激光光谱-05-激光光源01
- 格式:pdf
- 大小:774.92 KB
- 文档页数:42
光声光谱和激光光谱光声光谱和激光光谱是两种不同的光谱分析技术。
光声光谱是通过声波与光波之间的相互作用来研究物质的光谱特性,而激光光谱是利用激光与物质之间的相互作用来研究物质的光谱特性。
光声光谱技术是利用声波的特点和能量与光波的特点和能量相互转换来实现的。
在光声光谱技术中,首先使用一个激光光源产生一个强光束,然后将这个强光束聚焦到需要研究的样品上。
当强光束与样品相互作用时,会产生声波信号。
这些声波信号会通过一个声波传感器来探测和记录。
通过记录声波信号的时域特性和频域特性,可以得到样品的光声光谱信息。
光声光谱可以提供有关样品的结构、成分、形貌和物理性质等信息。
光声光谱技术具有分辨率高、灵敏度高、无损检测等优点,被广泛应用于材料科学、药物研究、生物学等领域。
激光光谱技术是利用激光与物质之间的相互作用来研究物质的光谱特性。
激光是一种特殊的光源,具有高亮度、高单色性和高相干性等特点。
在激光光谱技术中,首先使用一个激光器产生一束具有特定波长和能量的激光光束,然后将激光光束照射到需要研究的样品上。
当激光光束与样品相互作用时,会发生吸收、散射、发射等光谱现象。
这些光谱现象会通过光谱仪器来探测和记录。
通过分析记录下来的光谱信号,可以得到样品的光谱信息。
激光光谱可以提供有关样品的能级结构、能量转移、光谱分布等信息。
激光光谱技术具有高分辨率、高灵敏度、速度快等优点,被广泛应用于化学、物理、生物、环境科学等领域。
光声光谱和激光光谱之间存在着不同的工作原理和应用范围。
光声光谱主要用于研究材料的结构、成分和物理性质等方面,可以提供材料的超声波声速、吸收系数、非线性参数等信息。
激光光谱主要用于研究物质的能级结构、能量转移和光谱分布等方面,可以提供物质的发射光谱、吸收光谱、荧光光谱等信息。
光声光谱和激光光谱在应用中都具有重要的地位。
光声光谱主要应用于材料科学、药物研究、医学诊断、环境检测等领域。
例如,在材料科学中,光声光谱可以用于研究固体材料的声学性质、热传导性能、材料界面的结构等方面。
激光光谱测量技术
激光光谱测量技术是一种利用激光光源进行光谱测量的技术。
它基于激光的单色性和高亮度特点,可以提供高分辨率和高灵敏度的光谱测量结果。
激光光谱测量技术可以应用于多个领域,包括化学分析、生物医学、材料科学等。
它可以用于检测和分析物质的化学成分、浓度、结构等信息。
激光光谱测量技术的基本原理是通过将待测样品与激光光源进行相互作用,测量样品对激光光源的吸收、散射、荧光等光学响应,从而获取样品的光谱信息。
通过对测得的光谱数据进行分析和处理,可以得到样品的相关性质和参数。
激光光谱测量技术有多种实现方式,包括光吸收光谱、拉曼光谱、荧光光谱等。
其中,拉曼光谱是一种常用的激光光谱测量技术,它可以提供物质的分子振动信息,用于物质的鉴定和分析。
总之,激光光谱测量技术是一种高分辨率、高灵敏度的光谱测量方法,可以应用于多个领域,为科学研究和工业技术提供了重要的分析手段。
激光光谱学的介绍一、引言光谱学是研究物质和电磁波相互作用的科学,而激光光谱学是对在激光器发明之后,使用激光作为光源来进行的原子、分子的发射光谱、吸收光谱以及非线性效应所做研究的通称。
激光光谱学是自激光技术出现以来在传统光谱学基础上发展起来的一门新兴学科。
传统光谱学已有300多年的历史。
1666年伟大的科学家牛顿用棱镜发现了光的色散现象,由此开始了光谱学的发展,不过在起初的一百多年内,其发展极为缓慢,直到1814年著名的物理学家夫琅和费用他发明的棱镜光谱仪观察到太阳谱线开始,才逐渐进入光谱学发展的盛期,除了对吸收与发射光谱的研究外,还相应发展了对散射光谱的研究,特别是喇曼散射的发现,即在光发生散射时,除了原有频率之外,散射光中还有一些其它频率的光出现,通过喇曼散射可以研究物质的结构与组成等!其实光谱学作为一门实用性学科是由物理学家和化学家共同开创起来的。
到20世纪初,传统光谱学已经十分成熟并在冶金、电子、化工、医药、食品等工业部门都成为相当重要的分析手段。
尽管传统的光谱学在物质研究中获得了多方面的应用,但在激光问世之前,它的进一步发展已经面临着不可逾越的鸿沟。
首先传统光谱学使用普通光源,探测分辨率低,而增强其单色性,又不得不以降低光强为代价,这样又会影响到探测的灵敏度,此外,在弱光辐射下光谱中的许多非线性效应表现不出来,因此包含物质结构深层次的信息被阻断。
60年代高强度、高单色性激光的出现给光谱学这门学科注入了新的活力,在其后发展的激光光谱学中,激光光源的优越性被发挥的淋漓尽致。
比如激光的单色性使分光器件分辨率提高,高强度提高了探测的灵敏度,而且强光与物质粒子的相互作用中,产生了各种可观测的非线性光谱效应;此外激光的高度方向性又使对微区或定点的光谱分析成为可能。
在激光光谱学中,作为光谱分析手段的激光光谱技术由于其高空间分辨率、高时间分辨率、高光谱分辨率也倍受重视,在许多科学技术领域有着非常广泛的应用前景!二、激光光谱学技术的应用1、化学把激光光谱技术与光化学结合,工艺技术简单、设备小、效率高、成本低。
激光光声光谱检测技术激光光声光谱技术作为一种高灵敏度的微量气体检测技术历史已经超过30年,几乎同红外气体检测技术一样长。
这两种检测技术的共同点都是利用气体分子吸收红外线的特性,二者的区别在于光源。
红外检测技术是利用红外线做光源,是广谱的光源,即使经过滤光片依然是广谱的光源,所以红外气体传感器的选择性差灵敏度低。
激光光声光谱技术采用激光器做光源,是单一频率的光源,光源的频率可以和气体分子的吸收频率一致,所以激光光声光谱技术的特点是选择性好灵敏度高。
一、激光光声光谱气体检测技术原理光声气体检测原理是利用气体吸收一强度随时间变化的光束而被加热时所引起的一系列声效应。
当某个气体分子吸收一频率为ν的光子后,从基态E0跃迁到激发态E1,则两能量级的能量差为E1-E0=hv。
受激气体分子与气体中任何一分子相碰撞,经过无辐射驰豫过程而转变为相撞的两个分子的平均动能(既加热),通过这种方式释放能量从尔返回基态。
气体通过这种无辐射的驰豫过程把吸收的光能部分地或全部的转换成热能而被加热。
如果入射光强度调制的频率小于该驰豫过程的驰豫频率,则这光强的调制就会在气体中产生相应的温度调制。
根据气体定律,封闭在光声腔内的气体温度就会产生与光强调制频率相同的周期性起伏。
也就是说,强度时变的光束在气体试样内激发出相应的声波,用传声器便可直接检测该信号。
气体光声检测系统通常由激光器(或普通单色光源)、调制器(使光束作强度调制,例如机械切光器、电光调制器等)、充有被测吸收气体和装有检测传声器的光声腔以及信号采集处理系统组成。
利用光声原理实现的气体检测技术是基于气体的特征红外吸收,间接测量气体吸收的能量,因此测量灵敏度高,检测极限低,切不存在传感器老化的问题。
1971年Kreuzer从理论上分析利用染料激光器和高灵敏度穿声器的光声技术的检测极限达到10-12数量级,比传统的红外光谱仪灵敏度高104倍。
二、LLD-100型高灵敏度快速响应的SF6定量检漏仪SF6气体泄漏检测仪一般都要求体积小、重量轻、用电池供电以适合电力系统现场使用,但激光光声光谱气体技术中所需要的激光器一般体积都很大、功率消耗也很大,所以制造出的仪器体积庞大而且需要交流电供电,不适合电力系统现场使用。
第一张基本概念:1.能级寿命是指自发辐射能级寿命,能级寿命与自发辐射系数互为倒数关系。
2.自发辐射与受激辐射的区别:(1)受激跃迁与自发辐射,前者与外场揉(谬)有关,而后者则只取决于原子、分子系统本身,与外场揉(谬)无关。
理论和实验证明受激辐射光子与入射光子具有四同(同频率、同位相、同波矢、同偏振),即受激辐射光子与入射光子属于同一光子态(光波模式),受激辐射光是相干光,而自发辐射是非相干的随机过程。
(3)自发辐射系数A21与受激跃迁系数的关系:在热平衡条件下,能级E1、E2的粒子数N1、N2应保持平衡,则有: 3. 光子简并度n 为受激辐射几率与自发辐射几率之比,前者产生相干光子,后者产生非相干光子。
4. 激光器的三要素:(1)工作物质(气体、固体、液体、半导体等);(2)泵浦源:二者可实现粒子数反转,实现光放大。
(3)激光谐振腔 ---实现选模和光学正反馈。
5.线宽:分布函数半最大值所对应的频率宽度叫线宽—半最大值全宽,线宽内部分叫谱线的核,外部部分叫翼。
6.光谱学中常见的谱线展宽有:自然展宽、碰撞展宽、 Doppler 展宽。
自然加宽:由于自发辐射的存在,导致处于激发态的粒子具有一定的寿命,使得所发射的光谱具有一定的线宽称为自然加宽。
7.碰撞又分为弹性碰撞和非弹性碰撞:弹性碰撞,碰撞对之间没有通过无辐射跃迁所进行的内能交换时,称为弹性碰撞。
非弹性碰撞,碰撞对A 、B 在碰撞期间,A 的内能完全的或部分的转移给了B(或成为B 的内能或转变为A 、B 的平动动能),有内能变化,称为非弹性碰撞,也叫淬灭碰撞。
小距离弹性碰撞主要引起谱线加宽,而大距离弹性碰撞主要引起频移。
8.Doppler 加宽:由于气体原子、分子的热运动而具有一定的速度分布,一定速度的粒子相对于探测器来讲,都会产生Doppler 频移,这样具有一定速度的粒子只对谱线的某一频率范围有贡献,总体效果使得谱线加宽,Doppler 加宽的谱线线型为高斯线型。