材料与成形技术_6剖析
- 格式:ppt
- 大小:2.32 MB
- 文档页数:35
第一章 金属材料与热处理1、常用的力学性能有哪些?各性能的常用指标是什么?答:刚度:弹性模量E 强度:屈服强度(屈服极限)和抗拉强度(强度极限)塑性:断后伸长率δ和断面收缩率ψ 硬度:布氏硬度(HB )、洛氏硬度(HRA 、HRB 、HRC 、HRD)、维氏硬度(HV) 冲击韧性:摆锤式冲击试验,冲击韧性值2k k A J/cm F α=() 疲劳强度:疲劳强度(疲劳极限)1σ- 2、0.2σ的意义是什么?能在拉伸图上画出0.2σ吗?答:工程上规定以生产0.2%残留伸长的应力作为屈服强度,又称条件屈服强度,以σ0.2表示。
金属材料中只有低碳钢等少数金属有屈服现象,大多数金属材料拉伸时没有明显的屈服现象有些材料的拉伸曲线上没有明显的屈服点s σ,难于确定开始塑性变形的最低应力值,因此,测定式样产生0.2%残余应变时的应力值为该材料的条件屈服强度。
4、金属结晶过程中采用哪些措施可以使其晶粒细化?为什么?答:过冷细化:采用提高金属的冷却速度,增大过冷度T ∆细化晶粒。
变质处理:在生产中有意向液态金属中加入多种难溶质点(变质剂),促使其非自发形核,以提高形核率,抑制晶核长大速度,从而细化晶粒。
附加震动:在金属结晶过程中,采用各种振动,可使正在生长的树枝状晶体被打断,破碎的细小晶体成为新的晶核,增大了形核率,从而细化晶粒。
另外采用压力加工和热处理等方法也能细化固态金属的晶粒。
7、根据3Fe Fe C -相图,(1)试分析0.45%C 、0.8%C 和1.2%C 合金的结晶过程,画出冷却曲线,并写出各个温度下不同的组织。
(2)试分析含碳量对钢的组织和性能的影响,并定性比较45钢、T8钢、T12钢的b σ、HB 和δ。
答:(1)0.45%C 为亚共析钢,结晶过程:3()L L A A A F F P F Fe C →+→→+→++0.8%C 为共析钢,结晶过程:3()L L A A P F Fe C →+→→+1.2%C 为过共析钢, 结晶过程33L L A A A Fe C P Fe C →+→→+→+(2)当碳含量C ω增高,渗碳体数量增加,对亚共析钢来说,组织中的珠光体数量增加,刚的硬度、强度呈直线上升,而塑性则相应降低。
工程材料与成形技术基础主要内容1、工程材料的分类工程材料一般可分为金属材料、高分子材料、陶瓷材料和复合材料等几大类。
2、金属材料的主要性能(1)力学性能是金属材料重要的使用性能,主要有:弹性、塑性、刚度、强度、硬度、冲击韧性、疲劳强度、断裂韧性等,要求掌握各种性能的定义。
(2) 常用的力学性能指标有:弹性极限(σe )、屈服强度(σs ,σ0.2 )、抗拉强度(σb )、延伸率(δ)、断面收缩率(φ)、冲击韧性(αk )、硬度(HB ,HRC ,HV )和疲劳强度(σ-1)等。
3、掌握金属材料的物理性能、化学性能和工艺性能的概念。
4、名词解释:(1)、合金(2)组元(3)固溶体(4)相图(5)金属化合物(6)结晶(7)晶体(8)晶格(9)晶面(10)晶胞(11)固溶强化(12)金属热处理(13)退火(14)正火(15)淬火(16)回火(17)调质处理5、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体和莱氏体。
6、掌握铁碳合金相图中的特性点和特性线的含义,要求默画铁碳合金相图。
7、了解铁碳合金中典型合金的结晶过程分析。
8、掌握铁碳合金的成分、组织和性能的变化规律。
9、掌握金属热处理的定义及作用。
10、重点掌握常用的金属热处理工艺方法的定义、目的、特点及应用。
常用热处理工艺包括退火、正火、淬火、回火及表面热处理和表面化学热处理。
11、了解钢在加热和冷却时的转变过程。
12、掌握常用金属材料的分类。
重点掌握碳钢的分类(按质量、用途、含碳量)、铸铁的分类(两种分类法)和合金钢的分类。
13、掌握碳钢、铸铁、合金钢的编号方法、成分、性能和应用。
能正确选用螺栓、齿轮、轴、床身、箱体、弹簧、模具、刀具等典型零件的相关材料(名称和编号)。
14、了解机械零件选材的一般原则。
第二部分材料成形工艺基础一、铸造1、了解合金的铸造性能及相关影响因素。
2、了解常见铸件缺陷及产生的主要原因。
3、掌握砂型铸造的工艺过程及应用范围。
材料成型技术
材料成型技术是一种用特定的手段将材料从一个形状转变成另一个形状的技术。
材料成型技术的应用十分广泛,包括注塑成型、压力成型、挤压成型、压缩成型、粘接成型等多种方法。
以下将从注塑成型、挤压成型和粘接成型三个方面进行介绍。
注塑成型是一种常用的材料成型技术,其原理是将熔融态的材料注入到模具中,然后在模具中冷却硬化得到所需要的成品。
注塑成型具有生产效率高、成型精度高、成本相对较低等特点。
它广泛应用于塑料制品、橡胶制品、陶瓷制品等领域。
注塑成型的缺点是模具制造成本高,适用于大批量生产,不适用于小批量生产。
挤压成型是一种将熔融态的材料通过模具挤压出来,从而得到所需要的成品的技术。
挤压成型主要适用于材料为熔融态的情况,例如金属、塑料等。
挤压成型可以得到复杂形状的材料,生产效率高,成型精度高。
它广泛应用于汽车制造、机械制造、建筑材料等领域。
粘接成型是一种利用胶水或其他粘接剂将两块材料黏合在一起的技术。
粘接成型具有成本低、加工简单、生产效率高等优点。
它被广泛应用于纸板制品、橡胶制品、电子产品等领域。
粘接成型的缺点是胶水的质量和粘结强度受到很多因素的影响,需要进行严格的控制和检测。
综上所述,材料成型技术是一种将材料从一个形状转变成另一个形状的技术,包括注塑成型、挤压成型和粘接成型等多种方
法。
这些方法具有各自的优缺点,应根据实际需求选择合适的成型技术。
材料成型技术的应用广泛,对于现代工业的发展至关重要。
材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。
常见的成形方法包括压力成形、热成形、热力复合成形等。
不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。
2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。
常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。
这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。
3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。
常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。
热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。
4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。
常见的热力复合成形技术包括焊接、热压焊、热胶合等。
这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。
5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。
工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。
工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。
6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。
工具设计包括毛坯设计、凸模设计、模具结构设计等。
材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。
7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。
常用的监测和控制技术包括传感器、自动控制系统等。
这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。
工程材料与成形技术基础一、工程材料的定义和分类1.1 工程材料的定义工程材料是指在各种工程项目中使用的各种物质,包括金属、非金属、有机材料等。
1.2 工程材料的分类工程材料可以根据其组成、用途、特性等不同方面进行分类。
常见的工程材料分类包括: 1. 金属材料 2. 粘土材料 3. 混凝土材料 4. 高分子材料 5. 玻璃材料 6. 陶瓷材料 7. 复合材料二、工程材料的性能与选用2.1 力学性能工程材料的力学性能包括强度、刚度、韧性、硬度等指标,这些指标对于工程结构的安全性和可靠性至关重要。
2.2 耐久性工程材料的耐久性是指其在不同环境下长期使用的能力,包括耐热性、耐寒性、耐腐蚀性等。
2.3 加工性能工程材料的加工性能包括可塑性、可焊性、可锻性等指标,这些指标影响着工程材料的成形过程和成形性能。
三、工程材料的成形技术3.1 塑性成形技术塑性成形技术是指通过对工程材料的塑性变形来实现其形状的改变,常见的塑性成形技术包括挤压、拉伸、冲压、滚压等。
3.2 焊接技术焊接技术是将两个或多个工程材料通过加热或加压的方式连接在一起,常见的焊接技术包括电弧焊、气体焊、激光焊等。
3.3 铸造技术铸造技术是将熔化的工程材料倒入铸型中,通过凝固形成所需的形状,常见的铸造技术包括砂型铸造、压力铸造、熔模铸造等。
3.4 热处理技术热处理技术是通过对工程材料的加热或冷却处理来改变其组织和性能,常见的热处理技术包括淬火、回火、退火等。
四、工程材料与成形技术的应用4.1 汽车制造工程材料与成形技术在汽车制造中起着重要作用,如汽车车身的制造和焊接、发动机零件的铸造等。
4.2 建筑工程工程材料与成形技术在建筑工程中广泛应用,如混凝土构件的浇筑、钢结构的焊接、玻璃幕墙的制作等。
4.3 电子产品制造工程材料与成形技术在电子产品制造中也有重要应用,如电路板的制造和焊接、塑料外壳的注塑成形等。
4.4 航空航天工程材料与成形技术在航空航天领域扮演着重要角色,如航空发动机的制造、航天器的结构成形等。
一、实训背景随着科技的飞速发展,材料成形技术在我国制造业中扮演着越来越重要的角色。
为了提高我国材料成形技术水平,培养一批具备实际操作能力和创新精神的材料成形技术人才,我们参加了为期一个月的材料成形实训课程。
通过这次实训,我对材料成形技术有了更加深入的了解,同时也收获了许多宝贵的实践经验。
二、实训内容本次实训主要包括以下内容:1. 材料成形基本原理:了解了各种材料成形方法的原理、特点和应用领域,如铸造、锻造、焊接、冲压、挤压等。
2. 材料成形工艺:掌握了各种材料成形工艺的操作步骤、工艺参数及注意事项,如铸造工艺、锻造工艺、焊接工艺、冲压工艺等。
3. 材料成形设备:熟悉了各种材料成形设备的结构、原理及操作方法,如铸造设备、锻造设备、焊接设备、冲压设备等。
4. 材料成形质量检测:学习了材料成形质量检测的方法和标准,如外观检测、尺寸检测、力学性能检测等。
5. 材料成形案例分析:通过分析实际案例,提高了对材料成形技术的应用能力和解决实际问题的能力。
三、实训心得1. 理论与实践相结合在实训过程中,我们深刻体会到理论与实践相结合的重要性。
只有将所学理论知识与实际操作相结合,才能更好地掌握材料成形技术。
在实训过程中,我们不仅要学习理论知识,还要动手实践,通过操作设备、观察现象、分析数据,将理论知识转化为实际技能。
2. 注重细节,严谨操作材料成形工艺的各个环节都至关重要,任何一个细节的疏忽都可能导致产品质量问题。
在实训过程中,我们学会了严谨对待每一个操作步骤,注重细节,确保材料成形过程的顺利进行。
3. 提高创新能力材料成形技术不断发展,新型材料、新型工艺不断涌现。
在实训过程中,我们不断尝试创新,提出改进方案,以提高材料成形效率和产品质量。
这种创新精神对于我国材料成形技术发展具有重要意义。
4. 团队合作精神材料成形实训课程需要多人协作完成,这要求我们具备良好的团队合作精神。
在实训过程中,我们学会了如何与他人沟通、协作,共同解决问题,为我国材料成形技术发展贡献力量。
材料成型原理材料成型技术材料成型原理及材料成型技术材料成型原理材料成型是通过制造工艺将原材料转化为所需的形状和尺寸的过程。
在材料成型的过程中,需要了解和应用材料成型原理,以确保最终产品的质量和性能。
1. 塑性成型原理塑性成型是指通过在一定温度下施加力来改变金属材料形状的方法。
在塑性成型过程中,材料受到的作用力使其发生塑性变形,从而得到所需的形状。
常见的塑性成型方法包括轧制、挤压、拉伸、冷冲压等。
2. 粉末冶金原理粉末冶金是指将金属或非金属粉末经过成型和烧结等工艺制成所需产品的方法。
在粉末冶金过程中,首先将粉末与有机增塑剂混合,然后通过成型工艺将其压制成所需形状,最后进行烧结使其结合成整体。
3. 注塑成型原理注塑成型是将塑料通过加热溶融后,通过高压注入模具中,并通过冷却使其固化成为所需形状的方法。
注塑成型广泛应用于塑料制品的生产过程中,如塑料杯、塑料零件等。
4. 焊接成型原理焊接成型是通过热能使两个或多个工件相互结合的过程。
焊接成型可以分为熔化焊接和非熔化焊接两种类型。
熔化焊接是利用能量将工件加热至熔化状态,使其相互结合,如电弧焊、气焊等;非熔化焊接是通过压力或热传导使工件相互结合,如电阻焊、激光焊接等。
材料成型技术在材料成型的过程中,常用的成型技术有许多种类,以下是其中几种常见的成型技术。
1. 压力成型技术压力成型技术是通过施加压力改变材料形状的技术。
压力成型技术包括锻造、挤压、冲压等。
锻造是将金属材料置于模具中,并通过锤击、压力等力量改变其形状。
挤压是通过在模具中施加高压使材料产生塑性变形,并得到所需形状和尺寸。
冲压是通过模具的剪切和冲击力将金属材料剪切或冲击成所需的形状。
2. 热处理技术热处理技术是通过加热或冷却材料以改变其组织结构和性能的技术。
热处理技术包括退火、淬火、回火等。
退火是通过加热材料至一定温度后缓慢冷却至室温,以改变其组织结构和性能。
淬火是将材料加热至一定温度后迅速冷却,以使材料达到高强度和硬度。