PID水箱水位PLC控制
- 格式:ppt
- 大小:4.94 MB
- 文档页数:44
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (19)心得体会 (21)参考文献 (22)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统内部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。
plc pid控制实例PLC PID控制是一种非常常见的控制方式,它可以在自动化控制领域中广泛应用。
下面我们来看一个关于PLC PID控制的实例。
想象一下,现在我们有一个太阳能水加热系统,该系统中有一个水箱,水箱中有一个传感器,用于监测水箱中的水温。
控制器将使用此传感器来检测水温,并启动或停止加热器以保持水温在适宜的范围内。
这里我们将使用PLC PID控制器来控制加热器。
首先,我们需要设置控制器的输入信号并将输出信号连接到加热器。
这个控制过程中,温度传感器的输出信号将作为输入信号输入到PLC控制器中,PLC控制器将计算输出信号,该输出信号将被转换为控制加热器的开关信号。
现在我们来看看如何设置PID参数。
PID控制器有三个参数:比例系数(KP)、积分时间(TI)和微分时间(TD),这些参数的值需要根据实际情况进行调整。
在这个实例中,我们将设置PID参数值如下:KP:100TI:10sTD:2s接下来,我们需要设置控制器的输出信号,以控制加热器的开关状态。
如果温度过低,PLC控制器将启动加热器,并将其保持在启动状态,直到水温达到设定值。
当水温达到设定值后,控制器将关闭加热器,直到水温再次下降到设定值以下。
最后,我们需要测试控制器的效果。
我们首先将设置水箱中的水温为20℃,然后启动控制器。
我们将观察加热器何时被启动以及何时被关闭,以及水温何时达到设定值。
在测试过程中,我们将发现,PLC PID控制器可以快速、精确地控制加热器的开关状态,确保水温保持在合适的范围内。
在实际生产中,PID控制器通常会使用高级算法,以更加精确地控制温度变化。
综上所述,PLC PID控制在工业自动化中扮演着重要的角色,可以广泛应用于各种控制系统中。
基于S7-1200PLC的水箱液位控制系统的设计重庆科技学院摘要水箱液位控制系统是一种用于监测、控制水箱液位的自动化设备。
它通过搭载传感器、控制器和执行机构等组件,实现对水箱液位的实时监控和自动控制。
通常,水箱液位控制系统由传感器,控制器,执行机构。
水箱液位控制系统的使用范围广泛,包括建筑物、工业生产、农业灌溉、城市给排水和环保等领域。
它具有结构简单、安装方便、实时性强等特点,该系统能够提高水资源的利用效率、减少用水浪费和防止水源的污染。
本文基于S7-1200 PLC实现水箱液位控制系统设计。
该系统由硬件和软件两部分组成,硬件包括PLC、人机界面触摸屏、传感器、执行器等;软件实现传感器数据处理、PID稳态控制、安全等功能;关键词:液位控制 PLC PID 传感器重庆科技学院本科生毕业设计 3水箱液位控制系统硬件设计1绪论在工业领域,几乎在各个行业都会或多或少的涉及到液位的检测等问题,然而液位变量具有延迟滞后性,参数不稳定,复杂多变等问题,因此,这就需要本文采取更为精确的控制器去实现液位变量的检测。
传统控制具有很多缺陷:比如精度低、速度慢、灵敏度低等。
一个稳定的液位系统,可以保证安全可靠的工业生产、高效的生产效率、充分合理的利用能源等,大大提高了工业生产的经济价值。
日益激烈的市场竞争,要求本文的控制技术必须更加先进,此前的控制技术已落伍,显然无法满足需求,这种对先进技术的需求加速了可编程逻辑控制器的问世。
引入PLC控制器后,能够使控制系统变得更集中、有效、及时。
2水箱液位控制总体方案设计2.1水箱液位控制系统实际应用特征水箱液位控制系统是一种广泛应用于水箱的自动化控制系统,常见于民用和工业领域。
实际应用中,水箱液位控制系统具有以下特征:①实时性强:系统能够实时检测水箱内的液位信息,并根据液位变化及时控制水泵的启停,保证水位稳定。
②可靠性高:系统通过各类安全措施确保水泵的正常启停,不会出现过量或不足的水位情况,避免因为水位变化带来的安全隐患。
研发设计I RESEARCH DESIGN摘要:文章就P L C水箱水位自动控制系统的设计思路进行简单论述,该设计思路是采用西门子S7-200P L C为主控制机的多泵恒 压供水控制系统。
在传统水箱供水的基础上,加入了 P L C、变频器等器件,以实现恒压供水。
关键词:P L C:恒压供水;自动控制I基于P L C水箱水位自动控制系统的设计思路■文水是生命之源,水对人民生活与工业生产的影响非常大,同时人们对供水系统的质量和可靠性的要求也很高。
变频恒 压供水系统是集变频技术、PLC技术、现代控制技术等多种 技术于一体,可靠地为人民生活和工业生产提供优质水服务 的一项技术。
1. 恒压供水系统的意义及设计思路众所周知,水是生产生活中不可缺少的重要组成部分。
企业生产和人民生活对水的需求非常大,对来水的量和来水 的压力都有严格的要求。
同时,企业生产和人民生活对水需 求的时段有所不同,企业生产可能是全时段,而人民生活基 本上是在白天。
夏季人民的生活用水就会多些,冬季就会少 些。
这就需要一套系统,既能保证企业生产和人民生活的用 水量和用水压力,又能识别哪个季节哪个时段的用水。
综上 所述,在设计上只要把上述需求转换到水压上就能够解决难 题。
该设计就是从这个点出发,利用PLC对通过压力传感 器采集过来的信息进行分析处理,给出合理的控制信息,进 行恒压供水。
把PLC技术运用在水箱水位控制系统中,具 有很大的发展空间和应用价值。
2.自动控制系统相关组件2. 1PLC组件PLC是可编程逻辑控制器,它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计 数与算术操作等面向用户的指令,并通过数字或模拟式输入 和输出控制,各种类型的机械或生产过程。
当前,P L C已是 适用于工业现场工作的标准设备。
2.2变频器组件变频器是应用变频技术与微电子技术,通过改变电机工 作电源频率方式来控制交流电动机的电力控制设备。
PLC中使用PID的流程什么是PIDPID(比例、积分、微分)是一种常用于自动控制系统的控制算法。
PID控制器根据反馈信号和设定值之间的差异来调整输出信号,以实现对系统的控制。
PLC中PID的应用在工业控制领域中,PLC(可编程逻辑控制器)常常用于控制各种设备和过程。
PID控制器也经常在PLC中使用,以实现对温度、液位、压力等参数的精确控制。
PLC中使用PID的流程在PLC中使用PID算法实现控制通常涉及以下几个步骤:1. 设定PID参数在使用PID控制前,需要设定PID参数,包括比例系数(Kp)、积分时间(Ti)、微分时间(Td)等。
这些参数的设定与具体的控制对象和控制要求有关,在实际应用中需要根据实际情况进行调整。
2. 读取反馈信号和设定值PLC通过输入模块读取反馈信号和设定值。
反馈信号通常来自传感器,用于实时监测被控对象当前的状态。
设定值是我们期望的控制目标,通过设定值可以调整控制系统的目标值。
3. 计算控制量根据PID算法和读取到的反馈信号与设定值的差异,PLC计算出控制量。
控制量是输出信号,通过执行机构(比如电机、阀门等)对被控对象进行控制。
4. 更新控制输出PLC将计算得到的控制量输出到执行机构,实现对被控对象的控制。
输出模块会将控制量转换成相应的控制信号,并发送给执行机构。
5. 循环控制PLC中使用的PID控制是一种连续的控制方式,通常会进行周期性的控制。
在每个控制周期内,PLC会不断读取反馈信号和设定值,计算控制量,并更新控制输出。
这种循环控制保证了被控对象能够持续地与设定值保持一定的接近程度。
6. 调整PID参数在实际应用中,PID参数的设定可能需要经过多轮试验和调整才能达到最佳效果。
通过不断调整PID参数,可以优化控制系统的性能,提高控制的稳定性和精确度。
总结PID控制是PLC中常用的控制算法之一,在工业控制领域中具有广泛的应用。
PLC中使用PID的流程包括设定PID参数、读取反馈信号和设定值、计算控制量、更新控制输出、循环控制和调整PID参数等步骤。
PID PLC1.前言恒压供水系统是目前市场上运用最为广泛的供水系统之一。
变频器PID 控制系统是整个恒压供水系统的控制核心。
通过PLC (可编程逻辑控制器)对整个系统进行可靠的控制,不仅提高了水压的稳定性,同时也提高了系统运行效率,降低了能源消耗。
2. 恒压供水系统概述恒压供水系统是指在不同供水流率和负荷状态下,系统所维持的压力都是恒定的。
相比较其他常见的供水系统,恒压供水系统可以满足一些特殊的供水需求,比如公寓、办公楼、酒店、医院等高层建筑物的供水。
恒压供水系统一般可以分为两类:一类是调速泵房恒压供水系统,另一类是变频器恒压供水系统。
调速泵房恒压供水系统采用调速泵进行水压控制,系统通过加减泵数来维持恒定的工作水压。
这种方式适合较小规模的恒压供水系统。
变频器恒压供水系统则采用变频器控制泵的转速,通过控制水泵的转速来保持一定的供水压力。
对于大规模的高楼、大型公共建筑物等供水系统,采用变频器恒压供水系统更为常见。
3. 变频器PID 功能PID 控制是一种最广泛应用的控制方法之一,在变频器控制系统中,同样可以采用PID 控制算法来控制水泵的输出,实现恒压供水系统的控制。
PID 控制器的核心算法为比例(P)、积分(I)和微分(D)三部分,分别调节系统的稳定性、抗干扰性和响应速度。
在恒压供水系统中,通过调整PID 控制器的参数,可以实现快速反馈,实时调整水泵的输出,保持系统稳定性。
4. PLC 控制恒压供水系统PLC 是一种专门用于工业自动化的可编程电子控制器。
PLC 芯片可以通过编程实现对数字信号的处理、控制逻辑、数据存储和通信等功能。
在恒压供水系统中,PLC 的主要任务是控制变频器PID 控制器的输入和输出,采集水泵和供水系统的运行数据。
PLC 控制系统的核心模块为CPU (核心处理单元)和I/O 模块(输入输出模块)。
对于PLC 恒压供水系统的实现,可以通过编写PLC 程序来实现PID 控制器的参数调整、水泵的开关控制、水压监测和数据传输等任务。
FX5U PLC在PID控制方面的应用非常广泛,以下是一个基本的PID控制案例:案例:水箱液位PID控制一、系统描述此案例为一个单容水箱液位控制系统,其目标是通过PID控制算法来维持水箱内的液位在设定值。
当液位低于设定值时,PID控制器将增加进水阀的开度,以增加进水量;当液位高于设定值时,PID控制器将减小进水阀的开度,以减少进水量。
二、硬件配置FX5U PLC:作为主控制器,负责接收液位传感器的信号,并根据PID算法计算结果控制进水阀的开度。
液位传感器:采用模拟量输出型液位传感器,其输出信号为4-20mA,对应液位的0-100%。
进水阀:采用电动调节阀,其开度可通过PLC输出的模拟量信号进行控制。
三、软件编程PLC程序需要首先读取液位传感器的模拟量输入信号,并将其转换为实际的液位值。
由于FX5U的PLC本体模拟量输入是电压类型,所以需要通过外部电路将传感器的4-20mA电流信号转换为0-10V的电压信号,然后再通过PLC的A/D转换功能将其转换为数字量。
在获取到实际的液位值后,PLC程序需要将其与设定值进行比较,并根据偏差值计算出PID 控制器的输出。
FX5U PLC内置了PID控制功能块,可以直接调用进行PID计算。
PLC程序最后将PID控制器的输出转换为电动调节阀的开度控制信号,通过PLC的D/A转换功能将其转换为模拟量电压信号输出给电动调节阀。
四、调试与优化在系统投入运行前,需要对PID控制器的参数进行调试与优化。
一般来说,PID控制器的参数包括比例增益、积分时间和微分时间三个部分。
这三个参数的设置需要根据系统的实际情况进行调整,以达到最佳的控制效果。
在调试过程中,可以先将积分时间和微分时间设为0,只调整比例增益,使系统达到基本的稳定状态;然后再逐步增加积分时间和微分时间,以改善系统的动态性能。
在调整参数时,需要注意观察系统的响应情况,避免出现超调或振荡等不稳定现象。
基于PLC的水箱液位PID控制摘要本设计的课题是基于PLC的水箱液位PID控制。
在设计中,主要是数学模型的建立和控制算法的设计,因此在论文设计中用到的PID算法较多,而在PLC方面的知识较少。
本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。
关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。
The liquid level control system based on PLCThe subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge.Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction.Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.目录中文摘要 (1)英文摘要 (2)1 绪论 (5)1.1 PLC的产生、定义及现状 (5)1.1.1PLC的产生、定义 (5)1.1.2PLC的发展现状 (5)1.2过程控制的发展 (6)1.3本文研究的目的、主要内容 (6)1.3.1本文研究的目的、意义 (7)1.3.2本文研究的主要内容 (7)2 FX2系列PLC和控制对象介绍 (8)2.1 三菱PLC控制系统 (8)2.1.1 CPU模块 (8)2.1.2 I/O模块 (9)2.1.3电源模块 (9)2.2 过程建模 (9)2.2.1 一阶单容上水箱对象特性 (9)2.2.2 二阶双容下水箱对象特性 (14)3 PID调节及串级控制系统 (17)3.1 PID调节的各个环节及其调节过程 (17)3.1.1比例控制及其调节过程 (18)3.1.2比例积分调节 (19)3.1.3比例积分微分调节 (19)3.2 串级控制 (20)3.2.1串级控制系统的结构 (20)3.2.2串级控制系统的特点 (21)3.2.3串级控制系统的设计 (21)3.3 扩充临界比例度法 (23)3.4 三菱FX2系列PLC中PID指令的使用 (24)3.5在PLC中的PID控制的编程 (25)3.5.1回路的输入输出变量的转换和标准化 (25)3.6变量的范围 (27)4 控制方案设计 (29)4.1 系统设计 (28)4.1.1上水箱液位的自动调节 (28)4.1.2上水箱下水箱液位串级控制系统 (30)4.2 硬件设计 (30)4.2.1检测单元 (31)4.2.2执行单元 (31)4.2.3控制单元 (31)4.3软件设计 (32)5 运行 (33)5.1 上水箱液位比例调节 (33)5.2 上水箱液位比例积分调节 (33)5.3 上水箱液位比例积分微分调节 (34)结论 (34)参考文献 (35)致谢词 (36)1.绪论1.1 PLC的产生、定义及现状1.1.1 PLC的产生、定义一、可编程控制器的产生20世纪60年代,在世界技术改造的冲击下,要求寻找一种比继电器更可靠、功能更齐全、响应速度更快的新型工业控制器。
(此文档为word格式,下载后您可任意编辑修改!)基于PID的水箱液位控制系统设计班级:姓名:学号:指导教师:撰写日期:目录第一章绪论 (1)第二章系统组态设计 (3)2.1 MCGS组态软件概述 (3)2.2 新建工程 (4)2.3 设备配置 (5)2.4新建画面 (5)2.5 定义数据对象 (9)2.6设备连接 (11)2.7 控制面板的设计 (14)第三章PLC设计 (18)3.1 PLC概述 (18)3.2系统设计PLC程序 (20)第四章课设总结 (23)参考文献 (26)附录 .................................................................................. 错误!未定义书签。
第一章绪论可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。
早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。
随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。
但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC, PLC自1966年出现,美国,日本,德国的可编程控制器质量优良,功能强大。
”基于PLC的液位控制系统可以很好的满足工业中的液位控制系统的要求,为控制带来便捷与准确,在现在讲求效率的社会里具有重要的实用价值。
在以前的工业中,液位控制的实现方法莫过于人为的去看然后去调,或者通过固定的液位开关,当液位达到一定的高度后液位开关自动闭合或断开来控制液位的。
随着自动化不断地发展,在工业中很多时候需要我们连续的去控制液位,时刻的去观察液位的高度,而且越来越多的时候需要在计算机上进行监测液位和控制液位,这就是本设计的目的。