固体物理完整版本
- 格式:ppt
- 大小:10.34 MB
- 文档页数:25
§1.5 晶体的宏观对称性晶体在几何外形上表现出明显的对称性,同时这些对称性性质也在物理性质上得以体现。
—— 介电常数可以表示为一个二阶张量:),,,(z y x =βαεαβ—— 电位移分量∑=ββαβαεE D可以证明对于立方对称的晶体:αβαβδεε0=——对角张量所以:E D KK 0ε=—— 介电常数可以看作一个简单的标量。
在六角对称的晶体中,如果将坐标轴选取在六角轴和垂直于六角轴的平面内,介电常数具有如下形式: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⊥⊥εεε000000//对于平行轴(六角轴)的分量://E //////E D ε=对于垂直于轴(垂直于六角轴的平面)的分量:⊥E ⊥⊥⊥=E D ε正是由于六角晶体的各向异性,而具有光的折射现象。
而立方晶体的光学性质则是各向同性的。
原子的周期性排列形成晶格,不同的晶格表现出不同的宏观对称性,怎样描述晶体的宏观对称性? 概括晶体宏观对称性的系统方法就是考察晶体在正交变换的不变性。
在三维情况下,正交变换表示为:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛→⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛z y x a a a a a a a a a z y x z y x 331313232212131211'''—— 矩阵是正交矩阵。
3,2,1,},{=j i a ij —— 如图XCH001_062所示,绕z 轴转θ角的正交矩阵: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−1000cos sin 0sin cos θθθθ—— 中心反演的正交矩阵:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−100010001—— 一个变换为空间转动,矩阵行列式等于+1; —— 变换为空间转动加中心反演,矩阵行列式等于-1。
一个物体在某一个正交变换下保持不变,称之为物体的一个对称操作,物体的对称操作越多,其对称性越高。
1 立方体的对称操作1) 绕三个立方轴转动:23,,2πππ,共有9个对称操作;如图XCH001_026_01所示。
非晶体——原子的排列没有明确的周期性(短程有序)晶体——原子按一定的周期排列规则的固体(长程有序)准晶体——介于晶体和非晶体之间的新的状态晶体结构最常见的三种立方格子简单立方晶格、面心立方晶格、体心立方晶格,其配位数分别为6、12、8;六角密堆的配位数为12,金钢石结构的配位数为4。
原胞是最小的晶格重复单元。
对于简单晶格,原胞包含1个原子。
若321,,aaa表示某布拉伐格子的基矢(又称正格子基矢),321,,bbb表示该布拉伐格子的倒格子基矢,那么正格子基矢与倒格子基矢之间满足的关系为:。
(教材:p17)画出体心立方、面心立方和六角密堆的原胞,如果各自晶胞的体积为v,则原胞的体积分别为v/2,v/4,v/3晶向晶面画出简单立方晶格的晶向,立方边共有6个不同的晶向由于立方晶格的对称性,以上6个晶向是等效的可以表示为<100>]100[],001[],10[]010[],001[],100[100110111<><><>按结构划分,晶体可以分为7 大晶系,共有 14 布拉伐格子。
若321,,a a a表示某布拉伐格子的基矢(又称正格子基矢),321,,b b b 表示该布拉伐格子的倒格子基矢,那么矢量332211a n a n a n R++=的全部端点的集合构成)100(面等效的晶面数分别为:3个 }100{表示)110(面等效的晶面数分别为:6个 }110{表示)111(面等效的晶面数分别为:4个 }111{表示231123312123123123222a a b a a a a a b a a a a a b a a a πππ⨯=⋅⨯⨯=⋅⨯⨯=⋅⨯2()20()i j ij i j a b i j ππδ==⎧⋅=⎨=≠⎩布拉伐格子,矢量332211b h b h b h G h++=的全部端点的集合构成 倒格子 。
对晶格常数为a 的SC 晶体,与正格矢k a j a i a R22++=正交的倒格子晶面族的面指数为 (122) , 其面间距为 a32π。
绪论一固体物理的研究对象固体物理是研究固体的结构及其组成粒子原子离子电子等之间相互作用与运动规律以阐明其性能与用途的学科 固体按结构分类取向对称晶体学上不允许的长程平移序和同时具有长程准周期性准晶准晶体短有序程无明确周期性非晶态非晶体长程有序规则结构晶态晶体:)(,:)(,:)( 二固体物理的发展过程人们很早注意到晶体具有规则性的几何形状还发现晶体外形的对称性和其他物理性质之间有一定联系因而联想到晶体外形的规则性可能是内部规则性的反映十七世纪C Huygens 试图以椭球堆集的模型来解释方解石的双折射性质和解理面十八世纪RJH 认为方解石晶体是由一些坚实的y ua &&相同的平行六面体的小基石有规则地重复堆集而成的到十九世纪费多洛夫熊夫利巴罗等独立地发展了关于晶体微观几何结构的理论系统为进一步研究晶体机构的规律提供了理论依据1912年劳埃首先提出晶体可以作为X 射线的衍射光栅索末菲发展了固体量子论费米发展了统计理论在这些研究的基础上逐渐地建立了固体电子态理论能带论和晶格动力学固体的能带论提出了导电的微观机理指出了导体和绝缘体的区别并断定有一种固体它们的导电性质介乎两者之间叫半导体四十年代末五十年代初以锗硅为代表的半导体单晶的出现并以此制成了晶体三极管进而产生了半导体物理这标志着固体物理学发展过程的又一次飞跃为了适应微波低噪音放大的要求曾经出现过固体量子放大器脉泽1960年出现的第一具红宝石激光器就是由红宝石脉泽改造而成的可以说固体物理学尖端技术和其他学科的发展相互推动相辅相成的作用反映在上述的固体新材料与新元件的发现和使用上新技术和其他学科的发展也为固体物理学提供了空前有利的研究条件三固体物理的学科领域随着生产及科学的发展固体物理领域已经形成了象金属物理半导体物理晶体物理和晶体生长磁学电介质包括液晶物理固体发光超导体物理固态电子学和固态光电子学等十多个子学科同时固体物理的本身内核又在迅速发展中主要有1研究固体中的元激发及其能谱以更深入更详细地分析固体内部的微观过程揭示固体内部的微观奥妙2研究固体内部原子间结合力的综合性质与复杂结构的关系掌握缺陷形成和运动以及结构变化相变的规律从而发展多功能的复合材料以适应新的需要3研究在极低温超高压强磁场强辐射条件下固体的性质4表面物理----在研究体内过程的基础上进入了固体表面界面的研究5非晶态物理----在研究晶态的基础上开始进入非晶态的研究即非晶体中原子电子的微观过程四固体物理的研究方法固体物理主要是一门实验性学科但是为了阐明所揭示出来的现象之间的内在的本质联系就必须建立和发展关于固体的微观理论实验工作与理论工作之间要相互密切配合以实验促进理论以理论指导实验相辅相成相得益彰第一章晶体结构固体的结构决定其宏观性质和微观机理本章主要阐明晶体中原子排列的几何规则性1-1 一些晶格的实例晶体组成微粒具有空间上按周期性排列的结构基元当晶体中含有多种原子多种原子构成基本的结构单元格点结点结构中相同的位子图1-1-1 结构中相同的位子点阵晶体中格点的总体又称为布拉菲点阵布拉菲格子这种格子的特点是每点周围的情况都一样如果晶体由完全相同的一种原子组成则这种原子所组成的网格也就是布拉菲格子和结点所组成的相同如果晶体的基元中包含两种或两种以上的原子则每个基元中相应的同种原子各构成和结点相同的网格不过这些网格相对地有位移而形成所谓的复式格子显然复式格子是由若干相同的布拉菲格子相互位移套构而成晶格通过点阵中所有节点的平行直线簇和平行平面簇构成的网格元胞反映晶格周期性的最小重复单元侧重最小重复单元每个元胞中只有一个格点晶胞晶体学单胞既反映晶格周期性又反映晶格的空间对称性的最小重复单元侧重空间对称性每个元胞可能不止一个格点一单原子组成的元素晶格1简单立方晶格图1-1-2 原子球的正方排列及其各层球完全对应层叠形成的简单立方晶格2体心立方晶格的典型单元及堆积方式图1-1-3体心立方晶格的典型单元及体心立方晶格的堆积方式3原子球最紧密排列方式与面心立方晶格和六角密排晶格图1-1-4原子球最紧密排列方式当层叠是ABABAB方式则构成六角密排晶格当层叠是ABCABCABC方式则构成面心立方晶格4金刚石类晶格金刚石类晶格是由面心立方单元的中心到顶角引8条对角线在其中互不相邻的4条对角线的中点各加一个原子就得到金刚石类晶格结构也可看成面心立方沿体对角线平移1/4体对角线套购而成除金刚石外半导体硅和锗也具有类似金刚石类晶格结构图1-1-5金刚石类晶格结构的典型单元二化合物晶体的结构1NCl类晶格结构其好似于简单立方晶格只是每一行相间地排列着正的和负的离子N a+和Cl-碱金属和卤族元素的化合物都具有类似的结构Cl类晶格结构2C其好似体心立方晶格只是体心和顶角是不同的离子3闪锌矿ZS类晶格结构和金刚石类晶格结构相仿只要在金刚石晶格立方单元的对角线位置上放置一种原子在面心立方位置上放置另一种原子441-2晶格的周期性对于晶格的周期性通常用元胞和基矢来描述图1-2-1 中除4外均为最小单元由此元胞的选取并不是唯一的但各种晶格元胞都有习惯的选取方式并用元胞的边矢量作晶格的基矢基矢之间并不都相互正交图1-2-1平面元胞示意图1 简单立方晶格的元胞三个基矢分别zy x e a a e a a e a v v v v v v ===32,,为a 13321a a a a =×⋅vv r2 面心立方晶格的元胞三个基矢分别为)(2),(2),(2321j i a a j i a a j i a a v v v v v v v v v +=+=+=43321a a a a =×⋅vv r3体心立方晶格的元胞三个基矢分别为)(2),(2),(2321k j i a a k j i a a k j i a a v v v v v v v v v v v v −+=+−=++−=23321a a a =×⋅v v r a)3322a l a l ++}设为元胞中任意一处的位子矢量r vQ代表晶体中的任一物理量则Q ()(11a l r Q r +=vv l 1l 2l 3为整数即任意两元胞中相对应的点的物理性质相同我们可以用表示一种空间点阵{a l a l a l v v v 321++即一组l 1l 2l 3的取值表示格子中的一个格点l 1l 2l 3所有可能的集合就表示一个空间格子实际晶体可以看成在上述空间格子的每个格点上放置一组基元可为多种原子这个空间格子表征了晶格的周期性称为布拉菲格子Cu 的面心立方晶格Si 的金刚石晶格和NaCl 晶格均具有相同的布拉菲格子—面心立方格子它们的晶格结构虽然不同但具有相似的周期性自然界中晶格的类型很多但只可能有十四种布拉菲格子。
1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。
晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。
金属及合金在大多数情况下都以结晶状态使用。
晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。
4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。
5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。
7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
公式汇集1)晶格平移矢量R = l a+ l a+ l a 。
2)原胞体积Q = a1 . (a2 人 a3 )3)倒格子基矢)b1=))2几.(a2人a3))))a1(a2人a3))b2=))2几.(a3人a1))))a1(a2人a3))b3=))2几.(a1人a2))))a1(a2人a3)4)倒格子基矢和正格子基矢的关系) ) (2几 i = ja i .b j = 2几6ij=〈i, j = 1, 2, 3) ) ) )))6)倒格矢和正格矢的关系K h . R l = 2几n7)晶面间距公式dh1h2h3=8)布拉格反射公式2d h sin 9 = m入, m为整数)))F (kl) == x f j e2几ni(hu j +kv j +lw j )j11)衍射强度Ihkl忙 [x f j cos2几n(hu j + kv j + lw j )]2 +j[x f j sin 2几n(hu j + kv j + lw j )]2j12)晶体的内能U (r) = 一A + Br m r n13)Lennard-Jones势u=4c一(|(r装))|6+(|(r装))|1214)一维单原子链格波的色散关系o2=4bMsin2(|(qa2))|15)一维双原子链格波的色散关系o2=bMm〈(M+m)土[M2+m2+2Mmcos(qa)]21J卜16)简谐振子的本征能量En q= (|(nq+21))|ioq一117)声子数n q =19)德拜假设下的频谱密度g(o) =2几3,g(o) =o9o2,o 三 oD20)自由电子的本征波函数和本征能量v (r) = 1 e i k .r,E( k) = i 2 k 2V 2m21)电子的能态密度(三维)3g(E) =2几12(|(2im))| 2 E 2122)费米波矢k F = (3几2 n)3123)布洛赫函数v ) (r ) = e i k . r u) (r )k k或v)(r+ R l ) = e i k .R l v)(r)k k24)近自由电子近似下禁带宽度AE(k)~ 2V n25)紧束缚近似下的能带关系E(k) = E s + C 一 J x e i k .R l)R l26)有效质量张量27)布洛赫电子的速度v(k ) = i 条k E(k )28 ) 空位与填隙原子的浓度n = Ne一u v / k B T ,n' = N' e一u i/ k B T9)劳厄方程R l . (S一 S0 ) = 山入 , 山为整数10)几何结构因子5)倒格子矢量K h = h1 b1 + h2 b2 + h3 b3l 1 1 2 2 3 3))))) ) )112Ek2(x)k2))2k2E(?xE()k)ky)k)2k2)|m*=i2|||||(k2kE(?xE(?zk)kyk)kx???2ky(?2kkz) ?ky2Ek?(zkzk2)) ) 1 )exp( ioq/ kBT) 一 118)声子态密度g(o) = (2几V)3x入jl 0 i 士 j。