ ⎝⎛=∴2222222101n n n nS E n ES n nσσσσ().10212244222242⎪⎭⎫⎝⎛+=-=⎪⎪⎭⎫ ⎝⎛=n n n n nS D n DS n nσσσσ .10. 设()21,ξξ为取自正态母体ξ~N ()2,σμ的一个子样, 试证: ξ1+ξ2, ξ1-ξ2是相互独立的. 证:()()()()()()()().,cov 21212221212121212121ξξξξξξξξξξξξξξξξξξ-+--=-+--+=-+E E E E E E E由于ξ1, ξ2~N()2,σμ, 所以. E 212221,ξξξξE E E ==即()0,cov2121=-+ξξξξ 又()2212,2~σμξξN +Θ,().2.0~221σξξN -所以由两个变量不相关就推出它们独立.11.设母体ξ的分布函数为F()x ,()n ξξξ,,,21Λ是取自此母体的一个子样,若F ()x 的二阶矩存在,ξ为子样均值,试证ξ1--ξ与ξj --ξ的相关系数ρ=11--n ,j i ≠,.,,2,1,n j i Λ= 证 由于ξ的二阶矩存在,不妨设.μξ=E 2σξ=D()()()()()j i D E D ij i ij i ≠---=---=,,cov ξξξξξξξξξξξξρ()()().11111122222221σσξξξξξξn n n n n D n D n n n D D j ij in i i i i -=-+-=+-=⎪⎭⎫ ⎝⎛-=-∑∑≠=()()n E n E E E E E n j j i j i j i j i 221222σμξξμξξξξξξξξξξξ++⎪⎪⎭⎫ ⎝⎛-=+--=--∑=()[]n n n n E E E n n j i i j i 22222222212222σμσμσμξξξσμ-=-++-+=⎪⎪⎭⎫ ⎝⎛+-+=∑≠.11122--=--=∴n nn n σσρ12. 设ξ和2n S 分别是子样()n ξξξ,,,21Λ的子样均值和子样方差,现又获得第n +1个观测值,试证: (1)ξn+1=ξn +11+n (ξn+1-ξn );(2)12+n S =()⎥⎦⎤⎢⎣⎡-++++212111n n n n S n n ξξ. 证 (1)()()n n n n n n i i n n n n n ξξξξξξξ-++=++=+=+++=+∑11111111111()()()()2111211121112111111111)2(⎥⎦⎤⎢⎣⎡-+--+=-+-+=-+=++-++-++-+∑∑∑n n n i n i n n n i n i n i n i n n n n n S ξξξξξξξξξξ()()()()()()()21211121211112{11nn n n n n n i n i n n n i ni n n n n ξξξξξξξξξξξξ-+++-⨯⎥⎦⎤⎢⎣⎡-+-+--+-+=+++-+-∑∑=()().112122n n n n n S n n ξξ-++++ 13. 从装有一个白球、两个黑球的罐子里有放回地取球, 令ξ=0表示取到白球, ξ=1表示取到黑球.求容量为5的子样()51,,ξξΛ的和的分布,并求子样均值ξ和子样方差2n S 的期望值.解:i ξ相互独立都服从二点分布,32;1⎪⎭⎫⎝⎛b E i ξ=.32 D .92=i ξ 5,2,1Λ=i所以,32=ξE .4589212=⨯-=n n ES n 521ξξξη+++=Λ服从二项分布.32;5⎪⎭⎫⎝⎛b 其分布列().313255kk k k p -⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==η.5,2,1,0Λ=k14. 设母体ξ服从参数为λ的普哇松分布, ()n ξξξ,,,21Λ 是取自此母体的一个子样,求: (1)子样的联合概率分布列:(2)子样均值ξ的分布列、E ξ、D ξ、和E 2n S 。
一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。
例如,样本均值、样本方差等。
1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。
例如,正态分布、t分布等。
二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。
例如,用样本均值来估计总体均值。
2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。
例如,置信区间。
三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。
3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。
四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。
4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。
4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。
六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。
6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。
讲解标准正态分布表的使用方法。
6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。
七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。
解释t 分布与正态分布的关系。
7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。
讲解自由度对t 分布形状的影响。
7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。