平方差公式说课稿
- 格式:doc
- 大小:38.00 KB
- 文档页数:3
人教版数学八年级上册《14.2.1平方差公式》说课稿2一. 教材分析平方差公式是八年级数学上册第14章第2节的一个知识点,也是本节课的核心内容。
平方差公式的引入是为了解决实际问题,同时为后续学习完全平方公式和二次方程打下基础。
本节课的内容包括平方差公式的推导、理解和应用。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、完全平方公式等基础知识,但还没有学习过平方差公式。
学生对于实际问题的解决能力较强,但对于新的数学知识的理解和应用还需要引导。
三. 说教学目标1.知识与技能目标:学生能够理解平方差公式的含义,掌握推导过程,并能运用平方差公式解决实际问题。
2.过程与方法目标:通过小组合作、探究学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:平方差公式的推导和应用。
2.教学难点:平方差公式的理解,尤其是公式中各项的符号和意义。
五. 说教学方法与手段1.教学方法:采用问题驱动法、小组合作法、探究学习法。
2.教学手段:多媒体课件、黑板、粉笔。
六. 说教学过程1.导入新课:通过一个实际问题引入平方差公式,激发学生的学习兴趣。
2.推导公式:引导学生通过小组合作、探究学习,共同推导出平方差公式。
3.讲解公式:详细讲解平方差公式的含义,解释公式中各项的符号和意义。
4.应用练习:布置一些实际问题,让学生运用平方差公式解决,巩固所学知识。
5.课堂小结:引导学生总结本节课所学内容,巩固记忆。
七. 说板书设计板书设计包括平方差公式的推导过程、公式及其含义、应用实例等。
通过板书,帮助学生理解和记忆平方差公式。
八. 说教学评价教学评价主要包括课堂表现、练习完成情况和课后作业。
通过这些评价,了解学生对平方差公式的掌握程度,为后续教学提供依据。
九. 说教学反思教学反思是教师在教学过程中,对教学方法、教学内容、学生学习情况等方面进行思考和总结的过程。
人教版数学八年级上册说课稿14.2.1《平方差公式》一. 教材分析《平方差公式》是人教版数学八年级上册第14章的一节内容。
本节课的主要内容是引导学生探究并掌握平方差公式的推导过程及应用。
平方差公式是初中学过的公式之一,它不仅在代数运算中有着广泛的应用,而且为学生今后学习更高深的数学知识奠定了基础。
二. 学情分析八年级的学生已经掌握了有理数的混合运算,具备一定的逻辑思维能力和探究能力。
但是,对于平方差公式的推导过程和应用,他们可能还比较陌生。
因此,在教学过程中,我将会注重引导学生通过观察、思考、讨论等方式,自主地探究平方差公式的推导过程,并学会运用平方差公式解决问题。
三. 说教学目标1.知识与技能目标:使学生掌握平方差公式的推导过程,理解并掌握平方差公式的应用。
2.过程与方法目标:通过观察、思考、讨论等方式,培养学生的逻辑思维能力和探究能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:平方差公式的推导过程及应用。
2.教学难点:平方差公式的推导过程,以及如何运用平方差公式解决实际问题。
五.说教学方法与手段1.教学方法:采用问题驱动法、探究式学习法、小组合作学习法等。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,以及网络资源进行辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对平方差公式的思考,激发他们的学习兴趣。
2.自主探究:引导学生观察、思考,让学生通过小组合作的方式,共同探究平方差公式的推导过程。
3.公式讲解:讲解平方差公式的推导过程,解释平方差公式的含义。
4.应用练习:布置一些练习题,让学生运用平方差公式进行计算,巩固所学知识。
5.课堂小结:对本节课的内容进行总结,强调平方差公式的应用。
七. 说板书设计板书设计要清晰、简洁,能够突出平方差公式的推导过程和应用。
主要包括以下几个部分:1.平方差公式的推导过程。
《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。
(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。
华师大版数学八年级上册《平方差公式》说课稿4一. 教材分析华师大版数学八年级上册《平方差公式》是学生在学习了有理数的乘法、平方根的基础上进行学习的。
这一章节的主要内容是平方差公式,即(a+b)(a-b)=a2-b2。
通过这一章节的学习,学生能够理解和掌握平方差公式的推导过程及其应用,进一步巩固有理数的运算。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和运算能力,对于有理数的乘法和平方根的概念已经有了一定的理解。
但是,对于平方差公式的推导过程和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实例来理解平方差公式的推导过程,并通过练习来巩固其应用。
三. 说教学目标1.理解平方差公式的推导过程。
2.掌握平方差公式的应用。
3.培养学生的逻辑思维能力和运算能力。
四. 说教学重难点1.教学重点:平方差公式的推导过程和应用。
2.教学难点:平方差公式的灵活运用。
五.说教学方法与手段1.采用问题驱动的教学方法,引导学生通过实例来推导平方差公式。
2.使用多媒体手段,展示平方差公式的推导过程,帮助学生更好地理解。
3.通过练习题,让学生巩固平方差公式的应用。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何求解两个数的平方差。
2.推导平方差公式:引导学生通过实例来推导平方差公式,解释其推导过程。
3.讲解平方差公式的应用:通过实例讲解,让学生理解平方差公式的应用。
4.练习:让学生通过练习题,巩固平方差公式的应用。
5.总结:对本节课的内容进行总结,强调平方差公式的应用。
七. 说板书设计板书设计如下:平方差公式:(a+b)(a-b)=a2-b2八. 说教学评价通过学生在课堂上的表现、练习题的完成情况以及学生的反馈来评价教学效果。
九. 说教学反思在教学过程中,要注意引导学生通过实例来理解平方差公式的推导过程,并通过练习来巩固其应用。
同时,也要关注学生的学习情况,及时调整教学方法和手段,以提高教学效果。
一.教材分析二.学情与教法分析三.教学环节流程四.教学过程(一)简析教材内容及地位作用平方差公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法基础上的拓展和创造性应用,是对多项式乘法中出现的较为特殊的算式的一种归纳总结,是从一般到特殊的认识过程的范例。
平方差公式这一内容属于数学再创造活动的结果,它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用,是构建学生有价值的数学知识体系并形成相应数学技能的重要内容。
同时,其探究方法也为完全平方公式的探究打下基础.(二)教学重点、难点根据教材内容、学情以及课标要求,我把教学重点定为:平方差公式的理解与正确运用,难点定为对公式特征的准确认识即对公式中a,b的广泛意义的理解(三)目标分析《课程标准》明确提出,义务教育阶段的数学课程,要从数学的本身的特点出发,从学生学习数学的心理规律和学生已有的知识经验出发,让学生经历一个实践、思考、探索、交流、解释、应用的学习过程,而在数与代数的学习中,重要是让学生学会探究模式,发现规律,而不是死记公式和法则,所以本节课中要让学生经历探究知识发生发展的过程,通过自己的学习和与他人的交流,推导出平方差公式,体会公式的本质特征,让学生知其然并且知其所以然,有机会获得知识探究的乐趣。
因此这节课的知识与技能目标定为:会推导平方差公式,掌握平方差公式的结构特点,并能熟练地运用公式进行运算;2.过程与方法目标定为:经历“观察-思考-猜想-验证”的过程,探索平方差公式,认识“特殊”与“一般”的辩证关系,了解“一般到特殊”的认识规律和数学发现的方法;培养学生分析、联想、转化、探索的能力以及严谨的思维,充分感受数学演绎的过程和数学知识的整体性。
3. 情感与态度目标定为:培养数学学习的过程中,善于观察、大胆创新、严谨论证的良好思维习惯,有条理的思考和表达的能力。
体验和领悟数学发现的乐趣与成功感,感受数学的简洁美。
中学数学平方差公式说课稿三初中平方差公式说课稿 1作为一无名无私奉献的教育工,有必要进行细致的说课稿准备工作,说课稿有助于学生理解并掌握系统的知识。
优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的初中平方差公式说课稿,仅供参考,大家一起来看看吧。
一、说目标1、使孩子理解和掌握平方差公式,并会用公式进行计算;2、注意培养孩子分析、综合和抽象、概括以及运算能力。
二、说重难点本节教学的重点是掌握公式的结构特征及正确运用公式、难点是公式推导的理解及字母的广泛含义、平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础。
1、平方差公式是由多项式乘法直接计算得出的:与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项、合并同类项后仅得两项。
2、这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差、公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。
只要符合公式的结构特征,就可运用这一公式、例如:在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了。
3、关于平方差公式的特征,在学习时应注意:(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数。
(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方。
(3)公式中的和可以是具体数,也可以是单项式或多项式。
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算。
三、说教法1、可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发孩子的学习兴趣,使孩子能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养孩子观察、概括的能力。
2、通过孩子自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即(a+b)(a—b)=a2+ab—ab—b2=a2—b2。
中学数学《平方差公式》说课稿范文中学数学《平方差公式》说课稿1中学数学《平方差公式》说课稿1一、说教材本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全闲方公式的学习提供了方法。
因此,闲方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。
二、说学情学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。
因此,我们把教学难点定为:理解闲方差公式的结构特征,灵活应用闲方差公式。
三、说教学目标基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:知识与技能目标:了解闲方差公式产生的背景,理解闲方差公式的意义,掌握闲方差公式的结构特征,并能灵活运用闲方差公式解决问题。
过程与方法目标:经历闲方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。
情感态度与价值观目标:通过探究闲方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。
教学重点:理解闲方差公式的意义,掌握闲方差公式的结构特征。
教学难点:运用闲方差公式解决问题。
四、说教法、学法课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。
学习方法:学生积极参与、大胆猜想、合作交流和自主探索。
五、说教学过程本节课教学按以下五个流程展开五个流程:创设情景引入新课合作交流探求新知巩固深化内化新知总结概括布置作业:(一)创设情景,引入新课数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。
《平方差公式》的教案《平方差公式》的教案范文(精选11篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于顺利而有效地开展教学活动。
那么写教案需要注意哪些问题呢?以下是小编帮大家整理的《平方差公式》的教案范文(精选11篇),希望能够帮助到大家。
《平方差公式》的教案篇1教学目标①经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力.②会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算.③了解平方差公式的几何背景,体会数形结合的思想方法.教学重点与难点重点:平方差公式的推导及应用.难点:用公式的结构特征判断题目能否使用公式.教学准备卡片及多媒体课件教学设计引入同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.注:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式与多项式相乘的运算法则,利用多项式乘法推导乘法公式是从一般到特殊的过程,对今后学习其他乘法公式的推导有一定的指导意义,同时也可培养学生观察、归纳、概括等能力,因此在教学中,首先应让学生思考:你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程,学生在发现规律后,还应通过符号运算对规律进行证明.举例再举几个这样的运算例子.注:让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报.验证我们再来计算(a+b)(a-b)=公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例归纳猜想验证用数学符号表示.注:这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的结构特征,为下一步运用公式进行简单计算打下基础.概括平方差公式及其形式特征教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明这些特点的原因.应用教科书第152页例1运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)(a+b)(a-b) a b a2b2 最后结果(3x+2)(3x-2) 2 (3x)2-22(b+2a)(2a-b)(-x+2y)(-x-2y)对本例的前面两个小题可以采用学生独立完成,然后抢答的形式完成;第三小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.注:(1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解:即它们既可以是数,也可以是含字母的整式.(2)在具体计算时,当有一个二项式两项都负时,往往不易判明a、b,如第三小题,此时可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养.(3)例1第(3)小题引导学生多角度思考问题,可以加深对公式的理解.教科书第152页例2计算:(1)10298(2)(y+2)(y-2)-(y-1)(y+5)此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的.注:(1)运用平方差公式进行数的简便运算的关键是根据数的形式特征,把相乘的两数化成两数和与两数差的乘积形式,教学时可让学生自己寻找相乘两数的形式特征.(2)第二小题要引导学生注意到一般形式的整式乘法与特殊形式的整式乘法的区别与联系,强调:只有符合公式要求的乘法,才能运用公式简化运算,其余的运算仍按整式乘法法则进行.教科书第153页练习1、2练习1口答完成;练习2采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成.注:让学生通过巩固练习,达成本节课的基本学习目标,并通过丰富的活动形式,激发学习兴趣,培养竞争意识和集体荣誉感.解释你能根据下面的两个图形解释平方差公式吗?多媒体动画演示图形的变换过程,体会过程中不变的量,并能用代数恒等式表示.注:(1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.(2)此处将教科书的图15.3-1分解为两个图形,是考虑到学生数与形结合的思想方法掌握的不够熟练;利用两个图形可以清楚变化的过程,便于联想代数的形式.小结谈一谈:你这一节课有什么收获?注:这儿采取的是先由每个学生自己小结,然后由小组代表作答,把教师做小结变成了课堂上人人做小结,有助于学生概括能力、抽象能力、表达能力的提高.同时,由于人人都要做小结,促使学生注意力集中,学习主动性加强.作业1.必做题:教科书第156页习题15.2第1题2.选做题:计算:(1)x2+(y-x)(y+x)(2)20082-20092007(3)(-0.25x-2y)(-0.25x+2y)(4)(a+ b)(a- b)-(3a-2b)(3a+2b)《平方差公式》的教案篇2教学内容:P108—110 平方差公式例1 例2 例3教学目的:1、使学生会推导平方差公式,并掌握公式特征。
《平方差公式》说课稿
镇安县月河镇黄家湾九年一贯制学校甘宏博《平方差公式》是义务教育课程标准实验教科书(人教版)《数学》八年级上册第十四章第2节的第一节课,下面我就这一节的教学谈谈自己的设计意图。
一、说教材
1、教学内容:根据《新课标》要求,本节课的教学内容有三点:(1)平方差公式的推导(2)平方差公式的几何论证(3)平方差公式的应用
2、教材的地位、作用及前后联系:平方差公式属于数与代数这一领域的内容,它在整式乘法,因式分解,分式运算中起着十分重要的作用。
3、教学重点定为平方差公式的应用,难点应为平方差公式的推导。
二、说教学目标
1、知识与技能目标:掌握平方差公式,并能正确运用公式进行简单的运算。
2、过程与方法目标:经历探索、推导平方差公式的过程,学会观察、抽象、归纳、概括和推理能力。
3、情感态度价值观目标:在合作交流中,体会从一般到特殊的认识事物的规律;数形结合的思想方法。
三、说教法
《新课标》强调“让学生经历数学知识的形成与应用过程”,充分调动学生思维的主动性、积极性,根据这样的原则和所要完成的教学目标,我采用启发式、讨论式相结合的教学方法。
四、说学法
有效的数学学习方法不能单纯地依赖模仿与记忆,教师应引导学生主动地从事计算、观察、猜想、验证、归纳,应用等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
通过本节课的教学,我要让学生领会以下学习方法:1.自主探究2.合作交流在这样的活动中,学生不仅能主动地获取知识,而且能不断丰富数学活动的经验,学会探究,学会学习。
五、说教学过程
《新课标》明确指出:“经历知识的形成与应用的过程,将有利于学生更好的理解数学、应用数学,增强学好数学的信心”,因此本节课采用“问题情景——探究新知---交流展示----小结提升——解释应用”的模式进行教学。
以下我将对每一教学环节分别教什么怎么教,为什么这么教加以说明。
1.创设问题情境
根据平方差公式与图形面积的密切关系,我通过《喜羊羊与灰太狼》的故事导入新课,既与本节课密切相关,又能充分调动学生学习积极性。
2.探求新知
由于平方差公式是在学习了多项式乘多项式之后提出的,学生已具备学习平方差公式的知识基础,所以本环节我采用:计算、观察、猜想、验证、归纳五个步骤。
本环节要解决的是理解平方差公式的结构特征,也是本节课的难点,即平方差公式的推导。
我采取了引导小组进行计算、观察、讨论、分析公式特征结构。
在验证平方差公式的这一步骤我设计了运用计算和图形面积两
种方式,目的是渗透数形结合思想,培养学生多角度思考问题的习惯。
3.交流展示
经过前面的学习,学生对平方差公式有了一定的感性认识,这一环节的目的是巩固公式,学会计算,这也是本节的重点。
在这一环节的教学时充分发挥学生的主体地位,运用公式的关键是认清结构,找准a、b,我在例题中设计了一个表格,为学生搭建了一个桥梁,既降低了难度,又加深对字母含义广泛性的理解。
至此,学生对平方差公式有了一个全面的理解过程,但是要想形成数学能力还有一定的差距,据此我设计了反馈练习环节。
通过练习,教师可以了解学生对新知识的掌握程度。
在这里我设计了判断题,一是避免重复练习,二是自我矫正,三是重视举一反三,思考解法的多样性。
4.总结提升
通过前几个环节的努力,本环节对知识进行整理,对规律进行总结,对思想方法进行提炼。
5.解释应用
课堂最后让学生解释问题情境中喜洋洋为什么能脱口而出,有了本节课知识的支撑,学生应用平方差公式解释轻而易举。
这时新课前的谜底揭晓,学生恍然大悟,既做到了前后照应,又使学生感受到数学来源于生活又服务于生活。
六、说反思
本节课还有很多不足之处:一是双边互动较少,二是小组合作没有发挥实质性作用,三是时间分配不合理。
总之,我教的这节课充其量只能算是一节常规课,离高效相差甚远,请给位专家老师不吝赐教,多提宝贵意见。
谢谢大家!。