数码管驱动与程序设计
- 格式:ppt
- 大小:5.16 MB
- 文档页数:21
实验二LED数码管驱动显示程序实验一、实验目的1、初步学习和了解VHDL语言编程方式2、学习和掌握七段数码显示译码器的设计方法3、学习和掌握VHDL的多层设计方法二、实验要求1、根据硬件设计的思维方式,编制LED七段码的显示程序2、要求是一位LED以定位方式显示3、完成LED七段码波形分析的显示功能4、在EDA实验箱上按要求显示三、实验设备1、计算机一台2、EDA——Ⅳ实验箱一台四、实验原理1、七段码是用一种纯组合的逻辑电路,通常是用小型专用的IC门电路组成,数字输入与输出表达均未16进制,处理一般较复杂,而用FPGA/CPLD来实现较为简单。
2、七段码输入与输出的原理与真值表关系。
(a)输入:七段码输入为四个输入信号,用来表示为“0000”到“1111”,即表示为十六进制的“0”到“F”。
(b)输出:七段码输出为七个输出信号,分别用“A、B、C、D、E、F、G”七个符号来表示。
一般规定,输出信号为“1”时,它所控制的发光二极管为点亮状态,输出信号为“0”时,它所控制的发光二极管为熄灭状。
本实验使用的七段数码管为共阴极组,其电路如图2.1所示。
图2.1 共阴极数码管及其电路(c)输入与输关系为四位二进制代码组成十六进制代码,将其代码显示,其对应关系如表2.1所示。
(d)显示方式是通过选位的方式进行,是将FPGA/CPLD的三位二进制的信号输出,通过外部三——八译码器硬件电路,选中一路LED信号为输出,故选择一位LED数码管显示,本实验是采取选相应的一个指定位置进行LED显示。
3、输入是通过外部的四个按键操作而组成一位十六进制。
其连接到FPGA/CPLD的对应的引脚上,需进行引脚分配。
4、编写译码程序,生成底层组件,组合成底层文件。
表2-1 七段字符显示真值表五、实验步骤1、 在D 盘建立自己的文件目录,D: \ EX \ Z04** \ you*\ex*;2、 在Max+Pluse Ⅱ的界面下,自己的文件目录下,建立项目文件 File \ Project \ 文件名A ;3、 在自己的文件目录下,建立文本文件 File \ New \ 文件名B.vhd ;4、 保存此文件并划归到项目文件内, File \ Project \ Set Project current File ,其中文本文件名B 必须和实体名一致;5、 输入程序,保存文件“文件名B.vhd ”,File \ Save As “文件名B.vhd ”(注意后缀,如保存默认文件名时,其后缀通常为“*.tdf ”文件,必须删除后缀为“*.tdf ”文件名;6、 单击编译器快捷方式按钮,对文本文件进行编译,观察是否有原则错误;7、 如有修改则修改程序中错误,若无错误则可做以下工作; 8、 建立底层器件的封装,File \ Create Default Symbol ;9、 建立图形文件,File \ New \ 文件名C.gdf 并化归到项目内。
51单片机数码管0到99循环程序代码1. 概述在嵌入式系统的开发中,数码管是一种常见的输出设备,可以用于显示数字、字符等信息。
而51单片机是一种广泛应用的微控制器,其结合了强大的功能和灵活的应用,能够很好地驱动数码管。
本文将介绍如何使用51单片机编写一个循环显示0到99的程序,通过数码管输出这些数字。
2. 电路连接我们需要连接51单片机和数码管。
通常我们使用的是共阴数码管,其连接方式如下:- VCC连接到5V电源- GND连接到GND- DIO(数据输入/输出)连接到51单片机的IO口3. 程序设计下面是一个简单的C语言程序设计,用于控制数码管显示0到99的数字。
```c#include <reg51.h>sbit DIO = P2^0; // 数码管数据输入/输出sbit CL = P2^1; // 数码管片选信号unsigned char code numCode[10] = { 0xc0, // 00xf9, // 10xa4, // 20xb0, // 30x99, // 40x92, // 50x82, // 60xf8, // 70x80, // 80x90 // 9};//延时函数void delay(unsigned int i) {unsigned int j,k;for (j=i;j>0;j--)for(k=110;k>0;k--);}void display(unsigned char num) { CL = 1; //关闭片选DIO = numCode[num / 10]; //十位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);CL = 1; //关闭片选DIO = numCode[num 10]; //个位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);}void m本人n() {unsigned char i,j;while(1) {for(i=0;i<10;i++) {for(j=0;j<10;j++) {display(i * 10 + j);}}}}```4. 程序说明- 首先定义了数码管的连接引脚,以及0~9的显示编码。
七段数码管驱动电路设计说起这七段数码管驱动电路设计,咱们得先来聊聊它是个啥宝贝。
想象一下,那些电子钟、计算器上闪烁的数字,还有咱们游戏机上计分用的那些酷炫数字,它们背后可都离不开这七段数码管的默默付出。
今儿个,咱们就来手把手,用大白话聊聊怎么给这七段数码管搭个温馨的小窝,让它能在咱的电路世界里大放异彩。
一、初探七段数码管首先,咱们得认识这位主角——七段数码管。
它呀,就像是个简约版的霓虹灯,由七条线段(a到g)和一个小数点组成,通过不同的组合,能显示出0到9这十个数字,外加一些简单的字符。
想象一下,这七条线段就像是小朋友手里的画笔,一笔一划地勾勒出数字的模样,多有趣!1.1 挑选合适的数码管挑数码管,得看看它是共阳极的还是共阴极的。
这就像选房子,有的房子阳台朝南采光好(共阳极),有的则朝北凉爽些(共阴极)。
选对了,后续设计才省心。
1.2 理解工作原理数码管工作的秘密在于电流。
咱们通过控制哪些线段通电,哪些不通电,来“画”出不同的数字。
这就像是在玩灯光秀,开灯关灯之间,数字就活灵活现地出现了。
二、设计驱动电路接下来,就是给数码管找个好搭档——驱动电路。
这就像是给数码管找了个司机,告诉它啥时候该亮,啥时候该暗。
2.1 选择驱动芯片市面上有好多驱动芯片,比如74HC595、TM1637等,它们就像是不同类型的汽车,有的省油(功耗低),有的跑得快(驱动能力强)。
咱们得根据实际需求,挑个最合适的。
2.2 搭建电路框架搭电路就像搭积木,把电源、驱动芯片、数码管还有必要的电阻电容按规矩摆好。
电源是心脏,驱动芯片是大脑,数码管是显示屏,电阻电容则是调节器,保证电路稳定运行。
2.3 编程控制电路搭好了,还得给它编个程序,告诉它怎么工作。
这就像是在教小朋友跳舞,一步步指导它怎么迈步、转身。
编程时,咱们得设定好每个数字对应的线段组合,让数码管能按咱们的意愿显示。
三、调试与优化电路搭完,程序编好,接下来就是见证奇迹的时刻了。
实验一、组合电路——7段数码管显示驱动电路设计一、实验目的了解EDA实验箱7位八段数码管显示模块的工作原理,设计标准扫描驱动电路模块,以备后面实验用。
二、硬件要求主芯片为Cyclone V E,型号为EP4CE22F17C8,7位八段数码管显示器,四位拨码开关。
三、实验内容用四位拨码开关产生8421BCD码,用CPLD分别产生7段数码管扫描驱动电路,然后进行仿真,观察波形,正确后编程下载实验测试。
四、实验原理1、72、动信号a,b,c,d,e,f,g。
通过调节四位拨码开关的状态,数码管应显示与之对应的字符。
五、实验连线输入:将芯片管角a0~a3分别接4个拨码开关;输出:将芯片管角led7s0~7分别接到数码管7段驱动信号a、b、c、d、e、f、g上。
六、实验源程序:decl7s.vhdlibrary ieee;use ieee.std_logic_1164.all;entity decl7s isport(a:in std_logic_vector(3 downto 0);led7s:out std_logic_vector(6 downto 0));end;architecture one of decl7s isbeginprocess(a)begincase a iswhen "0000" => led7s<="0111111"; when "0001" => led7s<="0000110"; when "0010" => led7s<="1011011"; when "0011" => led7s<="1001111"; when "0100" => led7s<="1100110"; when "0101" => led7s<="1101101"; when "0110" => led7s<="1111101"; when "0111" => led7s<="0000111"; when "1000" => led7s<="1111111"; when "1001" => led7s<="1101111"; when "1010" => led7s<="1110111"; when "1011" => led7s<="1111100"; when "1100" => led7s<="0111001"; when "1101" => led7s<="1011110"; when "1110" => led7s<="1111001"; when "1111" => led7s<="1110001"; when others => null;end case;end process;end;七、波形仿真结果。
数码管动态延时程序设计【原创版】目录一、引言二、数码管动态显示原理1.动态显示概念2.数码管显示原理三、延时程序设计1.延时程序作用2.延时时间长短对显示效果的影响四、51 单片机控制数码管动态实现 00 到 231.程序包含头文件2.定义符号和变量3.延时函数 t0isr()4.动态显示数码管函数5.主函数五、定时器控制数码管动态显示实例1.程序包含头文件2.定义符号和变量3.延时函数4.动态显示数码管函数5.主函数六、结论正文一、引言数码管动态显示程序设计是单片机应用领域的一个重要课题。
在很多场合,我们需要对数码管进行动态显示,以实时反映数据的变化。
为了实现这一功能,我们需要编写相应的程序,并通过延时程序控制数码管的显示效果。
本文将详细介绍数码管动态显示的原理及程序设计方法。
二、数码管动态显示原理1.动态显示概念动态显示是指在数码管上逐个显示数字或字符,以形成视觉暂留效果。
与静态显示相比,动态显示能够实时反映数据的变化,更具有实用性。
2.数码管显示原理数码管是一种常用的显示器件,其工作原理是通过驱动管的导通与截止来显示数字或字符。
在动态显示中,我们需要逐个驱动数码管的各个段码,以形成视觉暂留效果。
三、延时程序设计1.延时程序作用在数码管动态显示中,延时程序的作用是保持当前显示数码管足够时间,同时稳定显示效果,以形成视觉暂留。
这样可以使得数码管上的数字或字符能够被清晰地看到。
2.延时时间长短对显示效果的影响延时时间的长短会影响数码管的显示效果。
一般来说,延时时间需要大于 2 毫秒,以保证视觉暂留效果。
同时,所有数码管一次扫描完成的总时间不能大于 40 毫秒,因为 40 毫秒基本上是人眼视觉暂留的极限。
52单片机驱动1位共阳数码管52单片机是一种常用的单片机型号,其具有丰富的外设资源和强大的功能。
在实际应用中,驱动数码管是一项常见且重要的任务。
本文将介绍使用52单片机驱动1位共阳数码管的原理、步骤以及相关注意事项。
1.数码管的工作原理数码管是一种能够显示数字和一些特定字符的显示器件。
常见的数码管有共阳(共阳极)和共阴(共阴极)两种类型。
共阳数码管的工作原理是,在特定的引脚上施加高电平时,对应的数码管段会被点亮,从而显示相应的数字或字符。
2.硬件连接开始之前,我们需要将数码管与52单片机正确地连接起来。
共阳数码管一般有7段,分别对应a、b、c、d、e、f、g。
此外,还有一个引脚用于控制小数点。
在连接时,需要将各个段引脚与52单片机的IO 口相连接,小数点引脚则与GND(地)相连接。
此外,还需要为数码管接上限流电阻。
3.编写程序接下来,我们需要编写程序来实现对数码管的驱动。
以C语言为例,以下是一个简单的程序示例:```#include <reg52.h>#include <intrins.h>sbit SDA = P1^0;sbit SCL = P1^1;void delay(){unsigned char i;for(i=0; i<100; i++);}void start()SCL = 1; SDA = 1; delay(); SDA = 0; delay(); SCL = 0;}void stop() {SDA = 0; SCL = 1; delay(); SDA = 1;void writeByte(unsigned char byte) {unsigned char i;for(i=0; i<8; i++){SDA = (byte&(0x80>>i)) ? 1 : 0; delay();SCL = 1;delay();SCL = 0;}}void display(unsigned char num)unsigned char NumSegCode[] ={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90 };start();writeByte(0x44);stop();start();writeByte(0xC4);writeByte(NumSegCode[num]);stop();}void main()unsigned char number = 5;while(1){display(number);}}```在程序中,首先定义了数据和时钟引脚的控制位。
74HC595驱动数码管设计2009年09月18日星期五 10:111.1 LED数码管简介发光二极管LED是能将电信号转换成光信号的发光器件,7段LED数码管则是在一定形状的绝缘材料上,利用单只LED组合排列成的“8”字型,分别引出它们的电极,点亮相应的笔段来显示出0-9的数字。
1.1.1 LED数码管的结构与特性LED数码管根据LED的接法不同分为共阴和共阳两类,了解这些特性,对编程是很重要的,不同类型的数码管,除了它们的硬件电路有差异外,编程方法也是不同的。
共阴和共阳极数码管的外形及内部电路如图1.1所示,它们的发光原理是一样的,只是电源极性不同。
图1.1 数码管外形和内部电路将多只LED的阴极连在一起即为共阴式,而将多只LED的阳极连在一起即为共阳式。
以共阴式为例,若把阴极接地,在相应段的阳极接上正电源,该段即会发光。
LED数码管的主要特点如下:l)能在低电压、小电流条件下驱动发光,能与CMOS、TTL电路兼容;2)发光响应时间极短(<0.1μs),高频特性好,单色性好,亮度高;3)体积小,重量轻,抗冲击性能好;4)寿命长,使用寿命在10万小时以上,甚至可达100万小时,成本低。
LED数码管被广泛用作数字仪器仪表、数控装置、计算机的数显器件。
1.1.2 LED数码管原理说明LED数码管中各段发光二极管的伏安特性和普通二极管类似,只是正向压降较大,正向电阻也较大。
在一定范围内,其正向电流与发光亮度成正比。
由于常规的数码管用电电流只有1~2 mA,最大极限电流也只有10~30 mA,所以它的输入端在5 V电源或高于TTL高电平(3.5 V)的电路信号相接时,一定要串加限流电阻,以免损坏器件。
1.2 74HC595简介74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHCP的上升沿输入,在STCP的上升沿进入到存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。