PID水箱水位PLC控制
- 格式:ppt
- 大小:4.94 MB
- 文档页数:44
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (19)心得体会 (21)参考文献 (22)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统内部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。
plc pid控制实例PLC PID控制是一种非常常见的控制方式,它可以在自动化控制领域中广泛应用。
下面我们来看一个关于PLC PID控制的实例。
想象一下,现在我们有一个太阳能水加热系统,该系统中有一个水箱,水箱中有一个传感器,用于监测水箱中的水温。
控制器将使用此传感器来检测水温,并启动或停止加热器以保持水温在适宜的范围内。
这里我们将使用PLC PID控制器来控制加热器。
首先,我们需要设置控制器的输入信号并将输出信号连接到加热器。
这个控制过程中,温度传感器的输出信号将作为输入信号输入到PLC控制器中,PLC控制器将计算输出信号,该输出信号将被转换为控制加热器的开关信号。
现在我们来看看如何设置PID参数。
PID控制器有三个参数:比例系数(KP)、积分时间(TI)和微分时间(TD),这些参数的值需要根据实际情况进行调整。
在这个实例中,我们将设置PID参数值如下:KP:100TI:10sTD:2s接下来,我们需要设置控制器的输出信号,以控制加热器的开关状态。
如果温度过低,PLC控制器将启动加热器,并将其保持在启动状态,直到水温达到设定值。
当水温达到设定值后,控制器将关闭加热器,直到水温再次下降到设定值以下。
最后,我们需要测试控制器的效果。
我们首先将设置水箱中的水温为20℃,然后启动控制器。
我们将观察加热器何时被启动以及何时被关闭,以及水温何时达到设定值。
在测试过程中,我们将发现,PLC PID控制器可以快速、精确地控制加热器的开关状态,确保水温保持在合适的范围内。
在实际生产中,PID控制器通常会使用高级算法,以更加精确地控制温度变化。
综上所述,PLC PID控制在工业自动化中扮演着重要的角色,可以广泛应用于各种控制系统中。
基于S7-1200PLC的水箱液位控制系统的设计重庆科技学院摘要水箱液位控制系统是一种用于监测、控制水箱液位的自动化设备。
它通过搭载传感器、控制器和执行机构等组件,实现对水箱液位的实时监控和自动控制。
通常,水箱液位控制系统由传感器,控制器,执行机构。
水箱液位控制系统的使用范围广泛,包括建筑物、工业生产、农业灌溉、城市给排水和环保等领域。
它具有结构简单、安装方便、实时性强等特点,该系统能够提高水资源的利用效率、减少用水浪费和防止水源的污染。
本文基于S7-1200 PLC实现水箱液位控制系统设计。
该系统由硬件和软件两部分组成,硬件包括PLC、人机界面触摸屏、传感器、执行器等;软件实现传感器数据处理、PID稳态控制、安全等功能;关键词:液位控制 PLC PID 传感器重庆科技学院本科生毕业设计 3水箱液位控制系统硬件设计1绪论在工业领域,几乎在各个行业都会或多或少的涉及到液位的检测等问题,然而液位变量具有延迟滞后性,参数不稳定,复杂多变等问题,因此,这就需要本文采取更为精确的控制器去实现液位变量的检测。
传统控制具有很多缺陷:比如精度低、速度慢、灵敏度低等。
一个稳定的液位系统,可以保证安全可靠的工业生产、高效的生产效率、充分合理的利用能源等,大大提高了工业生产的经济价值。
日益激烈的市场竞争,要求本文的控制技术必须更加先进,此前的控制技术已落伍,显然无法满足需求,这种对先进技术的需求加速了可编程逻辑控制器的问世。
引入PLC控制器后,能够使控制系统变得更集中、有效、及时。
2水箱液位控制总体方案设计2.1水箱液位控制系统实际应用特征水箱液位控制系统是一种广泛应用于水箱的自动化控制系统,常见于民用和工业领域。
实际应用中,水箱液位控制系统具有以下特征:①实时性强:系统能够实时检测水箱内的液位信息,并根据液位变化及时控制水泵的启停,保证水位稳定。
②可靠性高:系统通过各类安全措施确保水泵的正常启停,不会出现过量或不足的水位情况,避免因为水位变化带来的安全隐患。
研发设计I RESEARCH DESIGN摘要:文章就P L C水箱水位自动控制系统的设计思路进行简单论述,该设计思路是采用西门子S7-200P L C为主控制机的多泵恒 压供水控制系统。
在传统水箱供水的基础上,加入了 P L C、变频器等器件,以实现恒压供水。
关键词:P L C:恒压供水;自动控制I基于P L C水箱水位自动控制系统的设计思路■文水是生命之源,水对人民生活与工业生产的影响非常大,同时人们对供水系统的质量和可靠性的要求也很高。
变频恒 压供水系统是集变频技术、PLC技术、现代控制技术等多种 技术于一体,可靠地为人民生活和工业生产提供优质水服务 的一项技术。
1. 恒压供水系统的意义及设计思路众所周知,水是生产生活中不可缺少的重要组成部分。
企业生产和人民生活对水的需求非常大,对来水的量和来水 的压力都有严格的要求。
同时,企业生产和人民生活对水需 求的时段有所不同,企业生产可能是全时段,而人民生活基 本上是在白天。
夏季人民的生活用水就会多些,冬季就会少 些。
这就需要一套系统,既能保证企业生产和人民生活的用 水量和用水压力,又能识别哪个季节哪个时段的用水。
综上 所述,在设计上只要把上述需求转换到水压上就能够解决难 题。
该设计就是从这个点出发,利用PLC对通过压力传感 器采集过来的信息进行分析处理,给出合理的控制信息,进 行恒压供水。
把PLC技术运用在水箱水位控制系统中,具 有很大的发展空间和应用价值。
2.自动控制系统相关组件2. 1PLC组件PLC是可编程逻辑控制器,它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计 数与算术操作等面向用户的指令,并通过数字或模拟式输入 和输出控制,各种类型的机械或生产过程。
当前,P L C已是 适用于工业现场工作的标准设备。
2.2变频器组件变频器是应用变频技术与微电子技术,通过改变电机工 作电源频率方式来控制交流电动机的电力控制设备。
PLC中使用PID的流程什么是PIDPID(比例、积分、微分)是一种常用于自动控制系统的控制算法。
PID控制器根据反馈信号和设定值之间的差异来调整输出信号,以实现对系统的控制。
PLC中PID的应用在工业控制领域中,PLC(可编程逻辑控制器)常常用于控制各种设备和过程。
PID控制器也经常在PLC中使用,以实现对温度、液位、压力等参数的精确控制。
PLC中使用PID的流程在PLC中使用PID算法实现控制通常涉及以下几个步骤:1. 设定PID参数在使用PID控制前,需要设定PID参数,包括比例系数(Kp)、积分时间(Ti)、微分时间(Td)等。
这些参数的设定与具体的控制对象和控制要求有关,在实际应用中需要根据实际情况进行调整。
2. 读取反馈信号和设定值PLC通过输入模块读取反馈信号和设定值。
反馈信号通常来自传感器,用于实时监测被控对象当前的状态。
设定值是我们期望的控制目标,通过设定值可以调整控制系统的目标值。
3. 计算控制量根据PID算法和读取到的反馈信号与设定值的差异,PLC计算出控制量。
控制量是输出信号,通过执行机构(比如电机、阀门等)对被控对象进行控制。
4. 更新控制输出PLC将计算得到的控制量输出到执行机构,实现对被控对象的控制。
输出模块会将控制量转换成相应的控制信号,并发送给执行机构。
5. 循环控制PLC中使用的PID控制是一种连续的控制方式,通常会进行周期性的控制。
在每个控制周期内,PLC会不断读取反馈信号和设定值,计算控制量,并更新控制输出。
这种循环控制保证了被控对象能够持续地与设定值保持一定的接近程度。
6. 调整PID参数在实际应用中,PID参数的设定可能需要经过多轮试验和调整才能达到最佳效果。
通过不断调整PID参数,可以优化控制系统的性能,提高控制的稳定性和精确度。
总结PID控制是PLC中常用的控制算法之一,在工业控制领域中具有广泛的应用。
PLC中使用PID的流程包括设定PID参数、读取反馈信号和设定值、计算控制量、更新控制输出、循环控制和调整PID参数等步骤。
PID PLC1.前言恒压供水系统是目前市场上运用最为广泛的供水系统之一。
变频器PID 控制系统是整个恒压供水系统的控制核心。
通过PLC (可编程逻辑控制器)对整个系统进行可靠的控制,不仅提高了水压的稳定性,同时也提高了系统运行效率,降低了能源消耗。
2. 恒压供水系统概述恒压供水系统是指在不同供水流率和负荷状态下,系统所维持的压力都是恒定的。
相比较其他常见的供水系统,恒压供水系统可以满足一些特殊的供水需求,比如公寓、办公楼、酒店、医院等高层建筑物的供水。
恒压供水系统一般可以分为两类:一类是调速泵房恒压供水系统,另一类是变频器恒压供水系统。
调速泵房恒压供水系统采用调速泵进行水压控制,系统通过加减泵数来维持恒定的工作水压。
这种方式适合较小规模的恒压供水系统。
变频器恒压供水系统则采用变频器控制泵的转速,通过控制水泵的转速来保持一定的供水压力。
对于大规模的高楼、大型公共建筑物等供水系统,采用变频器恒压供水系统更为常见。
3. 变频器PID 功能PID 控制是一种最广泛应用的控制方法之一,在变频器控制系统中,同样可以采用PID 控制算法来控制水泵的输出,实现恒压供水系统的控制。
PID 控制器的核心算法为比例(P)、积分(I)和微分(D)三部分,分别调节系统的稳定性、抗干扰性和响应速度。
在恒压供水系统中,通过调整PID 控制器的参数,可以实现快速反馈,实时调整水泵的输出,保持系统稳定性。
4. PLC 控制恒压供水系统PLC 是一种专门用于工业自动化的可编程电子控制器。
PLC 芯片可以通过编程实现对数字信号的处理、控制逻辑、数据存储和通信等功能。
在恒压供水系统中,PLC 的主要任务是控制变频器PID 控制器的输入和输出,采集水泵和供水系统的运行数据。
PLC 控制系统的核心模块为CPU (核心处理单元)和I/O 模块(输入输出模块)。
对于PLC 恒压供水系统的实现,可以通过编写PLC 程序来实现PID 控制器的参数调整、水泵的开关控制、水压监测和数据传输等任务。