磁场边界问题复习
- 格式:ppt
- 大小:7.99 MB
- 文档页数:23
2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。
考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。
离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。
已知离子比荷为k ,不计重力。
若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
V 0θθ V 0ABθ V 0 AV 0图1图2 图3 带电粒子在匀强磁场中作圆周运动的分析方法一.找圆心、画轨迹、找角度。
数学模型:(1)已知圆的两条切线,作它们垂线,交点为O ,即为圆心。
(2)已知圆的一条切线,和过圆上的另一点B ,作过圆切线的垂线,再作弦的中垂线。
交点即为圆心O 。
(3)偏向角补角的平分线,与另一条半径的交点直线边界磁场例1.找到下面题中粒子的圆心,画出轨迹。
求从左边界或右边界射出时与竖直方向夹角φ以及粒子在磁场中经历的时间。
(第3图作出粒子刚好不从右侧穿出磁场)练1:已知B 、+q 、m 、θ、d 、a 、V 0。
求从左边界穿出时经历的时间。
(1)刚好不从上边界穿出 (2)刚好不从下边界穿出 (3)能从左边界穿出。
练3.如图所示,在水平直线MN 上方有一匀强磁场,磁感强度为B ,方向垂直向里。
一带电粒子质量为m 、电量为q ,从a 点以与水平线MN 成θ角度射入匀强磁场中,从右侧b 点离开磁场。
问: (1)带电粒子带何种电荷?(2)带电粒子在磁场中运动的时间为多少?A B COV 0V 0φ练习.1.AB、CD、EF为三条平行的边界线,AB、CD、相距L1,CD、EF相距L2,如图所示,AB、CD之间有垂直纸面向里的匀强磁场,磁感强度为B1,CD、EF之间也有垂直纸面向里的匀强磁场,磁惹感强度为B2。
现从A点沿A方向垂直磁场射入一带负电的粒子,该粒子质量为m,带电量为-q,重力不计,求:(1)若粒子运动到CD边时速度方向恰好与CD边垂直,则它从A点射入时速度V0为多少?(2)若已知粒子从A点射入时速度为u(u>V0),则粒子运动到CD边界时,速度方向与CD边的夹角θ为多少?(3)若已知粒子从A点射入时速度为u(u>V0)粒子运动到EF边界时恰好不穿出磁场,则CD、EF之间磁场的磁感强度B2为多少?2.如图所示,M、N、P是三个足够长的互相平行的边界,M、N与N、P间距离分别为L1、L2,其间分别有磁感强度为B1、B2的匀强磁场区Ⅰ与区Ⅱ,磁场方向均垂直纸面向里。
2020年高考物理备考微专题精准突破 专题4.8 带电粒子在直线边界磁场中的运动问题【专题诠释】1.直线边界,粒子进出磁场具有对称性(如图所示)图a 中粒子在磁场中运动的时间t =T 2=πmBq图b 中粒子在磁场中运动的时间t =(1-θπ)T =(1-θπ)2πm Bq =2m (π-θ)Bq图c 中粒子在磁场中运动的时间t =θπT =2θmBq2.平行边界存在临界条件(如图所示)图a 中粒子在磁场中运动的时间t 1=θm Bq ,t 2=T 2=πmBq图b 中粒子在磁场中运动的时间t =θmBq图c 中粒子在磁场中运动的时间t =(1-θπ)T =(1-θπ)2πm Bq =2m (π-θ)Bq图d 中粒子在磁场中运动的时间t =θπT =2θmBq【高考领航】【2019·全国卷Ⅱ】如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外。
ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子。
已知电子的比荷为k 。
则从a 、d 两点射出的电子的速度大小分别为( )A.14kBl ,54kBlB.14kBl ,54kBlC.12kBl ,54kBlD.12kBl ,54kBl 【答案】 B【解析】 若电子从a 点射出,运动轨迹如图线①,有qv a B =m v 2aR a ,R a =l 4,解得v a =qBR a m =qBl 4m =kBl 4;若电子从d 点射出,运动轨迹如图线②,有qv d B =m v 2dR d ,R 2d =22⎪⎭⎫ ⎝⎛-l R d +l 2,解得R d =54l ,v d =qBR d m =5qBl 4m =5kBl4。
B 正确。
【2019·全国卷Ⅲ】如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场。
专题73 带电粒子在磁场中运动(二)直线磁场边界1.(多选)如图所示,ab是匀强磁场的边界,质量(11 H)和α粒子(42He)先后从c点射入磁场,初速度方向与ab边界夹角均为45°,并都到达d点.不计空气阻力和粒子间的作用.关于两粒子在磁场中的运动,下列说法正确的是( )α粒子运动轨迹相同α粒子运动动能相同α粒子运动速率相同α粒子运动时间相同2.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a点射入,从b点射出.下列说法正确的是( )b点速率大于在a点速率C.若仅减小磁感应强度,则粒子可能从b点右侧射出D.若仅减小入射速率,则粒子在磁场中运动时间变短3.[2021·贵阳市模拟](多选)如图所示,MN为两个方向相同且垂直于纸面的匀强磁场的分界面,两磁场的磁感应强度大小关系为B1=2B2,一比荷值为k的带电粒子(不计重力),以一定速率从O点垂直MN进入磁感应强度大小为B1的磁场,则粒子下一次到达O点经历的时间为( )A.3πkB 1 B .4πkB 1 C .2πkB 2 D .3π2kB 24.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qB B .7πm 6qB C .11πm 6qB D .13πm6qB5.[2021·绵阳市模拟]如图所示,长方形abcd 区域内有垂直于纸面向里的匀强磁场,同一带电粒子,以速率v 1沿ab 射入磁场区域,垂直于dc 边离开磁场区域,运动时间为t 1;以速率v 2沿ab 射入磁场区域,从bc 边离开磁场区域时与bc 边夹角为150°,运动时间为t 2.不计粒子重力.则t 1∶t 2是( )A.2∶3B .3∶2C.3∶2D.2∶3 6.[2021·石家庄质检](多选)如图所示,等腰直角三角形abc 区域内存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B ,直角边bc 的长度为L .三个相同的带正电粒子从b 点沿bc 方向分别以速率v 1、v 2、v 3射入磁场,在磁场中运动的时间分别为t 1、t 2、t 3,且t 1∶t 2∶t 3=3∶3∶2.不计粒子的重力及粒子间的相互作用,下列说法正确的是( )v 1=v 2<v 3v 2<v 1<v 3 q m =πBt 2 q m =3v 32BL7.如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面(abcd 所在平面)向外.ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子.已知电子的比荷为k .则从a 、d 两点射出的电子的速度大小分别为( )A.14kBl ,54kBl B .14kBl ,54kBl C.12kBl ,54kBl D .12kBl ,54kBl 8.[2021·河北卷]如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B 的匀强磁场,极板与可调电源相连.正极板上O 点处的粒子源垂直极板向上发射速度为v 0、带正电的粒子束,单个粒子的质量为m 、电荷量为q .一足够长的挡板OM 与正极板成37°倾斜放置,用于吸收打在其上的粒子.C 、P 是负极板上的两点,C 点位于O 点的正上方,P 点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,CP 长度为L 0.忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力,sin37°=35.(1)若粒子经电场一次加速后正好打在P 点处的粒子靶上,求可调电源电压U 0的大小; (2)调整电压的大小,使粒子不能打在挡板OM 上,求电压的最小值U min ;(3)若粒子靶在负极板上的位置P 点左右可调,则负极板上存在H 、S 两点(CH ≤CP <CS ,H 、S 两点未在图中标出),对于粒子靶在HS 区域内的每一点,当电压从零开始连续缓慢增加时,粒子靶均只能接收到n (n ≥2)种能量的粒子,求CH 和CS 的长度(假定在每个粒子的整个运动过程中电压恒定).专题73 带电粒子在磁场中运动(二)直线磁场边界1.AB 带电粒子在磁场中的偏转角度都为90°,对应的弦长都为cd ,故质子和α粒子运动轨迹相同,A 正确;带电粒子在磁场中的运动周期T =2πm qB ,在磁场中的运动时间t =14T ,质子(11 H)和α粒子(42 He)比荷不同,质子和α粒子运动时间不同,D 错误;根据R =mvqB=2mE kqB知,质子和α粒子半径相同,比荷不同,则运动速率不同,又因mq相同,故质子和α粒子运动动能相同,B 项正确,C 错误.2.C 3.BC 4.B5.C 由T =2πm qB ,和离子在磁场中运动的时间为t =θ2π·T ,可知同一离子在同一磁场中运动周期相同,运行时间与速度偏角成正比,所以t 1∶t 2=90°∶60°=3∶2,C 正确.6.BD三个粒子在磁场中的运动轨迹可能如图所示,由图及题意可知时间相等的粒子一定从ab 边射出,另一粒子一定从ac 边射出,由r =mv qB可知v 1<v 3,v 2<v 3,v 1≠v 2,A 错误,B 正确;粒子1、2的轨迹圆弧所对应的圆心角均为π2,故有t 2=14·2πm qB ,得q m =π2Bt 2,C 错误;粒子3的轨迹圆弧所对应的圆心角为π3,轨迹半径r ′sin π3=L ,又r ′=mv 3qB ,得q m =3v 32BL ,故D 正确.7.B 本题考查了电子在磁场中运动的问题,有利于综合分析能力、应用数学知识处理物理问题能力的培养,突出了核心素养中的模型建构、科学推理、科学论证要素.从a 点射出的电子运动轨迹的半径R 1=l4,由Bqv 1=m v 21 l 4得v 1=Bql 4m =14kBl ;从d 点射出的电子运动轨迹的半径R 2满足关系⎝⎛⎭⎪⎫R 2-l 22+l 2=R 22 ,得R 2=54l ,由Bqv 2=m v 22 54l得v 2=5Bql 4m =54kBl ,故正确选项为B.8.(1)qB 2L 20 8m -mv 20 2q (2)7mv 218q(3)见解析解析:(1)根据动能定理得qU 0=12mv 2-12mv 20 ,带电粒子进入磁场,由洛伦兹力提供向心力得qvB =m v 2r,又有r =L 02,联立解得U 0=qB 2L 20 8m -mv 22q.(2)使粒子不能打在挡板OM 上,则加速电压最小时,粒子的运动轨迹恰好与挡板OM 相切,如图甲所示,设此时粒子加速后的速度大小为v 1,在上方磁场中运动的轨迹半径为r 1,在下方磁场中运动的轨迹半径为r 2,由几何关系得2r 1=r 2+r 2sin37°,解得r 1=43r 2,由题意知,粒子在下方磁场中运动的速度为v 0,由洛伦兹力提供向心力得qv 1B =m v 21r 1,qv 0B =mv 20 r 2,由动能定理得qU min =12mv 21 -12mv 20 ,解得U min =7mv 218q.(3)画出粒子的运动轨迹,由几何关系可知P 点的位置满足k (2r P -2r 2)+2r P =x CP (k =1,2,3…).当k =1时,轨迹如图乙所示;当k =5时,轨迹如图丙所示.由题意可知,每个粒子的整个运动过程中电压恒定,粒子在下面的磁场中运动时,根据洛伦兹力提供向心力,有qv 0B =m v 20 r 2,解得r 2=mv 0qB ,为定值,由第(2)问可知,r P ≥43r 2,所以当k 取1,r P =43r 2时,x CP取最小值,即CH =x CP min =103·mv 0qB,CS →无穷远.。
带电体或带电粒子在磁场中运动【基本方法】——关键是确定半径 1.带电粒子在磁场中的匀速圆周运动带电粒子仅受磁场力作用下,初速度的方向与磁场方向垂直时,带电粒子将在磁场中做匀速圆周运动.轨道半径公式:由qBv =m v 2R ,得R =mvqB . 周期公式:T =2πR v =2πm qB.2.圆心的确定(1)基本的思路:圆心一定在与速度方向垂直的直线上,并且也在圆中一根弦的中垂线上,也一定在初末速度延长线和反向延长线的角平分线上。
(2)两种方法: 方法一:已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心,如图(1)所示,P 为入射点,M 为出射点.方法二:已知入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心,如图(2)所示,P 为入射点,M 为出射点. 3.半径的确定和计算利用平面几何关系,求出该圆的半径,往往用到以下重要的几何特点:(1)粒子速度的偏向角(φ)等于粒子旋转的圆心角(α),因为速度总是与半径垂直,所以速度方向改变了多少,半径的旋转也跟着改变了多少.并等于弦AB 与切线的夹角(弦切角θ)的2倍,如图所示,即φ=α=2θ=ωt.(2)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180° 4.运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为t =α2πT(或t =α360°T).(一)直线型磁场边界问题结论一:直线形磁场边界,带电粒子射入、射出磁场时,与边界夹角相等,如图所示,∠θ=∠α.【例1】如图所示,直角三角形ABC 区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 点射出的粒子速度大 B .从Q 点射出的粒子速度大 C .从Q 点射出的粒子在磁场中运动的时间长 D .两个粒子在磁场中运动的时间一样长【例2】如图,A 、C 两点分别位于x 轴和y 轴上,∠OCA =30°,OA 的长度为L.在△OCA 区域内有垂直于xOy 平面向里的匀强磁场.质量为m 、电荷量为q 的带正电粒子,以平行于y 轴的方向从OA 边射入磁场.已知粒子从某点射入时,恰好垂直于OC 边射出磁场,且粒子在磁场中运动的时间为t 0.不计重力. (1)求磁场的磁感应强度的大小;(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC 边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;(3)若粒子从某点射入磁场后,其运动轨迹与AC 边相切,且在磁场内运动的时间为035t ,求粒子此次入射速度的大小.(二) 圆形磁场边界问题 结论一:圆形磁场边界,沿径向射入磁场,必然背离圆心射出磁场,如图所示. 结论二:轨迹圆与磁场圆相交,两圆圆心连线将是两个圆的对称轴,是∠AO ′B 的角平分线【例3】如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A 2A 4为边界的两个半圆形区域Ⅰ和Ⅱ中,直径A 2A 4与直径A 1A 3之间的夹角为θ=60°.一质量为m 、电荷量为q 的带正电粒子(不计重力)以某一速度从Ⅰ区的边缘点A 1处沿与A 1A 3成β=30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入Ⅱ区,最后再从A 4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t ,求:(1)粒子在磁场区域Ⅰ和Ⅱ中运动的轨道半径R 1与R 2的比值; (2)Ⅰ区和Ⅱ区中磁场的磁感应强度B 1和B 2的大小.【例4】在直径为d 的圆形区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ,比荷分别为2211m q m q 、的带正负电荷的粒子从圆形区域的A 点沿与直径AC 成θ=15º角射入磁场,速度大小分别为v 1、v 2,如图所示,且粒子射出磁场时,速度方向都改变了90º,粒子的重力忽略不计,两粒子在磁场中运动的半径分别用r 1、r 2表示,运动时间分别用t 1、t 2表示,则下列说法正确的是:( )d r d r A 46,42.21==221121m q m q v v B ==,则如果.33212211==v v m q m q C 则如果,. 21t t D =恒有不论比荷和速度如何,.【例5】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B .2Δt C.13Δt D .3Δt【拓展训练1】一圆筒的横截面如图所示,其圆心为O 。
专题9.9 矩形边界和正多边形边界磁场问题一.选择题1.(2020·山东淄博模拟)如图所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点。
一个带正电的粒子(重力忽略不计)从O 点沿纸面以垂直于cd 边的速度射入正方形区域内,经过时间t 0刚好从c 点射出磁场。
现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法正确的是A .该带电粒子不可能刚好从正方形的某个顶点射出磁场B .若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是t 0C .若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是032t D .若该带电粒子从cd 边射出磁场,它在磁场中经历的时间一定是053t 【参考答案】AD【名师解析】根据题述一个带正电的粒子(重力忽略不计)从O 点沿纸面以垂直于cd 边的速度射入正方形区域内,经过时间t 0刚好从c 点射出磁场,则时间t 0为带电粒子在磁场中运动的半个周期。
使该带电粒子从O 点沿纸面以与Od 成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,画出各种可能的运动轨迹,可以看出不可能刚好从正方形的某个顶点射出磁场,选项A 正确。
若该带电粒子从ab 边射出磁场,它在磁场中经历的时间一定小于t 0,选项B 错误。
若该带电粒子从bc 边射出磁场,它在磁场中经历的时间不可能是032t ,可能是t 0,选项C 错误。
若该带电粒子从cd 边射出磁场,它在磁场中运动轨迹为5/6圆弧,经历的时间一定是053t ,选项D 正确。
【技巧点拨】】解答此题,若对各个选项叙述的情景画出轨迹图,有助于正确判断。
2.(2020·陕西宝鸡一模)如图所示,横截面为正方形abcd 的有界匀强磁场,磁场方向垂直纸面向里。
一束电子以大小不同、方向垂直ad 边界的速度飞入该磁场,不计电子重力及相互之间的作用,对于从不同边界射出的电子,下列判断正确的是( )A.从ad边射出的电子在磁场中运动的时间都相等B.从c点离开的电子在磁场中运动时间最长C.电子在磁场中运动的速度偏转角最大为πD.从bc边射出的电子的速度一定大于从ad边射出的电子的速度【参考答案】ACD3. (2020高考四川理综物理)如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场。
边界磁场问题分析与强化训练(附详细参考答案)一、边界磁场问题分析及例题讲解:1.带电粒子在有界磁场中运动的常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)(4)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。
(5)三边形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。
已知边长为2a,D点距A点3a,粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。
2.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点。
(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍。
3.几点注意(1)当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的。
在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件。
(2)当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B 变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件。
4.求解带电粒子在有界匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件(①带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;②射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。
),然后应用数学知识和相应物理规律分析求解。
(1)两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。
磁场是物理学中一个重要的概念,它存在于我们周围的许多物体和现象中。
本文将以“磁场平行边界”为标题,介绍关于磁场平行边界的一些基本知识点。
1. 什么是磁场?磁场是由带电粒子运动产生的一种物理现象。
当电流通过导线时,会产生一个围绕导线的磁场。
磁场由磁力线表示,磁力线是垂直于磁场方向的曲线,用于描述磁场的强度和方向。
2. 磁场的性质磁场具有一些基本性质,其中之一是磁场的大小取决于电流的强弱。
当电流增大时,磁场强度也增大;当电流减小或消失时,磁场也随之减小或消失。
此外,磁场具有方向性。
根据电流的方向,可以确定磁场的方向。
根据右手定则,当右手握住导线,拇指指向电流的方向,其余手指的弯曲方向即为磁场的方向。
3. 磁场的平行边界当两个磁场平行边界相遇时,会发生一些有趣的现象。
在这种情况下,磁场的边界会发生变化,同时磁场的行为也会有所不同。
首先,当两个磁场平行边界重合时,它们会合并成一个更强的磁场。
这是因为两个磁场的磁力线会叠加在一起,形成更强的磁场。
其次,当磁场平行边界发生分离时,它们会互相排斥。
这是由于磁场的性质决定的,相同方向的磁场会互相排斥。
最后,当磁场平行边界发生交叉时,它们会相互吸引。
这是因为交叉边界处的磁力线会引起相互之间的吸引力。
4. 应用磁场平行边界的现象在许多领域都有应用。
例如,在电力工程中,平行边界的磁场可以用来设计电感器和变压器等电子设备。
此外,在计算机科学中,磁场平行边界的知识可以应用于设计磁存储器和磁传感器。
磁场平行边界的研究对于理解物质的磁性和电磁相互作用也非常重要。
通过研究平行边界的磁场现象,我们可以更好地掌握磁力学的基本原理,进一步推动科学技术的发展。
5. 总结磁场是物理学中一个重要的概念,它存在于我们周围的许多物体和现象中。
磁场具有大小和方向性的性质,可以通过电流的强弱和方向来确定。
当磁场的平行边界相遇时,会发生合并、排斥和吸引等现象。
磁场平行边界的研究在电子工程和计算机科学等领域有着广泛的应用。
高考物理100考点最新模拟题千题精练(选修3-1)第三部分磁场专题3.19 环形边界磁场问题一.选择题1. (2020河南天一大联考期末考试)如图所示,磁场的边界是两个同心圆,内圆的半径为r磁场方向垂直纸面向甩,磁感应强度大小为B,A是内侧边界上的一点。
在圆心O处沿平行纸面方向射出一个质量为m、电荷量为q的带电粒子,粒子速度方向与OA成60°角,粒子经磁场第一次偏转后刚好从A点射出磁场,不计粒子重力,则下列说法正确的是()A. 粒子一定带正电B. 粒子第一次在磁场中运动的时间为C. 粒子运动的速度大小为D. 磁场外边界圆的半径至少为r【参考答案】D【名师解析】粒子在磁场中运动的轨迹如图所示,根据左手定则可以判断粒子带负电,故A错误;粒子第一次在磁场中运动的时间为t==,故B错误;根据图中几何关系可得粒子在磁场中做圆周运动的半径为R=r tan30°=,根据洛伦兹力提供向心力可得qvB=m,解得v=,故C错误;磁场外边界圆的半径至少为r′=R+=r,故D正确。
【关键点拨】根据左手定则可以判断粒子的电性;根据运动周期计算粒子第一次在磁场中运动的时间;根据图中几何关系求解半径,根据洛伦兹力提供向心力求解速度;根据几何关系求解磁场外边界圆的半径。
对于带电粒子在磁场中的运动情况分析,一般是确定圆心位置,根据几何关系求半径,结合洛伦兹力提供向心力求解未知量;根据周期公式结合轨迹对应的圆心角求时间。
2.(2019重庆七校三模)如图所示,大圆的半径为2R,同心的小圆半径为R,在圆心处有一个放射源,可以向平面内的任意方向发射质量为m、电荷量为q、最大速率为v的带电粒子(粒子不计重力),为了不让带电粒子飞出大圆以外,可以在两圆之间的区域内加一个垂直于纸面向里的匀强磁场,该磁场磁感应强度的最小值是()A. B. C. D.【参考答案】A【名师解析】设同心圆的圆心为O,粒子恰好不飞出大圆,则其轨迹与大圆相切,如图所示,切点为A,连接OA,设粒子从C点进入磁场,过C点作OC的垂线交OA于D点,D点为粒子做匀速圆周运动的圆心,设粒子做圆周运动的半径为r,由几何关系可得(2R-r)2=R2+r2,r=,由以上两式解得B min=,故A正确。
带电粒子在磁场中运动的边界问题三角形边界大家好,今天我要给大家讲解一个关于带电粒子在磁场中运动的边界问题——三角形边界。
我们要明白什么是三角形边界,它是指带电粒子在磁场中运动时,其运动轨迹形成的边界是一个三角形。
接下来,我将从三个方面来详细讲解这个问题。
一、1.1 带电粒子的基本概念带电粒子是指带有电荷的粒子,它们可以是电子、质子等。
电荷是带电粒子的一种属性,它决定了粒子的运动特性。
在磁场中,带电粒子会受到洛伦兹力的作用,从而改变它们的运动轨迹。
洛伦兹力是根据爱因斯坦的洛伦兹理论计算出来的,它与带电粒子的速度和磁场的强度有关。
二、2.1 磁场的基本概念磁场是由电荷产生的,它是一种物理场。
在磁场中,带电粒子会受到一个垂直于速度方向和磁场方向的力,这个力就是洛伦兹力。
磁场的方向可以用磁感应强度来表示,磁感应强度的大小与磁场的强度成正比,与距离磁场的距离成反比。
三、3.1 三角形边界的形成原理当我们把带电粒子放在一个磁场中时,它们会在磁场中受到洛伦兹力的作用,从而改变它们的运动轨迹。
这些运动轨迹在空间中形成了一个封闭的曲线,这个曲线就是带电粒子的运动轨迹。
由于带电粒子在磁场中的运动是三维的,所以这个曲线是一个三维的空间曲面。
我们关心的是带电粒子在磁场中的边界问题。
这里的边界指的是带电粒子在磁场中运动时形成的最外层边界。
对于这个问题,我们可以通过分析带电粒子的运动轨迹来找到解决办法。
当带电粒子在磁场中沿着一个圆周运动时,它们的运动轨迹是一个圆形。
但是,当它们沿着一个螺旋线运动时,它们的运动轨迹就不再是一个圆形了。
这时,我们需要考虑一种特殊的边界情况——三角形边界。
四、4.1 三角形边界的形成过程当带电粒子沿着一个螺旋线运动时,它们的运动轨迹形成一个封闭的曲线。
这个曲线在空间中看起来像一个三角形。
这是因为螺旋线的形状使得带电粒子的运动轨迹在一个方向上保持不变,而在另一个方向上发生周期性的变化。
这种变化使得带电粒子的运动轨迹在一个方向上呈现出直线的特点,而在另一个方向上呈现出螺旋线的特点。
磁场专题—磁场边界的最小化讲练【例1】如图所示,一重力不计的带电粒子质量为m 、电量为+q ,从坐标原点以沿y 轴正方向的速度v 射出。
为使该粒子能从x 轴正方向上的b 点射出第一象限,且粒子在b 点时的速度方向与x 轴正方向的夹角为30°, 可在适当区域加一个垂直于xOy 平面、磁感应强度为B 的匀强磁场。
若此磁场仅分布在一个圆形区域内,求 该圆形磁场区域的最小面积。
【答案】222243B q v m π【解析】做带电粒子运动的题,首先要确定粒子的运动轨迹,即确定粒子的圆心、半径、圆心角、运动时间。
(1)圆心,题目当中给出的圆心可以直接用;没有明确给出圆心的时候需要自己确定,确定的方法如下:1)根据“圆周运动中某点的切线方向就是该点的速度方向”这一结论,可以判断出速度和粒子运动的轨迹圆半径是垂直的;2)在几何关系中,圆的半径和半径的交点是圆心。
两种方法确定圆心。
(2)求解半径,一般有两种方法:1)根据题中给出的几何关系求解;2)根据洛伦兹力提供向心力求解,即:Rmv qvB 2=确定半径。
(3)圆心和半径求出,就可以画出粒子运动的轨迹,根据轨迹可以画出粒子运动的圆心角θ,从而进一步求解出粒子的运动时间t ,即tT=θπ2,T 为粒子运动的周期。
其次,根据题目要求,具体进行计算。
经过分析,画出粒子运动的轨迹如图1-1所示,AP 是粒子离开磁场后做直线运动的轨迹,A 点为离开磁场的点,即AP 和圆相切,由题意可知,y 轴也与圆相切,分别过切点做垂线相交于点B ,B 点就是圆心,OB 、AB 分别为轨迹的半径,根据Rmv qvB 2=,可求出半径qB mvR AB OB ===,圆弧OA 是粒子运动的轨迹。
由题意可知,∠APB=300,AB ⊥AP ,ΔOAB 是等腰三角形,轨迹的圆心角∠ABO=1200,可知圆弧OA 是劣弧(几何只是中圆心角大于1800的是优弧,圆心角小于1800的是劣弧),根据磁场最小边界中关于圆形磁场的结论:圆形磁场中,轨迹为劣弧时,连接入射点和出射点得到的直线就是最小面积的直径;优弧时,运动轨迹和圆形边界重合即为最小面积。
带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)建议用时:60分钟带电粒子在磁场中的运动A.M带正电,N带负电B.M的速率小于N的速率A.1kBL,0°B3【答案】B【详解】若离子通过下部分磁场直接到达根据几何关系则有:R由:2v qvB mR=可得:qBLv kBLm==根据对称性可知出射速度与当离子在两个磁场均运动一次时,如图乙所示,因为两个磁场的磁感应强度大小均为根据洛伦兹力提供向心力,有:可得:122qBLv kBLm==此时出射方向与入射方向相同,即出射方向与入射方向的夹角为:通过以上分析可知当离子从下部分磁场射出时,需满足:此时出射方向与入射方向的夹角为:A.从ab边射出的粒子的运动时间均相同B.从bc边射出的粒子在磁场中的运动时间最长为C.粒子有可能从c点离开磁场D.若要使粒子离开长方形区域,速率至少为可见从ab射出的粒子做匀速圆周运动的半径不同,对应的圆心角不相同,所以时间也不同,故B.从bc边射出的粒子,其最大圆心角即与A .粒子的速度大小为2qBdmB .从O 点射出的粒子在磁场中的运动时间为C .从x 轴上射出磁场的粒子在磁场中运动的最长时间与最短时间之比为D .沿平行x 轴正方向射入的粒子离开磁场时的位置到得:R d=由洛仑兹力提供向心力可得:Bqv m=得:qBd v m=A 错误;A .如果0v v >,则粒子速度越大,在磁场中运动的时间越长B .如果0v v >,则粒子速度越大,在磁场中运动的时间越短C .如果0v v <,则粒子速度越大,在磁场中运动的时间越长D .如果0v v <,则粒子速度越大,在磁场中运动的时间越短【答案】B该轨迹恰好与y 轴相切,若上移,可知,对应轨迹圆心角可知,粒子在磁场中运动的时间越短,故CD .若0v v <,结合上述可知,飞出的速度方向与x 轴正方向夹角仍然等于A .粒子能通过cd 边的最短时间B .若粒子恰好从c 点射出磁场,粒子速度C .若粒子恰好从d 点射出磁场,粒子速度7.(2024·广西钦州·模拟预测)如图所示,有界匀强磁场的宽度为粒子以速度0v垂直边界射入磁场,离开磁场时的速度偏角为( )A.带电粒子在匀强磁场中做圆周运动的轨道半径为B.带电粒子在匀强磁场中做圆周运动的角速度为C.带电粒子在匀强磁场中运动的时间为D.匀强磁场的磁感应强度大小为【答案】B【详解】A.由几何关系可知,带电粒子在匀强磁场中做圆周运动的轨道半径为:A.该匀强磁场的磁感应强度B.带电粒子在磁场中运动的速率C.带电粒子在磁场中运动的轨道半径D.带电粒子在磁场中运动的时间C.根据几何关系可得:cos30aR = o所以:233R a =故C正确;AB.在磁场中由洛伦兹力提供向心力,即:A.从c点射出的粒子速度偏转角度最大C.粒子在磁场运动的最大位移为10.(2024·四川乐山·三模)如图所示,在一个半径为面向里的匀强磁场,O 为区域磁场圆心。
1.一个质量为m ,带电量为+q 的粒子(不计重力),从O 点处沿+y 方向以初速度射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy 平面向里,它的边界分别是y=0,y=a,x=,如图所示,那么当B 满足条件_________时,粒子将从上边界射出:当B 满足条件_________时,粒子将从左边界射出:当B 满足条件_________时,粒子将从下边界射出:2.如图所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。
要使粒子必能从EF 射出,则初速度V0应满足什么条件EF 上有粒子射出的区域3.如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ = 30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围.(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间4.在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,××× × × × × × ××××a bcd θ O v 0 图5D B•⨯⨯⨯⨯⨯⨯C质量为m的粒子从距A点a3的D点垂直AB方向进入磁场,如图5.所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里.许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O 射入磁场区域. 不计重力,不计粒子间的相互影响. 下列图中阴影部分表示带电粒子可能经过的区域,其中 . 正确的图是( A )6在y>0的区域内存在匀强磁场,磁场垂直于图中的Oxy平面,方向指向纸外,原点O处有一离子源,沿各个方向射出速率相等的同价正离子,对于速度在Oxy平面内的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用下面给出的四个半圆中的一个来表示,其中正确的是( A )DCBAxyOxyOxyOxyO7.图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B 的匀强磁场,方向垂直纸面向外是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为的粒于,粒于射入磁场时的速度可在纸面内各个方向已知先后射人的两个粒子恰好在磁场中给定的P 点相遇,P 到0的距离为L 不计重力及粒子间的相互作用 (1)求所考察的粒子在磁场中的轨道半径 (2)求这两个粒子从O 点射人磁场的时间间隔8.如图8所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离l=16cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s ,已知α粒子的电荷与质量之比q/m=5.0×107C/kg ,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
带电粒子在磁场中运动的边界问题三角形边界带电粒子在磁场中运动的边界问题,这个问题听起来好像很复杂,但是其实很简单。
就像我们小时候玩的跳绳一样,只要找到节奏,就能轻松地跳过去。
今天,我就来给大家讲讲这个问题的解决方法。
我们要明确一点:带电粒子在磁场中运动,就像是在跳绳的过程中,绳子在不停地旋转。
那么,我们要解决的问题就是:当粒子在旋转的绳子上跳跃时,它会不会掉下来?1.1 问题背景这个问题最早是由英国物理学家麦克斯韦提出的。
他在研究电磁场的时候,发现了一个奇怪的现象:当导体中的电流发生变化时,周围的磁场也会随之变化。
这个现象被称为电磁感应。
而带电粒子在磁场中运动,其实就是一种特殊的电流变化。
1.2 解决问题的方法要解决这个问题,我们就要用到一个叫做洛伦兹力的神奇力量。
洛伦兹力是磁场对带电粒子施加的一种力,它的方向总是垂直于粒子的速度和磁场的方向。
简单来说,就是让粒子在跳跃的过程中始终保持在一个固定的方向上。
2.1 洛伦兹力的产生那么,洛伦兹力是怎么产生的呢?其实很简单,就像我们在跳绳的时候,绳子会在我们跳跃的过程中不断地旋转。
同样地,当带电粒子在磁场中运动时,磁场也会不断地旋转。
这样一来,洛伦兹力就会随着粒子的运动而产生。
2.2 洛伦兹力的性质洛伦兹力有很多有趣的性质。
比如说,它只与粒子的速度和磁场的方向有关,与粒子的质量和距离无关。
这就意味着,无论带电粒子的质量有多大,只要它的速度和磁场的方向不变,洛伦兹力的大小也不会改变。
3.1 边界条件的确定现在我们已经知道了洛伦兹力的产生和性质,接下来就要确定边界条件了。
边界条件是指在问题的不同阶段之间,需要确定哪些变量是不变的。
对于带电粒子在磁场中运动的问题来说,边界条件就是要确定粒子的速度和磁场的方向。
3.2 解题过程有了边界条件之后,我们就可以开始解题了。
我们要根据洛伦兹力的性质,列出一个关于速度和磁场方向的方程组。
然后,通过求解这个方程组,就可以得到带电粒子在磁场中运动的轨迹。
高考物理专题复习-9.6 圆形边界磁场问题(解析版)一.选择题1(2018金考卷).如图所示,在xOy坐标系中,以(r,0)为圆心的圆形区域内存在方向垂直于纸面向里的匀强磁场,在y>r的足够大的区域内,存在沿y轴负方向的匀强电场。
在xOy平面内,从O点以相同速率、沿不同方向向第一象限发射质子,且质子在磁场中运动的半径也为r。
不计质子所受重力及质子间的相互作用力。
则质子A.在电场中运动的路程均相等B.最终离开磁场时的速度方向均沿x轴正方向C.在磁场中运动的总时间均相等D.从进入磁场到最后离开磁场过程的总路程均相等【参考答案】AC【命题意图】本题考查带电粒子在有界匀强磁场中的运动和在匀强电场中的运动及其相关的知识点。
【解题思路】根据题述圆形磁场的半径与质子在磁场中运动的半径相同,从O点以相同的速率沿不同方向向第一象限发射质子,质子经过磁场偏转后以相同的速率平行于y轴射出做减速运动,速度减小到零后反向加速后进入磁场,根据动能定理,在电场中运动的路程均相等,选项A正确;通过分析可知,质子最终离开磁场时的速度方向均与原来进入磁场时速度方向相同,选项B错误;由于带电粒子在磁场中两次运动轨迹虽然不同,但是两次轨迹所对的圆心角之和相同,两次运动的轨迹长度之和相等,所以带电粒子在磁场中运动的总时间相等,选项C正确;带电粒子在电场中运动时间相等,在磁场区域运动时间相等,由于磁场区域与电场区域之间有非场区,所以质子从进入磁场区域到离开磁场区域的过程中的总路程不相等,选项D错误。
2.(2018云南昭通五校联考)如图,在半径为R=mv0/q B的圆形区域内有水平向里的匀强磁场,磁感应强度为B;圆形区域右侧有一竖直感光板MN.带正电粒子从圆弧顶点P以速率v0平行于纸面进入磁场,已知粒子质量为m,电量为q,粒子重力不计.若粒子对准圆心射入,则下列说法中正确的是( )A.粒子一定沿半径方向射出B.粒子在磁场中运动的时间为πm/2q BC.若粒子速率变为2v0,穿出磁场后一定垂直打到感光板MN上D.粒子以速度v0从P点以任意方向射入磁场,离开磁场后一定垂直打在感光板MN上【参考答案】ABD轨迹圆弧对应的圆心角为故运动时间为:t=T/4,T=,所以t=πm/2q B,B正确;若粒子速率变为2v0,则轨道半径变为2R,运动轨迹如图:故不是垂直打到感光板MN上,故C错误;当带电粒子以v0射入时,带电粒子在磁场中的运动轨道半径为R.设粒子射入方向与PO方向夹角为θ,带电粒子从区域边界S射出,带电粒子运动轨迹如图所示.因P O3=O3S=PO=SO=R所以四边形POSO3为菱形,由图可知:PO∥O3S,v3⊥SO3,因此,带电粒子射出磁场时的方向为水平方向,与入射的方向无关.故D正确;故选:ABD.3.如图所示,在一个圆环内的区域内存在垂直纸面向外的匀强磁场(磁场未画出),圆环逆时针转动并在环上开有一个小缺口,一带正电的粒子从小缺口沿直径方向进入圆环内部,且与圆环没有发生碰撞,最后从小缺口处离开磁场区域,已知粒子的比荷为k,磁场的磁感应强度大小为B,圆环的半径为R,粒子进入磁场时的速度为,不计粒子的重力,则圆环转动的角度A. kBB. 3kBC. 5kBD. 7kB【参考答案】AC【名师解析】粒子进入磁场后做匀速圆周运动,故,粒子将圆环区域内运动四分之一周期离开磁场,粒子运动的时间为,在这段时间内,圆环转过的角度为,根据可得,故AC正确,BD错误;故选AC。
考点4.3 圆形磁场边界问题考点4.3.1 “粒子沿径向射入圆形磁场”边界问题特点:沿径向射入必沿径向射出,如图所示。
对称性:入射点与出射点关于磁场圆圆心与轨迹圆圆心连线对称,两心连线将轨迹弧平分、弦平分,圆心角平分。
1.如图所示,一半径为R的圆内有垂直纸面的匀强磁场,磁感应强度为B,CD是该圆一直径.一质量为m、电荷量为q的带电粒子(不计重力),自A点沿指向O点方向垂直射入磁场中,恰好从D点飞出磁场,A点到CD的距离为R2,根据以上内容( )A.可判别圆内的匀强磁场的方向垂直纸面向里B.不可求出粒子在磁场中做圆周运动的轨道半径C.可求得粒子在磁场中的运动时间D.不可求得粒子进入磁场时的速度2.如图所示,为一圆形区域的匀强磁场,在O点处有一放射源,沿半径方向射出速度为v的不同带电粒子,其中带电粒子1从A点飞出磁场,带电粒子2从B点飞出磁场,不考虑带电粒子的重力,则()A.带电粒子1的比荷与带电粒子2的比荷比值为3∶1B.带电粒子1的比荷与带电粒子2的比荷比值为3∶1C.带电粒子1与带电粒子2在磁场中运动时间比值为2∶1D.带电粒子1与带电粒子2在磁场中运动时间比值为1∶23.如图所示,半径为R的绝缘筒中为匀强磁场区域,磁感应强度为B、磁感线垂直纸面向里一个质量为m、电荷量为q的正离子,以速度v从圆筒上C孔处沿直径方向射入筒内,如果离子与圆筒碰撞三次(碰撞时不损失能量,且时间不计),又从C孔飞出,则离子在磁场中运动的时间为( )A.2πR/v B.πR/vC.2πm/qB D.πm/qB4. 如图所示,一半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,一质量为m ,电荷量为q 的正电荷(重力忽略不计)以速度v 沿正对着圆心O 的方向射入磁场,从磁场中射出时速度方向改变了θ角.磁场的磁感应强度大小为( )A.mv qR tan θ2B.mv qR cot θ2C.mv qR sin θ2D.mv qR cosθ25. 如图所示圆形区域内,有垂直于纸面方向的匀强磁场,一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O 射入匀强磁场,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短,若带电粒子在磁场中只受磁场力的作用,则在磁场中运动时间越长的带电粒子( ) A . 速率一定越小 B . 速率一定越大C . 在磁场中通过的路程越长D . 在磁场中的周期一定越大6. 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图11所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出. (1) 请判断该粒子带何种电荷,并求出其比荷qm ;(2) 若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?7. 如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B =0.10 T ,磁场区域半径r =233 m ,左侧区圆心为O 1,磁场向里,右侧区圆心为O 2,磁场向外.两区域切点为C .今有质量m =3.2×10-26kg .带电荷量q =1.6×10-19C 的某种离子,从左侧区边缘的A 点以速度v =106 m/s正对O 1的方向垂直磁场射入,它将穿越C 点后再从右侧区穿出.求:(1) 该离子通过两磁场区域所用的时间.(2) 离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)8. 如图所示,有一对平行金属板,两板相距为0.05m .电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里.图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为33B =T ,方向垂直于纸面向里.一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出.已知速度的偏向角=3πθ ,不计离子重力.求:(1) 离子速度v 的大小; (2) 离子的比荷q /m ;(3) 离子在圆形磁场区域中运动时间t .9.如图所示,在两个水平平行金属极板间存在着向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E=2×106N/C和B1=0.1T,极板的长度l=33m,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直于纸面向外,圆形区域的圆心O位于平行金属极板的中线上,圆形区域的半径R=33m.有一带正电的粒子以某速度沿极板的中线水平向右飞入极板后恰好做匀速直线运动,然后进入圆形磁场区域,飞出圆形磁场区域后速度方向偏转了60°,不计粒子的重力,粒子的比荷qm=2×108C/kg.求:(1)粒子的初速度v;(2)圆形区域磁场的磁感应强度B2的大小;(3)在其它条件都不变的情况下,将极板间的磁场B l撤去,为使粒子飞出极板后不能进入圆形区域的磁场,求圆形区域的圆心O离极板右边缘的水平距离d应满足的条件.考点4.3.2 “粒子不沿半径方向射入圆形磁场”边界问题特点:入射点与出射点关于磁场圆圆心与轨迹圆圆心连线对称,两心连线将轨迹弧平分、弦平分,圆心角平分。