第三章光学性能
- 格式:ppt
- 大小:1.41 MB
- 文档页数:10
一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε = ,为真实应变。
2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L , ε为名义应变。
3.弹性模量材料在阶段,其和应变成线性关系(即符合),其称为弹性模量。
对各向同性体为一常数。
是原子间结合强度的一个标志。
4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。
S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。
5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。
6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。
7.位错增殖系数 n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。
8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。
9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。
10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。
单位Pa·S. 是流体抵抗流动的量度。
11.脆性断裂构件未经明显的变形而发生的断裂。
断裂时材料几乎没有发生过塑性变形。
在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。
与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。
12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。
其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。
13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。
单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ = Eγ/a 。
摄像机镜头光学性能的研究与优化第一章:引言随着科技的不断进步,摄像机的应用也越来越广泛。
在日常生活中,摄像机可以用于电影制作、家庭摄影、监控等各种领域。
然而,不同场合的摄像机对于镜头光学性能的要求也不尽相同。
因此,研究和优化摄像机镜头的光学性能成为了一个重要的问题。
在本文中,我们将就摄像机镜头光学性能的研究与优化作一系列阐述。
第二章将介绍摄像机镜头的基本结构和光学性能参数。
第三章将分析影响摄像机镜头光学性能的主要因素。
第四章将针对这些因素提出一些优化策略和方法。
最后,我们将总结本文的主要内容。
第二章:摄像机镜头的基本结构和光学性能参数摄像机镜头通常由若干个透镜组成,透镜的种类和数量视具体应用而定。
透镜在光线传输中起着折射、散射等重要作用。
因此,为了评估一个摄像机镜头的光学性能,我们需要考虑不同参数之间的相互关系。
常见的摄像机镜头光学性能参数包括焦距、光圈、视角、变形、畸变和色差等。
其中,焦距用于衡量透镜的聚焦能力,光圈用于表示镜头的最大光通量,视角则表示摄像机能够拍摄到的角度范围。
变形和畸变是典型的镜头失真现象,影响图像的质量,而色差则是不同色光通过透镜后折射角度不同而产生的现象。
第三章:影响摄像机镜头光学性能的因素摄像机镜头的光学性能不仅受镜头自身结构参数的影响,还受到多种因素的制约。
以下是影响摄像机镜头光学性能的主要因素:1.透镜材料。
透镜材料对光线的折射、散射等都有相应影响,例如晶体玻璃的色散率比亚硝酸乙酯高得多,因此在设计镜头时需要对透镜材料做出选择。
2.透镜的制造工艺。
不同的制造工艺会对透镜的形状和光学性能产生影响,比如磨镜工艺和光学玻璃成型工艺。
3.透镜组的数量。
透镜组数量会直接影响镜头光学系统的复杂度和效果。
4.光学公差。
在透镜制造的过程中,由于各种因素的影响,透镜参数可能存在一定误差,这就要求镜头设计时需要充分考虑公差的影响。
5.机械结构。
机械结构的设计也会对镜头的光学性能产生影响,如排列方式、横轴、纵轴的偏差等。
第二章材料热学性能热容:热容是分子或原子热运动能量随温度而变化物理量,其定义是物体温度升高1K所需要增加能量。
不同温度下,物体热容不一定一样,所以在温度T时物体热容为:物理意义:吸收热量用来使点阵振动能量升高,改变点阵运动状态,或者还有可能产生对外做功;或加剧电子运动。
晶态固体热容经历定律:一是元素热容定律—杜隆-珀替定律:恒压下元素原子热容为25J/〔K•mol〕;二是化合物热容定律—奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之与。
不同材料热容:1.金属材料热容:由点阵振动与自由电子运动两局部组成,即式中与分别代表点阵振动与自由电子运动热容;α与γ分别为点阵振动与自由电子运动热容系数。
合金摩尔热容等于组成各元素原子热容与其质量百分比乘积之与,符合奈曼-柯普定律:式中,n i与c i分别为合金相中元素i原子数、摩尔热容。
2.无机材料热容:〔1〕对于绝大多数氧化物、碳化物,热容都是从低温时一个低数值增加到1273K 左右近似于25J/(K·mol)数值。
温度进一步增加,热容根本无变化。
〔也即它们符合热容定律〕〔2〕对材料构造不敏感,但单位体积热容却与气孔率有关。
气孔率越高,热容越小。
相变可分为一级相变与二级相变。
一级相变:体积发生突变,有相变潜热,例如,铁a-r转变、珠光体相变、马氏体转变等;二级相变:无体积发生突变、无相变潜热,它在一定温度范围逐步完成。
例如,铁磁顺磁转变、有序-无序转变等,它们焓无突变,仅在靠近转变点狭窄温度区间内有明显增大,导致热容急剧增大,达转变点时,焓达最大值。
3.高分子材料热容:高聚物多为局部结晶或无定形构造,热容不一定符合理论式。
一般,高聚物比热容比金属与无机材料大,高分子材料比热容由化学构造决定,它存在链段、链节、侧基等,当温度升高时,链段振动加剧,而高聚物是长链,使之改变运动状态较困难,因而,需提供更多能量。
传导机制〔1〕金属中热传导是以自由电子导热为主,合金热传导以自由电子导热与声子导热为主;金属材料热导率很大。
第三章天文必备:天文望远镜【天文望远镜】【工作原理】天文望远镜是一种令人惊奇的仪器,它可以使远处的目标看起来很近。
为了更好地理解天文望远镜的工作原理,我们先考虑一下这样一个问题:为什么用裸眼看不到远方的目标呢?例如,为什么用裸眼看不到50米处的硬币呢?答案很简单:因为远方的目标在视网膜上的呈像没有占据足够的位置。
如果您有一双很大的眼睛,可以聚集到更多由远方目标发出的光并且在您的视网膜上形成明亮的像,那么,您就可以看到这个目标。
望远镜的两个光学件就可以帮助您将这一假设变为现实:物镜,它可以把远方目标发出的光会聚到焦点上(在焦点上呈像);目镜,它把物镜焦点上的像放大,使之在您的视网膜上呈像。
这和放大镜的原理一样,它把小的物体放大后在您的视网膜上呈像,这样小的物体看起来就变大了。
天文望远镜的主要部件是:主镜筒、物镜、目镜。
主镜筒的作用是:固定物镜,使之与目镜保持恰当的距离;阻止灰尘、湿气和干扰像质的杂光。
物镜的作用是聚光和在焦点处呈像。
目镜的作用是把物镜焦点处的像放大后在您的视网膜上呈像。
【种类】按照光学结构的不同天文望远镜可分为许多不同的种类,但比较常用的是两种:折射式天文望远镜(用光学透镜做物镜)和反射式天文望远镜(用曲面反光镜做物镜)。
尽管两者可以达到一样的效果,但它们的光学结构是完全不同的。
折射式天文望远镜:折射式天文望远镜通常采用两片或多片镀膜透镜组合而成的消色差物镜。
一般来讲,制作大口径(100mm以上)的组合透镜是非常困难的,所以常见的折射式天文望远镜的口径都不超过100mm。
反射式天文望远镜:反射式天文望远镜的物镜是一曲面反射镜(主镜)。
在物镜的光路上放置了一个呈45度倾斜的小平面反光镜(副镜)以把物镜反射的光线转向镜筒一侧的目镜。
反射式天文望远镜相对比较容易做到大的通光口径。
这就意味着反射式天文望远镜可以有很强的聚光能力,可以用以观测昏暗的深空目标,以及用以天文拍照。
【光学性能】天文观测者应根据观测目的的不同来选用不同的天文望远镜。