《测量金属丝的电阻率》的实验报告
- 格式:doc
- 大小:72.50 KB
- 文档页数:3
测定金属丝的电阻率实验报告第十节实验:测定金属丝的电阻率【基础知识训练】1,在做测定金属丝的电阻率的实验时,下列说法正确的有( )应该用游标卡尺测量金属丝的长度,这样精确度高些.应该用螺旋测微器(千分尺)测量其直径.用多用表的欧姆挡测量其电阻,这样方便.测量时,通电时间不宜过长,电流不宜过大,以免金属丝明显升温,造成电阻率变化.2,为了提高电阻率的测量精度,下列措施那些是必须的( )①导线长度L用米尺测三次求平均值②测量电阻时,采用电流表内接法③实验时,电路中的电流要足够大④用千分尺测直径时,应在三个不同位置测量,再求平均值A,①② B,②③ C,①④ D,②④3,要测定金属丝的电阻率,必须直接测出的物理量是( )①金属丝的电阻②金属丝的长度③金属丝的直径④流过金属丝的电流强度⑤金属丝两端的电压A,①②③④ B,②③④⑤ C,①③④⑤ D,①②③⑤4,在下列测定金属丝的电阻率的几个步骤中,错误的是( )①先测出金属丝的长度,再将金属丝两端固定在接线柱上悬空拉直②根据待测金属丝的阻值,选择仪器和电路③接电路时,应先断开电键④不断增大滑动变阻器连入电路中的电阻值⑤将记录的数据填入设计的表格内,计算出电流和电压的平均值,再求出电阻A,①②④ B,①③④ C,②③⑤ D,①④⑤5,用如图14-10-1所示的电路测量金属丝的电阻,尽管仪器完好无损,实验操作也完全正确,但发现测得的电阻值比真实值小了近一半,这是因为( )金属丝的电阻值接近电压表的内阻.金属丝的电阻值远大于电压表的内阻.电流表的内阻太大.没有进行多次测量然后取平均值.【能力技巧训练】6,螺旋测微器的精密螺距是 mm,可动刻度上的旋钮和测微杆紧固在一起,旋钮每转一周,可动刻度恰好转过等分,此时测微螺干就前进或后退 mm.可动刻度每转过一等分,测微螺干移动的距离为 mm,用它测量长度可以精确到 mm.用它来测量直径约几毫米的金属丝的直径时,其有效数字是位.如图14-10-2所示螺旋测微器的示数为 .7,在测定金属的电阻率的实验中,按实验要求测出了所需测量的物理量,则计算电阻率的公式是 ,在需要测出的物理量中,对实验结果的准确性影响最大的是的测量.8,在测定金属的电阻率实验中,请在下面的虚线框中画出测量的电路图,并根据你所画电路图连接实物图.(图14-10-3所示)【探究创新训练】9,为测定一根长约20.0cm,横截面直径为0.220mm的某种金属丝的电阻率(其值约为1×10-6Ωm),现有以下器材可供选择:直流电源(电源电压为15V)电流表(量程为0~200μA,内阻约为3.7KΩ)电流表(量程为0~20mA,内阻约为40Ω)电流表(量程为0~2 A,内阻约为0.4Ω)电压表(量程为0~12VA,内阻约为40KΩ)电压表(量程为0~15V,内阻约为50KΩ)滑动变阻器(阻值0~10Ω,额定电流1A) 滑动变阻器(阻值0~1KΩ,额定电流0.1A)。
一、实验目的1. 理解电阻率的定义及其在材料科学中的应用。
2. 掌握电阻率测量的基本原理和方法。
3. 通过实验验证电阻率与材料性质之间的关系。
二、实验原理电阻率(ρ)是衡量材料导电性能的重要参数,其定义为单位长度、单位截面积的导体电阻。
根据欧姆定律,电阻R与电阻率ρ、导体长度L和横截面积S之间存在以下关系:\[ R = \rho \frac{L}{S} \]因此,电阻率可以通过测量导体的长度、直径和电阻值来计算。
实验中,我们将使用双臂电桥测量金属丝的电阻,并据此计算其电阻率。
三、实验仪器与材料1. 金属丝(材料:铜,直径:1mm)2. 双臂电桥3. 数字万用表4. 精密测量尺5. 电路连接线6. 导线连接夹四、实验步骤1. 准备实验器材,将金属丝固定在实验台上。
2. 使用精密测量尺测量金属丝的长度L(精确到0.01cm)。
3. 使用数字万用表测量金属丝的电阻R(精确到0.01Ω)。
4. 使用精密测量尺测量金属丝的直径d(精确到0.001mm),然后计算横截面积S (S = π(d/2)^2)。
5. 根据公式\[ \rho = \frac{R \cdot S}{L} \]计算金属丝的电阻率ρ。
五、实验数据与结果| 金属丝长度L (cm) | 金属丝直径d (mm) | 金属丝电阻R (Ω) | 横截面积S (mm²) | 电阻率ρ (Ω·m) ||------------------|------------------|------------------|------------------|----------------|| 10.00 | 1.000 | 0.100 | 0.785 | 7.85 × 10^-6 |六、实验分析与讨论根据实验数据,金属丝的电阻率为7.85 × 10^-6 Ω·m。
该值与铜的标准电阻率(约为1.68 × 10^-8 Ω·m)存在较大差异,可能是由于以下原因:1. 金属丝长度和直径的测量误差;2. 金属丝表面氧化层或杂质的影响;3. 测量仪器的精度限制。
《测定金属的电阻率》实验报告实验目的:学会用伏安法测量电阻的阻值,掌握利用电阻定律测定金属的电阻率。
实验原理:部分电路欧姆定律:I U R =; 电阻定律:SL R ρ= 实验器材:金属丝、毫米刻度尺、螺旋测微器、电压表(0—3V )、电流表(0—0.6A )、电源(3V )、滑动变阻器(0—20Ω)、开关一个、导线若干【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜实验步骤(1)用螺旋测微器三次测量导线不同位置的直径记录在表格中,取平均值D 求出其横截面积S=πD 2/4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次记录在表格中,求出平均值。
(3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线。
注意:避免接线交叉和正负极性接错,开关处于断开状态,滑动变阻器的阻值调到最大(4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的U 、I 记下来。
注意:(1)测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。
(2)计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。
图1数据记录处理:测量次数 1 2 3 平均值导线长l/m导线直径d/m导线的横截面积S= (公式)= m2测量次数 1 2 3 电阻平均值电压U/V电流I/A电阻R/Ω所测金属的电阻率ρ= (公式)= Ωm【误差分析】1.测量金属丝直径、长度时出现的偶然误差;2.采用外接法则由于伏特表的分流影响,造成电阻测量值偏大,若误用内接法则安培表分压影响更大;3.通电电流太大,时间太长,致使电阻丝发热,电阻率随之变化。
测量金属丝的电阻率实验报告单实验报告单实验名称:测量金属丝的电阻率一、实验目的1.学习并掌握电阻定律和电阻率的概念;2.通过实验测量金属丝的电阻率;3.培养实验操作技能和数据处理能力。
二、实验原理电阻定律表明,在温度不变的情况下,导体的电阻R与其长度L成正比,与其横截面积S成反比,即:R = ρ × (L/S)其中,ρ为导体的电阻率,是反映导体导电性能的物理量。
本实验通过测量金属丝的长度、直径和电阻,进而计算其电阻率。
三、实验器材1.金属丝(待测);2.电流表;3.电压表;4.滑动变阻器;5.电源;6.开关;7.导线若干;8.米尺;9.千分尺。
四、实验步骤1.使用米尺测量金属丝的长度L,并记录数据;2.使用千分尺测量金属丝的直径d,并计算其横截面积S(S = π ×(d/2)^2);3.按图连接电路,将电流表、电压表、滑动变阻器、电源、开关和待测金属丝连接成串联电路;4.打开电源,调节滑动变阻器,使电流表和电压表读数稳定;5.记录电流表的读数I(单位:A)和电压表的读数U(单位:V);6.计算金属丝的电阻R(R = U/I);7.根据电阻定律,计算金属丝的电阻率ρ(ρ = R × S/L)。
五、实验数据记录与处理1.金属丝长度L = 1.00m;2.金属丝直径d = 0.50mm;3.金属丝横截面积S = π × (0.50/2)^2 = 0.196mm^2;4.电流表读数I = 0.50A;5.电压表读数U = 0.40V;6.金属丝电阻R = U/I = 0.40/0.50 = 0.80Ω;7.金属丝电阻率ρ = R × S/L = 0.80 × 0.196/1.00 =0.157Ω·mm^2/m。
六、实验结论与分析通过本次实验,我们得出金属丝的电阻率为0.157Ω·mm^2/m。
实验中,我们采用了电流表、电压表测量电流和电压,使用滑动变阻器调节电路中的电流。
实验名称:测定金属的电阻率[实验目的]1. 练习使用螺旋测微器.2. 学会用伏安法测量电阻的阻值.3. 测定金属的电阻率.[实验原理]由电阻定律lIUd l S R 42πρ==可知,只要测出金属导线的长度l ,横截面积S 和对应导线长度的电压U 和电流I ,便可以求出制成导线的金属材料的电阻率ρ。
长度l 用刻度尺测量.横截面积S 由导线的直径d 算出,导线的直径d 需要由螺旋测微器(千分尺)来测量,电压U 和电流I 分别用电压表和电流表测出。
[实验器材] 某种金属材料制成的电阻丝,螺旋测微器,毫米刻度尺,电池组,电流表,电压表,滑动变阻器,开关,导线若干.[实验步骤]1. 用螺旋测微器在接入电路部分的被测金属导线上的三个不同位置各测量一次导线的直径,结果记在表格内,求出其平均值d 。
2. 按原理电路图连接好用伏安法测电阻的实验电路。
3. 用刻度尺准确测量接入电路中的金属导线的有效长度l ,结果记入表格内。
4. 用伏安法测金属导线对应长度的电压U 和电流I 。
5. 重复上述实验三次,并将数据记入表格。
6. 拆去实验电路,整理好实验器材.[实验数据记录][数据处理]求对应长度的电阻率计算表达式推导:根据金属导线的横截面积2241)2(d d S ππ==和电阻IUR = 得:金属的电阻率m lIUd l S R ⋅Ω==⋅=________42πρ [结论]金属的电阻率是__________m ⋅Ω. [误差分析][实验要点]1.本实验中被测金属导线的电阻较小,因此,实验电路必须采用电流表的外接法.2.测量导线的直径时,应将导线拉直平放在螺旋测微器的测砧上,使螺旋杆的顶部和测砧上的导线成线接触,而不是点接触;应在不同的部位,不同的方向测量几次,取平均值.3.测量导线的长度时,应将导线拉直,测量待测导线接入电路的两个端点之间的长度,亦即电压表两极并入点间的部分待测导线的长度,长度测量应准确到毫米.4.用伏安法测电阻时,电流不宜太大,通电时间不宜太长.当我们要测量时才合上开关,测量后即断开开关.5.闭合电键S之前,一定要使滑动变阻器的滑片处在有效电阻最大的位置.6.为准确求出R平均值,可采用I-U图象法求电阻.。
金属丝测电阻率实验报告金属丝测电阻率实验报告引言:电阻率是描述材料导电性能的重要物理量,对于金属材料而言,电阻率是其导电性能的基本特征之一。
本实验旨在通过测量金属丝的电阻和尺寸,计算出金属丝的电阻率,并探究影响电阻率的因素。
一、实验目的:1. 了解电阻率的概念和计算方法;2. 掌握测量电阻的方法;3. 研究金属丝电阻率与其材料特性的关系。
二、实验器材和材料:1. 金属丝样品;2. 电阻计;3. 电流源;4. 导线;5. 卷尺。
三、实验步骤:1. 准备工作:将金属丝样品固定在试验台上,保证其平直且不受外界干扰;2. 测量电阻:将电阻计的两个触电头分别与金属丝的两端相连,调节电流源,使电流通过金属丝,记录下所测得的电阻值;3. 测量尺寸:使用卷尺测量金属丝的长度和直径,并记录下来。
四、实验数据处理:1. 计算电阻率:根据欧姆定律,电阻率可以通过公式ρ = R × (A / L)计算得出,其中R为电阻,A为金属丝的横截面积,L为金属丝的长度;2. 分析影响因素:根据实验数据,研究金属丝电阻率与其材料特性的关系,如材料成分、温度等。
五、实验结果与讨论:通过实验测量得到的电阻率数据可以用来比较不同金属材料之间的导电性能。
实验结果显示,不同材料的金属丝具有不同的电阻率,这与其材料的导电性能有关。
例如,铜和铝是常见的导电材料,其电阻率较低,适用于电线和电缆等导电应用。
而铁和钨等金属的电阻率较高,适用于电热器件等应用。
此外,金属丝的电阻率还受到温度的影响。
随着温度的升高,金属丝的电阻率会增加,这是由于温度升高导致金属晶格振动增强,电子与晶格之间的碰撞增多,电阻增加的结果。
六、实验结论:通过本实验,我们了解了电阻率的概念和计算方法,并掌握了测量电阻的方法。
实验结果表明,金属丝的电阻率与其材料特性以及温度密切相关。
在实际应用中,我们可以根据金属丝的电阻率选择适合的材料,以满足不同导电要求。
七、实验心得:通过本次实验,我深刻认识到电阻率是描述金属材料导电性能的重要物理量,对于不同材料的金属丝而言,电阻率的差异会直接影响其导电性能。
《测量金属丝的电阻率》实验报告
徐闻一中:麦昌壮
一、实验目的
1.学会使用伏安法测量电阻。
2.测定金属导体的电阻率。
3.掌握滑动变阻器的两种使用方法和螺旋测微器的正确读数。
二、实验原理
设金属导线长度为l ,导线直径为d ,电阻率为ρ,则: 由S
l
ρ
R
=,得: l
R d l RS 42⋅==πρ。
三、实验器材
已知长度为50cm 的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。
四、实验电路
五、实验步骤
1.用螺旋测微器测三次导线的直径d ,取其平均值。
2.按照实验电路连接好电器元件。
3.移动滑动变阻器的滑片,改变电阻值。
4.观察电流表和电压表,记下三组不同的电压U和电流I的值。
5.根据公式计算出电阻率ρ的值。
六、实验数据
d/m U/V I/A R/Ωρ/Ω·m 第一次测量 2.80×10-4 5.00×10-17.8×10-2 6.41 1.97×10-7第二次测量 2.78×10-48.00×10-1 1.18×10-1 6.78 2.06×10-7第三次测量 2.82×10-4 1.00 1.46×10-1 6.84 2.18×10-7
七、实验结果
ρ平均=(1.97+2.06+2.18)÷3×10-7Ω·m=2.07×10-7Ω·m
八、实验结论
金属丝的电阻率是2.07×10-7Ω·m。
九、【注意事项】
1.本实验中被测金属导线的电阻值较小,因此实验电访必须采用电流表外接法
2.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待洲金属导线的两端
3.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两并入点间的部分待测导线长度.测量时应将导线拉直.
4.闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置
5.在用伏安法测电阻时,通过待测导线的电流强度正的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中逐渐增大.
6.求R的平均值可用两种方法:第一种是用R=U/I算出各次的测量值,再取平均值;第二种是用图像(U-I图线)的斜率来求出.若采用图像法,在描点时,要尽量使各点间的距离拉大一些,连线时要让各点均匀分布在直线的两侧,个别明显偏离较远的点可以不予考虑.
十、误差分析
1.测金属丝直径时会出现误差,通过变换不同的位置和角度测量,然后再求平均值方法,达到减小误差的目的;
2.测金属丝长度时出现的误差,一定要注意到测量的是连入电路中的电阻丝的长度;
3.电压表、电流表读数时会出现偶然误差;
4.不论是内接法还是外接法,电压表、电流表内阻对测量结果都会产生影响;本实验中,由于金属丝的电阻不太大,应采用电流表外接法测电阻;
5.电流过大,通电时间过长,会使电阻丝发热导致电阻发生变化,产生误差。