激光光谱-05-激光光源01
- 格式:pdf
- 大小:774.92 KB
- 文档页数:42
光声光谱和激光光谱光声光谱和激光光谱是两种不同的光谱分析技术。
光声光谱是通过声波与光波之间的相互作用来研究物质的光谱特性,而激光光谱是利用激光与物质之间的相互作用来研究物质的光谱特性。
光声光谱技术是利用声波的特点和能量与光波的特点和能量相互转换来实现的。
在光声光谱技术中,首先使用一个激光光源产生一个强光束,然后将这个强光束聚焦到需要研究的样品上。
当强光束与样品相互作用时,会产生声波信号。
这些声波信号会通过一个声波传感器来探测和记录。
通过记录声波信号的时域特性和频域特性,可以得到样品的光声光谱信息。
光声光谱可以提供有关样品的结构、成分、形貌和物理性质等信息。
光声光谱技术具有分辨率高、灵敏度高、无损检测等优点,被广泛应用于材料科学、药物研究、生物学等领域。
激光光谱技术是利用激光与物质之间的相互作用来研究物质的光谱特性。
激光是一种特殊的光源,具有高亮度、高单色性和高相干性等特点。
在激光光谱技术中,首先使用一个激光器产生一束具有特定波长和能量的激光光束,然后将激光光束照射到需要研究的样品上。
当激光光束与样品相互作用时,会发生吸收、散射、发射等光谱现象。
这些光谱现象会通过光谱仪器来探测和记录。
通过分析记录下来的光谱信号,可以得到样品的光谱信息。
激光光谱可以提供有关样品的能级结构、能量转移、光谱分布等信息。
激光光谱技术具有高分辨率、高灵敏度、速度快等优点,被广泛应用于化学、物理、生物、环境科学等领域。
光声光谱和激光光谱之间存在着不同的工作原理和应用范围。
光声光谱主要用于研究材料的结构、成分和物理性质等方面,可以提供材料的超声波声速、吸收系数、非线性参数等信息。
激光光谱主要用于研究物质的能级结构、能量转移和光谱分布等方面,可以提供物质的发射光谱、吸收光谱、荧光光谱等信息。
光声光谱和激光光谱在应用中都具有重要的地位。
光声光谱主要应用于材料科学、药物研究、医学诊断、环境检测等领域。
例如,在材料科学中,光声光谱可以用于研究固体材料的声学性质、热传导性能、材料界面的结构等方面。
激光光谱测量技术
激光光谱测量技术是一种利用激光光源进行光谱测量的技术。
它基于激光的单色性和高亮度特点,可以提供高分辨率和高灵敏度的光谱测量结果。
激光光谱测量技术可以应用于多个领域,包括化学分析、生物医学、材料科学等。
它可以用于检测和分析物质的化学成分、浓度、结构等信息。
激光光谱测量技术的基本原理是通过将待测样品与激光光源进行相互作用,测量样品对激光光源的吸收、散射、荧光等光学响应,从而获取样品的光谱信息。
通过对测得的光谱数据进行分析和处理,可以得到样品的相关性质和参数。
激光光谱测量技术有多种实现方式,包括光吸收光谱、拉曼光谱、荧光光谱等。
其中,拉曼光谱是一种常用的激光光谱测量技术,它可以提供物质的分子振动信息,用于物质的鉴定和分析。
总之,激光光谱测量技术是一种高分辨率、高灵敏度的光谱测量方法,可以应用于多个领域,为科学研究和工业技术提供了重要的分析手段。
激光光谱学的介绍一、引言光谱学是研究物质和电磁波相互作用的科学,而激光光谱学是对在激光器发明之后,使用激光作为光源来进行的原子、分子的发射光谱、吸收光谱以及非线性效应所做研究的通称。
激光光谱学是自激光技术出现以来在传统光谱学基础上发展起来的一门新兴学科。
传统光谱学已有300多年的历史。
1666年伟大的科学家牛顿用棱镜发现了光的色散现象,由此开始了光谱学的发展,不过在起初的一百多年内,其发展极为缓慢,直到1814年著名的物理学家夫琅和费用他发明的棱镜光谱仪观察到太阳谱线开始,才逐渐进入光谱学发展的盛期,除了对吸收与发射光谱的研究外,还相应发展了对散射光谱的研究,特别是喇曼散射的发现,即在光发生散射时,除了原有频率之外,散射光中还有一些其它频率的光出现,通过喇曼散射可以研究物质的结构与组成等!其实光谱学作为一门实用性学科是由物理学家和化学家共同开创起来的。
到20世纪初,传统光谱学已经十分成熟并在冶金、电子、化工、医药、食品等工业部门都成为相当重要的分析手段。
尽管传统的光谱学在物质研究中获得了多方面的应用,但在激光问世之前,它的进一步发展已经面临着不可逾越的鸿沟。
首先传统光谱学使用普通光源,探测分辨率低,而增强其单色性,又不得不以降低光强为代价,这样又会影响到探测的灵敏度,此外,在弱光辐射下光谱中的许多非线性效应表现不出来,因此包含物质结构深层次的信息被阻断。
60年代高强度、高单色性激光的出现给光谱学这门学科注入了新的活力,在其后发展的激光光谱学中,激光光源的优越性被发挥的淋漓尽致。
比如激光的单色性使分光器件分辨率提高,高强度提高了探测的灵敏度,而且强光与物质粒子的相互作用中,产生了各种可观测的非线性光谱效应;此外激光的高度方向性又使对微区或定点的光谱分析成为可能。
在激光光谱学中,作为光谱分析手段的激光光谱技术由于其高空间分辨率、高时间分辨率、高光谱分辨率也倍受重视,在许多科学技术领域有着非常广泛的应用前景!二、激光光谱学技术的应用1、化学把激光光谱技术与光化学结合,工艺技术简单、设备小、效率高、成本低。
激光光声光谱检测技术激光光声光谱技术作为一种高灵敏度的微量气体检测技术历史已经超过30年,几乎同红外气体检测技术一样长。
这两种检测技术的共同点都是利用气体分子吸收红外线的特性,二者的区别在于光源。
红外检测技术是利用红外线做光源,是广谱的光源,即使经过滤光片依然是广谱的光源,所以红外气体传感器的选择性差灵敏度低。
激光光声光谱技术采用激光器做光源,是单一频率的光源,光源的频率可以和气体分子的吸收频率一致,所以激光光声光谱技术的特点是选择性好灵敏度高。
一、激光光声光谱气体检测技术原理光声气体检测原理是利用气体吸收一强度随时间变化的光束而被加热时所引起的一系列声效应。
当某个气体分子吸收一频率为ν的光子后,从基态E0跃迁到激发态E1,则两能量级的能量差为E1-E0=hv。
受激气体分子与气体中任何一分子相碰撞,经过无辐射驰豫过程而转变为相撞的两个分子的平均动能(既加热),通过这种方式释放能量从尔返回基态。
气体通过这种无辐射的驰豫过程把吸收的光能部分地或全部的转换成热能而被加热。
如果入射光强度调制的频率小于该驰豫过程的驰豫频率,则这光强的调制就会在气体中产生相应的温度调制。
根据气体定律,封闭在光声腔内的气体温度就会产生与光强调制频率相同的周期性起伏。
也就是说,强度时变的光束在气体试样内激发出相应的声波,用传声器便可直接检测该信号。
气体光声检测系统通常由激光器(或普通单色光源)、调制器(使光束作强度调制,例如机械切光器、电光调制器等)、充有被测吸收气体和装有检测传声器的光声腔以及信号采集处理系统组成。
利用光声原理实现的气体检测技术是基于气体的特征红外吸收,间接测量气体吸收的能量,因此测量灵敏度高,检测极限低,切不存在传感器老化的问题。
1971年Kreuzer从理论上分析利用染料激光器和高灵敏度穿声器的光声技术的检测极限达到10-12数量级,比传统的红外光谱仪灵敏度高104倍。
二、LLD-100型高灵敏度快速响应的SF6定量检漏仪SF6气体泄漏检测仪一般都要求体积小、重量轻、用电池供电以适合电力系统现场使用,但激光光声光谱气体技术中所需要的激光器一般体积都很大、功率消耗也很大,所以制造出的仪器体积庞大而且需要交流电供电,不适合电力系统现场使用。
第一张基本概念:1.能级寿命是指自发辐射能级寿命,能级寿命与自发辐射系数互为倒数关系。
2.自发辐射与受激辐射的区别:(1)受激跃迁与自发辐射,前者与外场揉(谬)有关,而后者则只取决于原子、分子系统本身,与外场揉(谬)无关。
理论和实验证明受激辐射光子与入射光子具有四同(同频率、同位相、同波矢、同偏振),即受激辐射光子与入射光子属于同一光子态(光波模式),受激辐射光是相干光,而自发辐射是非相干的随机过程。
(3)自发辐射系数A21与受激跃迁系数的关系:在热平衡条件下,能级E1、E2的粒子数N1、N2应保持平衡,则有: 3. 光子简并度n 为受激辐射几率与自发辐射几率之比,前者产生相干光子,后者产生非相干光子。
4. 激光器的三要素:(1)工作物质(气体、固体、液体、半导体等);(2)泵浦源:二者可实现粒子数反转,实现光放大。
(3)激光谐振腔 ---实现选模和光学正反馈。
5.线宽:分布函数半最大值所对应的频率宽度叫线宽—半最大值全宽,线宽内部分叫谱线的核,外部部分叫翼。
6.光谱学中常见的谱线展宽有:自然展宽、碰撞展宽、 Doppler 展宽。
自然加宽:由于自发辐射的存在,导致处于激发态的粒子具有一定的寿命,使得所发射的光谱具有一定的线宽称为自然加宽。
7.碰撞又分为弹性碰撞和非弹性碰撞:弹性碰撞,碰撞对之间没有通过无辐射跃迁所进行的内能交换时,称为弹性碰撞。
非弹性碰撞,碰撞对A 、B 在碰撞期间,A 的内能完全的或部分的转移给了B(或成为B 的内能或转变为A 、B 的平动动能),有内能变化,称为非弹性碰撞,也叫淬灭碰撞。
小距离弹性碰撞主要引起谱线加宽,而大距离弹性碰撞主要引起频移。
8.Doppler 加宽:由于气体原子、分子的热运动而具有一定的速度分布,一定速度的粒子相对于探测器来讲,都会产生Doppler 频移,这样具有一定速度的粒子只对谱线的某一频率范围有贡献,总体效果使得谱线加宽,Doppler 加宽的谱线线型为高斯线型。
激光拉曼光谱的原理
激光拉曼光谱(Laser Raman Spectroscopy)是一种非常强大的分析技术,它利用激光光源和拉曼散射效应来获得样品的分子结构和化学成分信息。
激光拉曼光谱的原理可以概括如下:
1. 激光光源:激光拉曼光谱的核心是激光器,通常使用单色激光源,如氦氖激光器(He-Ne)或激光二极管激光器(例如Nd:YAG激光器)。
激光光源发出单一波长的激光光束,通常是可见光或近红外光。
2. 样品激发:激光光束照射到待分析的样品上。
激光光子与样品中的分子相互作用,引起分子的振动、转动和能级变化。
这些过程会导致光子的散射。
3. 拉曼散射:当激光光子与样品中的分子相互作用时,部分光子的能量会发生微小的频率变化,这就是拉曼散射。
拉曼散射产生的光子具有不同的频率或波数,其中一些频率高于激光光子,而另一些则低于它。
这种频率变化的光子被称为拉曼散射光子。
4. 原始光与拉曼散射光的分离:拉曼散射光子与原始的激光光子分开,通常通过使用光谱仪中的光栅或其他分光元件。
这使得能够将拉曼散射光子分离并记录其频率。
5. 光谱分析:分离后的拉曼光谱通过光谱仪传递到检测器上,记录不同频率(波数)下的光强度。
这个拉曼光谱包含了样品中不同分子的振动和转动模式的信息。
6. 数据解释:通过分析拉曼光谱,可以识别样品中的不同分子、它们的浓度以及分子之间的相互作用。
这使得激光拉曼光谱成为一种非侵入性、非破坏性的分析工具,可用于化学、材料科学、生物学和环境科学等领域。
总的来说,激光拉曼光谱的原理是基于激光散射的现象,通过测量拉曼光谱,可以提供有关样品分子结构和成分的宝贵信息。
激光技术中的激光光谱与激光成像激光技术中的光谱与成像激光技术是现代科技领域的重要分支之一,主要包括激光光源、光电探测与成像三个部分。
其中,激光光谱与成像是激光技术中最重要的两个方面,它们在实际应用中都具有广泛的用途。
下面将从光谱和成像两个方面进行探讨。
激光光谱激光光谱是指激光发射的光在波长维度上的分布,也就是激光的“颜色”,其包含了激光器的光学、材料、电子、热学、光学等诸多方面的物理特性。
激光光谱可以通过光谱仪进行测量和分析,其对于激光技术的研究和开发至关重要。
在实际应用中,激光光谱在物质分析、光谱学、医学成像等领域中都具有广泛的应用。
激光光谱的基本特性包括激光器类型、波长、谱线宽度、激光功率等。
不同类型的激光器具有不同的光谱特征。
例如,氦氖激光器的波长范围在630~680nm之间,二氧化碳激光器的波长为10.6μm等。
在实际测量中,激光光谱的精度和稳定性都是非常重要的因素。
通过精确的光谱分析,可以获取到更多的信号信息,并指导激光技术的研发和应用。
激光成像激光成像是指利用激光作为光源,通过对物体的反射、散射、透射等特性进行测量和分析,获得物体的三维形态、内部构造及其材料特性等信息。
激光成像具有高分辨率、高精度的特点,并且在各个领域中都有着广泛的应用。
激光成像技术有多种形式,如激光雷达、激光扫描成像、激光线扫描成像等。
激光雷达是利用激光束进行测量,通过对激光反射信号的分析和处理,获取目标物体的位置和形态等信息。
激光扫描成像是指通过激光对目标物体进行扫描,将其三维形态转化为二维图像。
激光线扫描成像是指利用激光在物体表面上沿线扫描,获取高精度的三维坐标。
激光成像技术在多个领域中都得到了广泛的应用。
在工业制造领域中,激光成像可以用于精度加工、检测、测量等方面,提高生产效率和产品质量。
在医学应用中,激光成像可以用于组织学分析、医学影像等方面,帮助医生进行准确的诊断和治疗。
在军事、航空以及安全监测等领域中,激光成像也有诸多的应用。
激光拉曼光谱仪的激光光源
激光拉曼光谱仪的激光光源通常使用激光器作为光源。
常见的激光光源包括:
1. 氦氖激光器(He-Ne Laser):氦氖激光器是最常用的激光光源之一,它发射的激光波长为63
2.8纳米(红光),适用于一些常见的拉曼光谱分析应用。
2. 氩离子激光器(Ar Laser):氩离子激光器发射的激光波长通常在488纳米至514纳米之间,适用于一些特定的拉曼光谱分析应用。
3. 二极管激光器(Diode Laser):二极管激光器可以提供多种波长的激光光源,包括红光、绿光和蓝光等。
它们通常比较紧凑和稳定,适用于便携式和实时监测的应用。
4. 固体激光器(Solid-state Laser):固体激光器通常使用钕(Nd)或铒(Er)等离子体作为激活剂,可以提供多种波长的激光光源,包括红光、近红外光和紫外光等。
这些激光器通常具有较高的功率和较窄的线宽,适用于高分辨率和高灵敏度的拉曼光谱分析。
5. 光纤激光器(Fiber Laser):光纤激光器利用光纤作为激光介质,可以提供多种波长的激光光源,具有较高的功率和较窄的线宽。
光纤激光器通常比较紧凑和稳定,适用于便携式和实时监测的应用。
这些激光光源可以根据实际需求选择,以满足不同的拉曼光谱分析应用要求。
激光等光源发射光谱的丈量关于很多光源,如激光、灯源等,需要知道它们的光谱特征,丈量光谱特征最方便的装置是光谱仪。
光谱仪即能够选择大型的扫描式光谱仪,也能够选择目前流行的微型光纤光谱仪〔多通道〕。
大型光谱仪拥有波长分辨率高、波长范围宽的长处,根本能够知足全局部的应用。
微型光纤光谱仪那么价钱低价,仅是大型光谱仪的零头;携带方便,也便于集成到其余设施;丈量速度快,最快几毫秒既能够收集保留一组数据;操作方便;性能靠谱、稳固,因为它关于很多光源,如激光、灯源等,需要知道它们的光谱特征,丈量光谱特征最方便的装置是光谱仪。
光谱仪即能够选择大型的扫描式光谱仪,也能够选择当前流行的微型光纤光谱仪〔多通道〕。
大型光谱仪拥有波长分辨率高、波长范围宽的长处,根本能够知足全局部的应用。
微型光纤光谱仪那么价钱低价,仅是大型光谱仪的零头;携带方便,也便于集成到其余设施;丈量速度快,最快几毫秒既能够收集保留一组数据;操作方便;性能靠谱、稳固,因为它里面没有任何需要挪动的零件。
在知足使用要求的前提下,微型光纤光谱仪是一种最正确的选择。
图 1 典型激光发射光谱测量装置激光发射光谱丈量图 2 是激光丈量的实质装置不同的光源,需要丈量的参数不同样。
关于激光,只需测它的谱线宽度即可,此时的装置能够采纳如图 1 所示部署。
该装置主要由光谱仪和积分球构成。
入射激光由积分球接收,再经光纤传入光谱仪,激光芒宽数据能够直接读出。
图2 是激光丈量的实质装置,图3 是测得的实质光谱数据数据。
表 1 是该系统的详细配置清单:图 3 用图 1 的装置测得的激光光谱数据表 1 激光发射光谱丈量系统典型配置</ tr >一、光谱仪HR4000波长范700-880nm围:波长分辨率:二、丈量软件Spectrasuite三、积分球〔可选〕ISP-REF四、传光光纤 1 根 QP400-2-VIS-NIR自然光、灯源等光谱丈量图 4 自然光、灯源等光谱丈量关于自然光、灯源等光谱,常常因为光谱范围较宽,需要知道不同波段之间的相对光强或绝对光强。