三角函数图像变换专题练习试卷及解析
- 格式:doc
- 大小:894.00 KB
- 文档页数:8
高一数学三角函数图象变换试题答案及解析1.为了得到函数的图像,只需将函数的图像( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】先用诱导公式将化为= =,由平移知识知,只需将函数的图像向右平移个长度单位,故选B.考点:诱导公式;平移变换2.为了得到函数的图像,只需把函数的图像()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】B【解析】=sin2(x-),为了得到函数的图象,只需将的图象向右平移个单位即可,故选A.【考点】函数y=Asin(ωx+φ)的图象变换.三角函数图像的平移.3.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A.B.C.D.【答案】C【解析】将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数,再将所得的图象向左平移个单位,得函数,即故选C.【考点】函数y=Asin(ωx+φ)的图象变换.4.函数(其中,的图象如图所示,为了得到的图象,可以将的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】A【解析】由图知,,∴,∴.又由图可得,∵,∴,∴,∴为了得到的图象,可以将的图象向右平移个单位长度,故选A.【考点】1、三角函数的图象;2、函数的图象变换.5.要得到函数y=cos()的图像,只需将y=sin的图像( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】本题考查三角函数的图像平移问题,要注意将函数解析式变为,然后根据“左加右减”的口诀平移即可.【考点】三角函数图像平移.6.函数的图象向右平移个单位后与函数的图象重合.则的解析式是( )A.B.C.D.【答案】C【解析】根据反方向知:的图像向左平移个单位后得到,根据左加右减的平移原理得到:,故选C.【考点】的图像变换7.函数的最小正周期为()A.B.C.D.【答案】【解析】由三角函数的最小正周期得.解决这类问题,须将函数化为形式,在代时,必须注意取的绝对值,因为是求最小正周期.【考点】三角函数的周期计算8.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C.0D.【答案】B【解析】根据题意,由于将函数的图象沿轴向左平移个单位后,得到,故可知的一个可能取值为,故答案为B.【考点】三角函数的图象变换点评:主要是考查了三角函数的图象变换的运用,属于基础题。
三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪⎝⎭D .πcos 24y x ⎛⎫ ⎪⎝+⎭=2.(2023·河南开封·统考二模)把函数πsin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =3.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)函数()sin f x x =的图象经过下列哪个变换可以得到()πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,这个变换是()A .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标扩大为原来的2倍B .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标缩小为原来的12C .先把函数()sin f x x =的图象上每个点的横坐标缩小为原来的12,再将图象向左平移π3个单位D .先把函数()sin f x x =的图象上每个点的横坐标扩大为原来的2倍,再将图象向左平移π6个单位4.(2023春·河北衡水·高一校考阶段练习)为了得到函数πsin 410y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数4πcos 5y x ⎛⎫=- ⎪⎝⎭图象上所有点的()A .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向右平移π20个单位长度B .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向左平移π5个单位长度C .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向右平移π5个单位长度D .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向左平移π20个单位长度5.(2023春·上海浦东新·高一华师大二附中校考阶段练习)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像()A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位6.(2023春·安徽·高一校联考阶段练习)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图象上的所有点的横坐标伸长到原来的4倍(纵坐标不变),再向右平移π3个单位长度,得到函数()g x 的图象,则π2g ⎛⎫= ⎪⎝⎭()A .12B .2C D .17.(2023春·河南焦作·高二温县第一高级中学校考阶段练习)将函数()sin 2y x ϕ=+的图象沿x 轴向右平移π8个单位长度后,得到一个偶函数的图象,则ϕ的一个可能取值为()A .π4-B .π4C .3π8D .3π88.(2023·河北·高三学业考试)为了得到函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭,x ∈R 的图象,只需将函数2sin y x =,x ∈R 的图象上所有的点()A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度二、多选题9.(2023春·重庆渝中·高一重庆巴蜀中学校考阶段练习)由曲线1π:sin 23C y x ⎛⎫=- ⎪⎝⎭得到2:cos C y x =,下面变换正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移5π6个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的12倍,纵坐标不变,再把得到的曲线向左平移5π12个单位长度,得到曲线2C C .把1C 向左平移5π6个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线2C D .把1C 向左平移5π12个单位长度,再把得到的曲线上各点的横坐标缩短到原来的2倍,纵坐标不变,得到曲线2C 10.(2023秋·山西运城·高一康杰中学校考期末)已知函数()tan πf x x =,将函数()y f x =的图象向左平移13个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数()g x 的图象,则下列描述中正确的是().A .函数()g x 的图象关于点2,03⎛⎫- ⎪⎝⎭成中心对称B .函数()g x 的最小正周期为2C .函数()g x 的单调增区间为51,33k k ⎛⎫-++ ⎪⎝⎭,k ∈ZD .函数()g x 的图象没有对称轴三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪D .πcos 24y x ⎛⎫ ⎪+=2.(2023·河南开封·统考二模)把函数sin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =。
1【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦,06a π⎛⎫=- ⎪⎝⎭平移,(3) 将函数sin (0)y x ωω=>的图象按向量平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- ,06a π⎛⎫=- ⎪⎝⎭平移,(3)C 提示:将函数sin (0)y x ωω=>的图象按向量平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。
三角函数的图像变换练习题一、正弦函数的图像变换正弦函数的标准方程为:y = sin(x)1. 平移问题a) 将正弦函数向右平移3个单位,请写出平移后的方程和对应的图像。
b) 将正弦函数向左平移π/4个单位,请写出平移后的方程和对应的图像。
2. 垂直缩放问题a) 将正弦函数垂直缩放为原来的一半,请写出缩放后的方程和对应的图像。
b) 将正弦函数垂直缩放为原来的2倍,请写出缩放后的方程和对应的图像。
3. 水平缩放问题a) 将正弦函数水平缩放为原来的1/3,请写出缩放后的方程和对应的图像。
b) 将正弦函数水平缩放为原来的3倍,请写出缩放后的方程和对应的图像。
4. 反射问题a) 将正弦函数关于x轴反射,请写出反射后的方程和对应的图像。
b) 将正弦函数关于y轴反射,请写出反射后的方程和对应的图像。
二、余弦函数的图像变换余弦函数的标准方程为:y = cos(x)1. 平移问题a) 将余弦函数向右平移4个单位,请写出平移后的方程和对应的图像。
b) 将余弦函数向左平移π/3个单位,请写出平移后的方程和对应的图像。
2. 垂直缩放问题a) 将余弦函数垂直缩放为原来的1/3,请写出缩放后的方程和对应的图像。
b) 将余弦函数垂直缩放为原来的3倍,请写出缩放后的方程和对应的图像。
3. 水平缩放问题a) 将余弦函数水平缩放为原来的2倍,请写出缩放后的方程和对应的图像。
b) 将余弦函数水平缩放为原来的1/2,请写出缩放后的方程和对应的图像。
4. 反射问题a) 将余弦函数关于x轴反射,请写出反射后的方程和对应的图像。
b) 将余弦函数关于y轴反射,请写出反射后的方程和对应的图像。
三、正切函数的图像变换正切函数的标准方程为:y = tan(x)1. 平移问题a) 将正切函数向右平移2个单位,请写出平移后的方程和对应的图像。
b) 将正切函数向左平移π/6个单位,请写出平移后的方程和对应的图像。
2. 垂直缩放问题a) 将正切函数垂直缩放为原来的1/2,请写出缩放后的方程和对应的图像。
例1.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位 【答案】B 【解析】sin(2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将sin(2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B. 例2.函数f (x )=2sin x cos x 是( )(A)最小正周期为2π的奇函数(B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数 (D )最小正周期为π的偶函数【答案】C 解析: f (x )=2sin x cos x=sin2x ,周期为π的奇函数例3.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( ) (A )23 (B ) 43 (C ) 32(D ) 3 【答案】 C 解析:选C.由已知,周期243,.32T ππωω==∴= 例4.设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( ) (A )23 (B)43 (C)32(D)3 【答案】C 【解析】将y=sin(ωx+3π)+2的图像向右平移34π个单位后为4sin[()]233y x ππω=-++4sin()233x πωπω=+-+,所以有43ωπ=2k π,即32k ω=,又因为0ω>,所以k ≥1,故32k ω=≥32,所以选C 例5.下列函数中,周期为π,且在[,]42ππ上为减函数的是( ) (A )sin(2)2y x π=+(B )cos(2)2y x π=+ (C )sin()2y x π=+ (D )cos()2y x π=+ 【答案】 A 解析:C 、D 中函数周期为2π,所以错误当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数而函数cos(2)2y x π=+为增函数 例6.已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则( )A. ω=1 ϕ= 6πB. ω=1 ϕ=- 6πC. ω=2 ϕ= 6πD. ω=2 ϕ= -6π 解析:2=∴=ϖπT 由五点作图法知232πϕπ=+⨯,ϕ= -6π 跟踪练习: 1.将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )(A )sin(2)10y x π=- (B )sin(2)5y x π=- (C )1sin()210y x π=- (D )1sin()220y x π=- 解析:将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,所得函数图象的解析式为y =sin (x -10π) ,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是1sin()210y x π=-. 【答案】C 2.5y Asinx x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点( )(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 【答案】A 由图像可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+ϕ).代入(-6π,0)可得ϕ的一个值为3π,故图像中函数的一个表达式是y=sin(2x+3π),即y=sin2(x+ 6π),所以只需将y=sinx (x ∈R )的图像上所有的点向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变。
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
高三数学三角函数图象变换试题答案及解析1.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】A【解析】,所以只需把的图象上所有的点向左平移个单位.选A.【考点】三角函数图象的变换.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3.为了得到函数的图像,只需把函数的图像()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】函数的图像向右平移(>0)个单位得到函数y=sin(2x-2+)令-2+=-,则=4.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示.为了得到g(x)=-Acos ωx(A>0,ω>0)的图象,可以将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】由图象知,f(x)=sin,g(x)=-cos 2x,代入B选项得sin=sin =-sin=-cos 2x.5.如图是函数y=Asin(x+)(x∈R)在区间[-,]上的图象,为了得到这个函数图象,只要将y=sinx(x∈R)的图象上所有点( )A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】由图像可得: -+=0且+=="2," =∵函数的最大值为1,∴y=sin(2x+)6.设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是()A.B.C.D.3【答案】C【解析】由题意可得最小正周期T=,所以===.故选C7.函数的部分图象如图所示,则的值分别是A.2,B.2,C.4,D.4,【答案】A【解析】由题意得:又而,所以【考点】求三角函数解析式8.已知函数的图像过点,且b>0,又的最大值为.(1)将写成含的形式;(2)由函数y =图像经过平移是否能得到一个奇函数y =的图像?若能,请写出平移的过程;若不能,请说明理由.【答案】(1);(2)能,过程见解析.【解析】(1)利用三角函数的恒等变换化简函数的解析式,再利用已知条件可得,解得的值,即可得到满足条件的解析式;(2)根据的图象变换规律,可得结论.试题解析:(1),由题意,可得,解得,所以,.(2)将的图像向上平移1个单位得到函数的图像,再向右平移单位得到的图像,而函数为奇函数,故将的图像先向上平移1个单位,再向右平移单位就可以得到奇函数y=的图像.【考点】1、函数的图象变换;2、三角函数中的恒等变换应用.9.将函数的图象向右平移个单位,再向上平移1个单位,所得函数图象对应的解析式为 ( )A.B.C.D.【答案】C【解析】将函数的图象向右平移个单位,得到,再向上平移1个单位,得到,故选C.【考点】三角函数图象变换10.设,若将函数的图像向左平移个单位后所得图像与原图像重合,则的值不可能为()A.4B.6C.8D.12【答案】B【解析】由定积分的性质得,将函数的图像向左平移个单位后得,因此,即;所以的值不可能为6.【考点】三角函数的平移、定积分的计算.11.函数的部分图象如图所示,为了得到的图象,只需将的图象( )A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】B【解析】观察图象可知,,,∴,.将代入上式得,由已知得,故.由知,为了得到的图象,只需将的图象向右平移个单位.故选.【考点】正弦型函数,函数图象像的平移.12.已知函数向左平移个单位后,得到函数,下列关于的说法正确的是( )A.图象关于点中心对称B.图象关于轴对称C.在区间单调递增D.在单调递减【答案】C【解析】函数向左平移个单位后,得到函数即令,得,不正确;令,得,不正确;由,得即函数的增区间为减区间为故选.【考点】三角函数图象的平移,三角函数的图象和性质.13.将函数()的图像分别向左平移()个单位,向右平移()个单位,所得到的两个图像都与函数的图像重合,则的最小值为()A.B.C.D.【答案】C【解析】利用图象变换的结论,函数()的图像分别向左平移()个单位,得函数的图象,向右平移()个单位,得函数的图象,它们都与与函数的图像重合,则最小的应该为,,从而.选C.【考点】图象的平移与诱导公式.14.函数(其中A>0,)的图象如图所示,为得到的图象,则只要将的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】根据图象得:.取得:所以,.,所以应该向右平移个单位长度.【考点】三角函数的图象及其变换.15.将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,已知函数是周期为的偶函数,则,的值分别为()A.4,B.4,C.2,D.2,【答案】B.【解析】函数,,又因是偶函数,所以,则.【考点】三角函数的平移变换.16.下列函数中,图像的一部分如右图所示的是()A.B.C.D.【答案】C.【解析】由函数图像知函数的周期为,则,排除A、D,当时,函数值为1,则C正确.【考点】三角函数的图像及其性质.17.若函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=________.【答案】【解析】由图可知,则,,,将点代入解析式得,所以,故,则.【考点】的图像.18.要得到函数的图象,只需将函数的图象 ( )A.向左平移个单位;B.向左平移个单位;C.向右平移个单位;D.向右平移个单位【答案】C【解析】只需将函数的图像向右平移个单位,即得函数的图象,故选C.【考点】三角函数图像变换.19.将函数的图像上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是 ( )A.B.C.D.【答案】A【解析】将函数的图像上各点的横坐标伸长到原来的3倍,得函数的图象;再向右平移个单位,得到的函数为.由得:.结合选项知,它的一个对称中心是,选 A.【考点】1、三角函数图象的变换;2、三角函数的对称中心.20.函数的图象如图所示,则函数的表达式为()A.B.C.D.【答案】D【解析】由函数图象可知其周期,所以,由最高点和最低点坐标知,根据“五点作图法”知当时,,即,解得,所以,选D.【考点】函数的图象与性质.21.已知函数的部分图像如图所示,则的图像可由函数的图像(纵坐标不变)()A.先把各点的横坐标缩短到原来的倍,再向右平移个单位B.先把各点的横坐标伸长到原来的倍,再向右平移个单位C.先向右平移个单位,再把各点的横坐标伸长到原来的倍D.先向右平移个单位,再把各点的横坐标缩短到原来的倍【答案】D【解析】由图像可知,,周期,即;当时,函数取得最大值,则,则,又,即.则,则将函数的图像先向右平移个单位,再把各点的横坐标缩短到原来的倍即可得到的图像.【考点】1.根据图像求正弦型函数解析式;2.三角函数的周期、相位变换.22.把函数图像上所有点的横坐标缩短到原来的倍(纵坐标不变),再把图像上所有的点向左平行移动个单位长度,得到的图像所表示的函数是()A.B.C.D.【答案】C【解析】把函数图像上所有点的横坐标缩短到原来的倍(纵坐标不变),得;再把图像上所有的点向左平行移动个单位长度,得,故选C.【考点】三角函数的图像平移与变换.23.定义运算:,将函数的图像向左平移()个单位,所得图像对应的函数为偶函数,则的最小值是()A.B.C.D.【答案】C【解析】,将函数化为再向左平移()个单位即为: 又为偶函数,由三角函数图象的性质可得,即时函数值为最大或最小值,即或,所以 ,即,又,所以的最小值是.【考点】对定义的理解能力,三角函数恒等变性, 三角函数图象及性质.24.函数()的图象的相邻两条对称轴间的距离是.若将函数图象向右平移个单位,得到函数的解析式为A.B.C.D.【答案】D【解析】根据题意,由于函数()的图象的相邻两条对称轴间的距离是.则说明周期为,w=2,排除A,B,对于C,D由于将函数图象向右平移个单位,变为,故可知答案为D.【考点】三角函数的图象变换点评:主要是考查了三角函数图象的平移变换的运用,属于基础题。
三角函数图像变换一、选择题1.(本题5分)函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则()4f π的值为()B.0C.12.(本题5分)[2014·郑州质检]要得到函数y=cos2x 的图象,只需将函数y=sin2x 的图象沿x 轴()A.向右平移4π个单位 B.向左平移4π个单位C.向右平移8π个单位D.向左平移8π个单位3.(本题5分)在函数①|2|cos x y =,②|cos |x y =,③62cos(π+=x y ,④42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B.①③④C.②④D.①③4.(本题5分)已知a 是第二象限角,5sin ,cos 13a a ==则()A.1213B.513-C.513D.-12135.(本题5分)已知函数()sin cos f x x x ωω+(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是()A、2,,63k k k Zππππ⎡⎤++∈⎣⎦B、,,36k k k Zππππ⎡⎤-+∈⎣⎦C、42,2,33k k k Z ππππ⎡⎤++∈⎣⎦D、52,2,1212k k k Z ππππ⎡⎤-+∈⎣⎦6.(本题5分)已知1cos sin 21cos sin x xx x -+=-++,则x tan 的值为()A、34B、34-C、43D、43-7.(本题5分)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,下列结论:①最小正周期为π;②将f(x)的图象向左平移6π个单位,所得到的函数是偶函数;③f(0)=1;④f(1211π)<f(1413π);⑤f(x)=-f(53π-x).其中正确的是()A.①②③B.②③④C.①④⑤D.②③⑤8.(本题5分)将函数()3cos 22x x f x =-的图象向右平移23π个单位长度得到函数()y g x =的图象,则函数()y g x =的一个单调递减区间是()A.(,42ππ-B.(,)2ππC.(,)24ππ--D.3(,2)2ππ9.(本题5分)函数cos sin y x x x =-在下面哪个区间内是增函数().A.3,22ππ⎛⎫⎪⎝⎭B.(),2ππC.35,22ππ⎛⎫⎪⎝⎭D.()2,3ππ10.(本题5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称二、填空题11.(本题5分)已知tan()2θπ-=,则22sin sin cos 2cos 3θθθθ+-+的值为12.(本题5分)已知函数()sin f x x ω=,()sin(2)2g x x π=+,有下列命题:①当2ω=时,函数y =()()f x g x 是最小正周期为2π的偶函数;②当1ω=时,()()f x g x +的最大值为98;③当2ω=时,将函数()f x 的图象向左平移2π可以得到函数()g x 的图象.其中正确命题的序号是(把你认为正确的命题的序号都填上).13.(本题5分)已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点,则a 的取值范围是.14.(本题5分)若函数()sin f x a x =+在区间[],2ππ上有且只有一个零点,则实数a =__________.15.(本题5分)给出下列四个命题:①若0x >,且1x ≠则1lg 2lg x x+≥;②2()lg(1),,22f x x ax R a =++-<<定义域为则;③函数)32cos(π-=x y 的一条对称轴是直线π125=x ;④若x R ∈则“复数()21(1)z x x i =-++为纯虚数”是“lg 0x =”必要不充分条件.其中,所有正确命题的序号是.三、解答题16.(本题12分)已知函数2()2sin cos 1f x x x x =-++⑴求()f x 的最小正周期及对称中心;⑵若[,63x ππ∈-,求()f x 的最大值和最小值.17.(本题12分)已知()()()3cos cos 2sin 223sin sin 2f αααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫--+ ⎪⎝⎭πππππ.(1)化简()fα;(2)若α是第三象限角,且31cos 25α⎛⎫-=⎪⎝⎭π,求()f α的值.18.(本题12分)设向量(1)若,求x 的值(2)设函数,求f(x)的最大值19.(本题12分)(本小题10的最大值为1.(1)求函数()f x 的单调递增区间;(2)将()f x 的图象向左平移个单位,得到函数()g x 的图象,若方程()g x =m 在x∈m 的取值范围.参考答案1.D【解析】试题分析:由已知,4112,(),2,3126A T πππω==⨯-==,所以()2sin 2()f x x ϕ=+,将(),26π代人得,()2,s 2si in(6)1n 23ππϕϕ==⨯+,所以,,326πππϕϕ==+,()2sin 2(2sin 2(),()2co64466s f x x f πππππ=⨯==+=+D .考点:正弦型函数,三角函数诱导公式.2.B【解析】∵y=cos2x=sin(2x+2π),∴只需将函数y=sin2x 的图象沿x 轴向4π个单位,即得y=sin2(x+4π)=cos2x 的图象,故选B.3.A【解析】试题分析:①中函数是一个偶函数,其周期与cos 2y x =相同,22T ππ==;②中函数|cos |x y =的周期是函数cos y x =周期的一半,即T π=;③22T ππ==;④2T π=,则选A.考点:三角函数的图象和性质4.D【解析】试题分析:∵a 是第二象限角,∴cos a ==1213-,故选D.考点:同角三角函数基本关系.5.A【解析】试题分析:因为()sin cos 2sin()6f x x x x πωωω+=+最小值为-2,可知y=-2与f(x)两个相邻公共点之间的距离就是一个周期,于是2T ππω==,即ω=2,即()2sin(2)6f x x π=+令322,2622x k k πππππ⎡⎤+∈++⎣⎦,k∈Z,解得x∈2,,63k k k Z ππππ⎡⎤++∈⎣⎦,选A 考点:三角函数恒等变形,三角函数的图象及周期、最值、单调性.6.A【解析】试题分析:由条件,得1cos sin 22cos 2sin x x x x -+=---,整理得:3sin cos 3x x +=-,即cos 3sin 3x x =--①,代入22sin cos 1x x +=中,得22sin 3sin 31x x +--=(),整理得:25sin 9sin 40x x ++=,即sin 15sin 40x x ++=()(),解得sin 1x =-(舍)或4sin 5x =-,把4sin 5x =-,代入①,得3cos 5x =-,所以4tan 3x =,故选A.考点:同角三角函数基本关系.7.C【解析】由图可知,A=2,4T =712π-3π=4π⇒T=π⇒ω=2,2×712π+φ=2kπ+32π,φ=2kπ+3π,k∈Z.f(x)=2sin(2x+3π)⇒6π)=2sin(2x+3π+3π)=2sin(2x+23π),对称轴为直线x=2k π+12π,k∈Z,一个对称中心为(56π,0),所以②、③不正确;因为f(x)的图象关于直线x=1312π对称,且f(x)的最大值为f(1312π),1211π-1312π=1211π⨯>1312π-1413π=1312π⨯,所以f(1211π)<f(1413π),即④正确;设(x,f(x))为函数f(x)=2sin(2x+3π)的图象上任意一点,其关于对称中心(56π,0)的对称点(53π-x,-f(x))还在函数f(x)=2sin(2x+3π)的图象上,即f(53π-x)=-f(x)⇒f(x)=-f(53π-x),故⑤正确.综上所述,①④⑤正确.选C.8.C【解析】试题分析:因为()2sin(26x f x π=-,所以2()()2sin()2cos 32632x x g x f x πππ=-=--=-,则()g x 在(,24ππ--上递减.考点:三角函数的性质.9.B【解析】试题分析:cos sin cos sin y x x x x x x '=--=,当2x ππ<<时,0y '>,所以函数在区间(,2)ππ上为增函数,故选B.考点:导数与函数的单调性.10.D 【解析】试题分析:()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 单调递减,图象关于直线2x π=对称。
高三数学三角函数图象变换试题答案及解析1.要得到函数y=3sin(2x+)的图象,只需要将函数y=3cos2x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】A【解析】把函数y=3cos2x的图象向右平移个单位得到的图象相应的函数解析式是y=3cos2(x-)=3cos(2x-)=3sin(2x+),因此选A.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3.为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象()A.向右平移个单位长度B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】∵函数y=sin(2x﹣)=sin[2(x﹣)],∴为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象向右平移个单位长度故选A.4.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”给出下列函数;;;其中“互为生成函数”的是()A.①②B.①③C.③④【答案】B【解析】,向左平移个单位得到函数的图象,向上平移2个单位得到的图象,与中的振幅不同,所以选B.5.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【答案】B【解析】把函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:,向左平移1个单位长度得:,再向下平移1个单位长度得:.令x=0,得:;x=,得:;观察即得答案.6.设命题:函数的图象向左平移个单位长度得到的曲线关于轴对称;命题:函数在上是增函数.则下列判断错误的是()A.为假B.为真C.为假D.为真【答案】D【解析】命题p,函数的图像向左平移个单位长度得到的函数解析式为,因为不是偶函数,所以不关于y轴对称,即命题p 为假命题.命题q,如图作出的函数图像可以发现该函数在区间上是单调递减的,在区间是单调递增的,所以命题q也是假命题,根据真值表可得为假命题,所以D是错误的,故选D【考点】命题真假三角函数指数函数域图像变化真值表7.将函数的图象向右平移个单位,再向上平移1个单位后得到的函数对应的表达式为,则函数的表达式可以是A.B.C.D.【解析】由题意,选D.【考点】图象变换.8.已知向量(为常数且),函数在上的最大值为.(1)求实数的值;(2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求取最大值时的单调增区间.【答案】(1);(2).【解析】(1)把向量,(为常数且),代入函数整理,利用两角和的正弦函数化为,根据最值求实数的值;(2)由题意把函数的图象向右平移个单位,可得函数的图象,利用在上为增函数,就是周期,求得的最大值,从而求出单调增区间.试题解析:(1).因为函数在上的最大值为,所以故.(2)由(1)知:,把函数的图象向右平移个单位,可得函数.又在上为增函数的周期即,所以的最大值为,此时单调增区间为.【考点】1.平面向量数量积的运算;2.三角恒等变换;3.三角函数的最值;4.三角函数的单调性;4、函数的图象变换.9.已知函数,则要得到的图象,只需将函数的图象上所有的点()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】,根据左加右减的平移原理,所以应该向左平移个单位长度,故选A.【考点】的图像变换10.已知的图像与的图像的两个相邻交点间的距离为,要得到的图像,只须把的图像 ( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解析】由于函数的最大值为1,又函数的图像与的图像的两个相邻交点间的距离为,所以函数的周期为.所以.所以函数的解析式为.所以要得到函数只需要将向左平移各单位即可.故选A.【考点】1.三角函数的图像.2.三角函数图像的平移.3.三函数的诱导公式.11.已知函数f(x)=sin ωx·cos ωx+cos 2ωx-(ω>0),其最小正周期为.(1)求f(x)的解析式.(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.【答案】(1)sin(2)-<k≤或k=-1.【解析】(1)f(x)=sin ωx·cos ωx+cos 2ωx-=sin 2ωx+-=sin ,由题意知f(x)的最小正周期T=,T==.∴ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位后,得到y=sin 的图象,再将所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin 的图象.∴g(x)=sin ,∵0≤x≤,∴-≤2x-≤,g(x)+k=0在区间上有且只有一个实数解,即函数y=g(x)与y=-k在区间上有且只有一个交点,由正弦函数的图象可知-≤-k<或-k=1.∴-<k≤或k=-1.12.函数f(x)=A sin(ωx+φ)的部分图象如图所示,为了得到g(x)=cos2x的图象,则只要将f(x)的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】由图象可知A=1,,所以T=π,又T==π,所以ω=2,即f(x)=sin (2x+φ),又f=sin =sin =-1,所以+φ=+2kπ,k∈Z.即φ=+2kπ,k∈Z,又|φ|<,所以φ=,即f(x)=sin .因为g(x)=cos 2x=sin=sin ,所以直线将f(x)向左平移个单位长度即可得到g(x)的图象.13.已知函数(,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是,(1)求函数的解析式及其单调增区间;(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.【答案】(1),单调递增区间是;(2).【解析】(1)三角函数问题一般都要化为的一个三角函数的形式,然后才可利用正弦函数的性质解题,这个函数图象上相邻有最高点与最低点的横坐标之差的绝对值为半个周期,而周期,再加上最高(低)点在函数图象上,我们就可出这个函数的解析式了();(2)由,根据向量数量积定义我们可求出,那么三角形的另一内角的范围应该是,即函数中的范围是,然后我们把一个整体,得出,而正弦函数在时取值范围是,因此可求出的值域.试题解析:(1)∵,∴.∵和分别是函数图像上相邻的最高点和最低点,∴解得∴.由,解得.∴函数的单调递增区间是.(2)∵在中,,∴.∴,即.∴.当时,,考察正弦函数的图像,可知,.∴,即函数的取值范围是.【考点】(1)五点法与函数的图象;(2)三角函数在给定区间的值域.14.为了得到函数的图像,只需把函数的图像上所有的点()A.向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)C.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)D.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)【答案】B【解析】这题考查函数图象的两个变换,平移变换,周期变换,当把函数图象上各点横坐标变为原来的,纵坐标不变,则得函数的图象,故本题选B.【考点】三角函数的图象变换.15.要得到函数y= sinx的图象,只需将函数的图象( )A.向右平移个单位B.向右平移个单位;C.向左平移个单位D.向左平移个单位;【答案】B【解析】首先函数化为.即由函数的图像向右平移可得函数的图像.所以选B.本校题要注意函数是要得到的函数.否则易做反了.【考点】1.正余弦函数的平移.2.关注诱导公式的变形.16.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为( )A.B.C.0D.【答案】B【解析】令,则,∵为偶函数,∴,∴,∴当时,,故的一个可能的值为.故选B.【考点】三角函数图像变化.17.要得到函数的图象,只需将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A.【解析】,故只需将函数的图象向左平移个单位长度,即可得到函数的图象,故选A.【考点】三角函数的图像变换.18.把函数的图象按向量=(-,0)平移,所得曲线的一部分如图所示,则,的值分别是()A.1,B.2,-C.2,D.1,-【答案】B【解析】把函数的图象按向量=(-,0)平移,得.由图得函数的周期.又.选B.【考点】三角函数图象的变换.19.函数的最小正周期是,若其图象向右平移个单位后得到的函数为奇函数,则函数的图象( )A.关于点对称B.关于直线对称C.关于点对称D.关于直线对称【答案】D【解析】由函数的最小正周期是可知,,所以有,向右平移个单位后有是奇函数,所以,因为,所以.所以,关于点对称,关于直线对称.【考点】1.求三角函数的解析式;2.三角函数的图像与性质20.已知向量,设函数的图象关于直线对称,其中常数(Ⅰ)求的最小正周期;(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由向量的数量积的坐标表示将表示出来,并利用正弦和余弦的二倍角公式将其表示为的形式,再由对称轴为,所以在处函数值取到最大值或最小值,从而得,代入并结合求的值,再利用和的关系,求;(Ⅱ)用代换得,先由,确定,从中取特殊点,,,,,再计算相应的自变量和函数值,列表,描点连线,即得在给定区间的图象.试题解析:(Ⅰ),;(Ⅱ)0-2020【考点】1、向量数量积的坐标表示;2、正弦和余弦的二倍角公式;3、五点作图法.21.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④【答案】D【解析】三角函数的图象在平移的过程中,振幅不变,①的函数的解析式化简为,④中的函数的解析式化简为,将③中的函数的图象向左平移个单位长度便可得到④中的函数图象,故选D.【考点】1.新定义;2.三角函数图象变换22.将函数y=f(x)·sinx的图象向右平移个单位后,再作关于x轴的对称变换,得到函数y=1-2sin2x的图象,则f(x)可以是 ().A.sinx B.cosx C.2sinx D.2cosx【答案】D【解析】将函数y=f(x)·sin x的图象向右平移个单位得,再作关于x轴的对称变换得,,即,令则,所以,,故f(x)可以是2cos x,选D.【考点】三角函数图象平移变换、二倍角公式.23.为了得到函数的图象,只需把函数的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】∵,∴只需把函数的图象向右平移个单位,选B.【考点】三角函数的图象.24.将函数()的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为【答案】2【解析】,根据函数的图象可知,当函数在上为增函数的最大满足,所函数在上为增函数的最大.【考点】的图象与性质.25.将函数的图像向右平移个单位,那么所得的图像所对应的函数解析式是()A.B.C.D.【答案】D.【解析】由已知得平移后的图像所对应的函数解析式是,故选【考点】三角函数图像变换.26.函数的图像向右平移个单位后,与函数的图像重合,则=___________.【答案】【解析】因为原函数解析式为,所以图象平移后的解析式为=,所以,解得.【考点】本小题主要考查诱导公式、三角函数的图象变换等基础知识,这两部分知识都是高考的热点内容之一,几乎年年必考,熟练其基础知识是解答好本类题目的关键.27.函数()的图象的相邻两条对称轴间的距离是.若将函数图象向右平移个单位,得到函数的解析式为A.B.C.D.【答案】D【解析】根据题意,由于函数()的图象的相邻两条对称轴间的距离是.则说明周期为,w=2,排除A,B,对于C,D由于将函数图象向右平移个单位,变为,故可知答案为D.【考点】三角函数的图象变换点评:主要是考查了三角函数图象的平移变换的运用,属于基础题。
三角函数图像变换专题练习试卷及解析1.2013年安徽省安庆一中高三第三次模拟考试数学文科试题第8题 将函数2()1cos 22sin ()6f x x x π=+--的图象向左平移(0)m m > 个单位后所得的图象关于y 轴对称,则m 的最小值为( )A. 6πB. 12πC. 3πD. 2π2.2014年湖北稳派教育高三上学期强化训练(三)理科数学试题第6题 将函数cos 2y x =的图象向右平移6π个单位长后与直线()10y m m =-≠相交,记图象在y 轴右侧的第()*n n N ∈个交点的横坐标为n a ,若数列{}n a 为等差数列,则所有m 的可能值为( ) A. 1± B. 2± C. 1或2 D. 1-或23.2013年广西贵港市平南县六陈高级中学高三5月模拟考试数学理试题第10题 函数2cos ()4y x π=+的图象沿x 轴向右平移a 个单位(0)a >,所得图象关于y 轴对称,则a 的最小值为( )A. πB. 34πC. 2πD. 4π4.2013年甘肃省兰州市高三第一次(3月)诊断考试理科数学试卷第10题将函数()2sin()(0)3f x x πωω=->的图象向左平移3πω个单位,得到函数()y g x = 的图象.若 ()y g x =在[0,]4π 上为增函数,则ω 的最大值为( )A. 4B. 3C. 2D. 15.2013年江苏省淮安市涟水县涟西中学高二下期末考试数学试题第5题 下面四个命题: ①把函数3sin(2)3y x π=+的图象向右平移3π个单位,得到3sin 2y x =的图象;②函数2()ln f x ax x =-的图象在1x =处的切线平行于直线y x =,则()2+∞是()f x 的单调递增区间;③正方体的内切球与其外接球的表面积之比为1:3;④“2a =”是“直线20ax y +=平行于直线1x y +=”的充分不必要条件; 其中所有正确命题的序号为________6.2014年福建省三明市高三5月质量检查理科数学试题第19题若函数()sin cos (,)f x a x b x a b R =+∈,非零向量(,)m a b =,我们称m 为函数()f x 的“相伴向量”,()f x 为向量m 的“相伴函数”.(1)已知函数22()(sin cos )2cos 2(0)f x x x x ωωωω=++->的最小正周期为2π,求函数()f x 的“相伴向量”;(2)记向量n =的“相伴函数”为()g x ,将()g x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移23π个单位长度,得到函数()h x ,若6(2),(0,)352h ππαα+=∈,求sin α的值; (3)对于函数()sin cos 2x x x ϕ=,是否存在“相伴向量”?若存在,求出()x ϕ“相伴向量”;若不存在,请说明理由.7.2014学年上海市金山中学高一下学期期末考试数学试卷第21题已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,且()04f π= ,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式;(2)是否存在0(,)64x ππ∈,使得00(),(),()6f xg x f π按照某种顺序成等差数列?若存在,请求出0x 的值,若不存在,说明理由;(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.8.2015年北京市顺义区高三期末统一测试数学理科试题第20题 对于定义域分别是,M N 的函数(),()y f x y g x ==,规定:函数(Ⅰ)如果函数1(),()4934(31)x xf xg x ==⋅--,写出()h x 的解析式;(Ⅱ)求(Ⅰ)中函数()h x 的值域;(Ⅲ)如果()()g x f x α=+,其中α是常数,且[0,]απ∈,请设计一个定义域为R 的函数()y f x =及一个α的值,使得1()sin(4)23h x x π=-,并予以证明.9.2014年福建省三明市高三5月质量检查文科数学试题第21题设向量1212(,),(,)a a a b b b ==,定义一种向量积12121122(,)(,)(,)a b a a b b a b a b ⊗=⊗=. 已知向量1(2,)2m =,(,0)3n π=,点00(,)P x y 为sin y x =的图象上的动点,点(,)Q x y 为()y f x =的图象上的动点,且满足OQ m OP n =⊗+(其中O 为坐标原点). (1)请用0x 表示m OP ⊗;(2)求()y f x =的表达式并求它的周期;(3)把函数()y f x =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数()y g x =的图象.设函数()()()h x g x t t R =-∈,试讨论函数()h x 在区间[0,]2π内的零点个数.答案和解析1.2013年安徽省安庆一中高三第三次模拟考试数学文科试题第8题 答案:B分析:因为23()1cos 22sin ()cos 2cos(2)cos 22)63223f x x x x x x x x πππ=+--=+-=+=+则()f x 的图象向左平移(0)m m >个单位后使得图象的解析式为()2)3f x x m π=++, 由题意得232m k πππ+=+,k Z ∈,∴m 最小值12π=.故选B .2.2014年湖北稳派教育高三上学期强化训练(三)理科数学试题第6题 答案:C分析:将函数cos 2y x =的图象向右平移6π个单位长得cos 2()cos(2)63y x x ππ=-=-,由题意知,1y m =-与函数cos(2)3y x π=-的图象的最高点或最低点相交时满足题意,此时10m -=或11m -=得即1m =或2m =,故选C.3.2013年广西贵港市平南县六陈高级中学高三5月模拟考试数学理试题第10题 答案:D分析:21cos(2)1sin 2112cos ()sin 242222x x y x x ππ++-=+===-,函数向右平移个单位得到函数为1111sin 2()sin(22)2222y x a x a =--=--,要使函数的图象关于y 轴对称,则有2,2a k k Z ππ-=+∈,即,42k a k Z ππ=--∈,所以当1k =时,得a 的最小值为4π,故选D 。
4.2013年甘肃省兰州市高三第一次(3月)诊断考试理科数学试卷第10题答案:C分析:将函数()2sin()(0)3f x x πωω=-> 的图象向左平移3πω个单位,得到函数2()sin ()sin()333y g x x x πππωωω⎡⎤==--=-⎢⎥⎣⎦ ,因为函数()y g x = 在[0,4π]上为增函数所以2ω ,所以ω 的最大值为2.5.2013年江苏省淮安市涟水县涟西中学高二下期末考试数学试题第5题答案:②③分析:根据题意,由于①把函数3sin(2)3y x π=+的图象向右平移3π个单位,得到3sin(2())3sin(2)333y x x πππ=-+=-不是3sin 2y x =的图象,错误②函数2()ln f x ax x =-的图象在1x =处的切线平行于直线y x =,则()2+∞是()f x 的单调递增区间;则根据导数可知13()2,(1)1,4f x ax f a x ''=-==,可知成立;③正方体的内切球与其外接球的表面积之比为半径的平方比,因为半径比为故成立; ④“2a =”是“直线20ax y +=平行于直线1x y +=”的充分不必要条件;应该是充要条件,故错误,故答案为②③6.2014年福建省三明市高三5月质量检查理科数学试题第19题答案:见解析分析:(1)22()(sin cos )2cos 2f x x x x ωωω=++-22sin cos sin 21cos 22x x x x ωωωω=++++-sin 2cos2x xωω=+)4x πω=+依题意得222ππω=,故12ω=∴()sin cos f x x x =+,即()f x 的“相伴向量”为(1,1)(2)依题意,()cos 2sin()6g x x x x π=+=+将()g x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到函数12sin()26y x π=+再将所得的图象上所有点向左平移23π个单位长度,得到12()2sin[()]236h x x ππ=++, 即11()2sin()2cos 222h x x x π=+=∵6(2)35h πα+=,∴3cos()65πα+=,∵(0,)2πα∈,∴2(,)663πππα+∈,∴4sin()65πα+=∴3[()]()cos()66666610sin sin sin cos sin ππππππαααα=+-=+-+=(3)若函数()sin cos 2x x x ϕ=存在“相伴向量”, 则存在,a b ,使得sin cos2sin cos x x a x b x =+对任意的x R ∈都成立, 令0x =,得0b =,因此sin cos2sin x x a x =,即sin 0x =或cos2x a =, 显然上式对任意的x R ∈不都成立,所以函数()sin cos 2x x x ϕ=不存在“相伴向量”.7.2014学年上海市金山中学高一下学期期末考试数学试卷第21题 答案:见解析分析:(1)由函数()sin()f x A x ωφ=+的周期为π可得,2ω=,又由()04f π=,0φπ<<得2πφ=,所以()cos 2f x x =;将函数()f x 的图像上所有点的横坐标伸长到原来的2倍(保持纵坐标不变)后可得cos y x =的图像,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =.(2)假设存在,当(,)64x ππ∈时,1sin 22x <<,10cos 22x <<,又1()62f π=,则 00()()()6g x f f x π>>,所以00()()2()6g x f x f π+=,即00sin cos 21x x +=,化简得0sin 0x =或01sin 2x =与01sin 22x <<矛盾,所以不存在0(,)64x ππ∈,使得00(),(),()6f xg x f π按照某种顺序成等差数列.(3)令()()()0F x f x ag x =+=,即cos2sin 0x a x +=,当sin 0x =时,显然不成立;当sin 0x ≠时,cos 212sin sin sin x a x x x =-=-,令sin t x =,则当[0,2]x π∈时,[1,1]t ∈-.由函数12,[1,1]a t t t =-∈-及sin ,[0,2]t x x π=∈的图像可知,当1a =±时,12sin sin a x x=-在[0,2]x π∈内有3个解.再由20136713=可知,26711342n =⨯=,综上所述,1,1342a n =±=.8.2015年北京市顺义区高三期末统一测试数学理科试题第20题 答案:见解析分析:(Ⅰ)由函数1(),()4934(31)x x f x g x ==⋅--得{|0,},M x x x R N R =≠∈=.所以493,0,()4(31)1,0.x xx h x x ⎧⋅-≠⎪=-⎨⎪=⎩(Ⅱ)当0x >时24934(31)8(31)1()4(31)4(31)x x x x xh x ⋅-⋅-+-+==-- 1[13]21,4(13)xx =--++≤-当且仅当3log 2x =-时,等号成立 所以()h x 的值域为{||1y y ≤或3}y ≥(Ⅲ)由函数()y f x =的定义域为R 得()()g x f x a =+的定义域也为R ,所以对任意x R ∈,都有()()()h x f x g x =⋅,即对任意x R ∈,都有1sin(4)()().23x f x f x a π-=⋅+ 因为1sin(4)sin(2)cos(2)2366x x x πππ-=--,所以令()sin(2)6f x x π=-,且4a π=即可.9.2014年福建省三明市高三5月质量检查文科数学试题第21题 答案:见解析分析:(1)000011(2,)(2,sin )22m OP x y x x ⊗==, (2)∵OQ m OP n =⊗+,所以000011(,)(2,sin )(,0)(2,sin )2332x y x x x x ππ=+=+ 因此00231sin 2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩即0032sin 2x x x y π⎧-⎪⎪=⎨⎪=⎪⎩所以11()sin()226y f x x π==-,它的周期为4π (3)1()sin(2)26g x x π=-在[0,]3π上单调递增,在[,]32ππ上单调递减,又111(0),(),()43224g g g ππ=-==当12t =或11-44t ≤<,函数()h x 在区间[0,]2π内只有一个零点;当1142t ≤<时,函数()h x 在区间[0,]2π内有两个零点; 当14t <-或14t >时,函数()h x 在区间[0,]2π内没有零点..。