循环伏安法判断铁氰化钾的电极反应过程
- 格式:doc
- 大小:49.50 KB
- 文档页数:2
[实验目的]1) 学习固体电极表面的处理方法。
2) 掌握循环伏安仪的使用技术。
3) 了解扫描速率和浓度对循环伏安图的影响。
[实验原理]铁氰化钾离子-亚铁氰化钾离子:])([])([6463CN Fe K CN Fe K ⇔氧化还原电对的标准电极电位:V 36.00=ϕ峰电流方程: 循环伏安法产生氧化电流。
为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。
实验前电极表面要处理干净。
在0.10 mol.L -1 NaCl 溶液中[Fe(CN)6]的扩散系数为0.63×10-5 cm.s -1;电子转移速率大,为可逆体系(1.0 mol.L -1 NaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2 cm 〃s -1)。
[注意事项和问题]1.实验前电极表面要处理干净。
2. 扫描过程保持溶液静止。
3. 若实验中测得的条件电极电位和与文献值有差异,说明其原因。
53/21/21/2p 2.6910i n ACD v =⨯i—E 曲线[实验步骤]1. 指示电极的预处理铂电极用Al 2O 3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水超声清洗3min.。
2.配制溶液配制2⨯10-2、2⨯10-3 、8⨯10-4、2⨯10-4 mol 〃L -1的K 3[Fe(CN)6]溶液。
3. 不同扫描速率K 3[Fe(CN)6]溶液的循环伏安图先对10-3mol〃L -1K 3 [Fe(CN)6]溶液(含支持电解质KNO 3浓度为0.50 mol〃L -1, 通氮气除氧5min )以20mV/s 在+0.8至-0.2V 电位范围内扫描循环伏安图。
再对上述溶液以10、40、60、80、100、200mV/s ,在+0.8至-0.2V 电位范围内扫描,分别记录循环伏安图。
4. 不同浓度K 3[Fe(CN)6]溶液的循环伏安图在10-4、4⨯10-4、10-2 mol〃L -1 K 3[Fe(CN)6]溶液(均含支持电解质KNO 3浓度为0.50 mol〃L -1, 通氮气除氧5min )中,以20mV/s ,在-0.2至+0.8V 电位范围内扫描,分别记录循环伏安图。
实验三十四循环伏安法测定铁氰化钾的电极反应过程一、实验目的见《仪器分析实验》p123二、方法原理见《仪器分析实验》p123。
三、仪器和试剂1.JP—303型极谱分析仪2.铁氰化钾标准溶液:5.0×10-2mol/L3.氯化钾溶液:1.0mol/L四、实验步骤1.铁氰化钾试液的配置准确移取1.0mL5.0×10-2mol/L的铁氰化钾标准溶液于10mL的小烧杯中,加入1.0 mol/L 的氯化钾溶液5.0mL,再加蒸溜水4.0mL。
2.测量手续(1)打开303极谱仪的电源。
屏幕显示清晰后,输入当天的日期:××.××.××,按【INT】键。
(2)屏幕显示“运行方式”菜单后,选取“使用当前方法”项,按【YES】键。
屏幕将显示“线性循环伏安法”的方法参数菜单:导数(0~2)0量程(10e nA,e=1~4) 4扫描次数(1~8) 4扫描速率(50~1000mV/s)50起始电位(-4000~4000mV)-100终止电位(-4000~4000mV)600静止时间(0~999s)0如果显示的参数不符合,请按提示修改。
(3)测量铁氰化钾试液在教师指导下,置电极系统于10mL小烧杯的铁氰化钾试液里。
按【运行】键,运行自动完成后,“波高基准”项闪烁,用∧∨键确定“前谷”方法处理图谱,按【YES】键。
请记录波峰电位和波峰电流数据。
按两次【退回】键,再按【方法】键,选取“使用当前方法”项,按【YES】键,显示“线性循环伏安法”的方法参数菜单。
修改扫描速率为100mV,按【ENT】键。
再按【运行】键,照上述的过程一样进行测量。
直至完成扫描速率为50、100、150、200、250mV/s的测量。
上述的循环伏安图打印样本见附图。
五、结果处理见《仪器分析实验》p127五的1、3、5题。
六、问题讨论见《仪器分析实验》p128六的2题。
循环伏安法判断铁氰化钾的电极反应过程一、目的要求1.掌握用循环伏安法判断电极反应过程的可逆性2.学会使用电化学工作站3.学会测量峰电流和峰电位,培养学生的动手操作能力及分析问题解决问题能力二、实验用品1.仪器:电化学工作站,三电极系统(两支铂电极,一支甘汞电极),电解杯数只2.试剂:铁氰化钾标准溶液(6.0×10-3 mol/L ,1.00×10-5、1.00×10-4、1.00×10-3、1.00×10-2含KCl 溶液1.0 mol/L ),三、实验原理电化学工作站(Electrochemical workstation )是电化学测量系统的简称,是电化学研究和教学常用的测量设备。
将这种测量系统组成一台整机,内含快速数字信号发生器、高速数据采集系统、电位电流信号滤波器、多级信号增益、IR 降补偿电路以及恒电位仪、恒电流仪。
可直接用于超微电极上的稳态电流测量。
如果与微电流放大器及屏蔽箱连接,可测量1pA 或更低的电流。
如果与大电流放大器连接,电流范围可拓宽为±2A 。
动态范围极为宽广。
可进行循环伏安法、交流阻抗法、交流伏安法等测量。
循环伏安法是用途最广泛的研究电活性物质的电化学分析方法,在电化学、无机化学、有机化学、生物化学等领域得到了广泛的应用。
由于它能在很宽的电位范围内迅速观察研究对象的氧化还原行为,因此电化学研究中常常首先进行的是循环伏安行为研究。
循环伏安是在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。
铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位:选择施加在起始点的起始电位,沿负的电位正向扫描,当电位负到能够将O ([Fe(CN)6]3-)还原时,在工作电极上发生还原反应:O+ Ze = R ,阴极电流迅速增加,电流达到最高峰,此后由于电极附近溶液中的O ([Fe(CN)6]3-)转变为R ([Fe(CN)6]4-)而耗尽,电流迅速衰减;电压沿正的方向扫描,当电位正到能够将R ([Fe(CN)6]4-)氧化时,在工作电极表面聚集的R 将发生氧化反应:R= O+Ze ,阳极电流迅速增加,电流达[][]3466Fe(CN)Fe(CN)e ---+=00.36V(.NHE)vs ϕ=到最高峰,此后由于电极附近溶液中的R转变为O([Fe(CN)6]3-)而耗尽,电流迅速衰减;当电压达到的起始电位时便完成了一个循环。
仪器分析实验报告姓名: ***学号:***班级: ***(五)实验名称:循环伏安法测定铁氰化钾的电极反应过程姓名*** 学号:***同组人员(小组) ***一.实验目的1.学习循环伏安法测定电极反应参数的基本原理及方法。
2.学会使用伏安仪。
3.掌握用循环伏安法判断电极反应过程的可逆性。
二.实验原理起始电位Ei为+0.8V(a点),然后沿负的电位扫描(如箭头所指方向),当电位至Fe(CN)63–可还原时,即析出电位,将产生阴极电流(b点)。
其电极反应为:Fe(III)(CN)63–+e–——►Fe(II)(CN)64–随着电位的变负,阴极电流迅速增加(bgd),直至电极表面的Fe(CN)63-浓度趋近零,电流在d点达到最高峰。
然后迅速衰减(dgg),这是因为电极表面附近溶液中的Fe(CN)63-几乎全部因电解转变为Fe(CN)64-而耗尽。
当电压开始阳极化扫描时,由于电极电位仍相当的负,扩散至电极表面的Fe(CN)63-仍在不断还原,故仍呈现阴极电流。
当电极电位继续正向变化至Fe(CN)64-的析出电位时,聚集在电极表面附近的还原产物Fe(CN)64-被氧化,其反应为:Fe(II)(CN)64–e–—►Fe(III)(CN)63–。
这时产生阳极电流(igk),阳极电流随着扫描电位正移迅速增加,当电极表面的Fe(CN)64-浓度趋于零时,阳极化电流达到峰值(j点)。
扫描电位继续正移,电极表面附近的Fe(CN)64-耗尽,阳极电流衰减至最小(k点)。
当电位扫至+0.8V时,完成第一次循环,获得了循环伏安图。
(如下图)三.仪器和试剂电化学工作站(CHI660A伏安仪),三电极系统(工作电极,辅助电极,参比电极)铁氰化钾标准溶液:2.0×10-2mol/L、氯化钾溶液:1.0mol/L四.实验步骤1.打开电化学工作站和计算机的电源。
2.工作电极抛光:用Al2O3粉将玻碳电极表面抛光,然后用蒸馏水清洗,待用。
循环伏安法测定铁氰化钾的电化学行为一、实验目的1、学习循环伏安法测定电极反应参数的基本原理及方法。
2、熟悉CHI660电化学工作站的使用。
3、学会使用伏安极谱仪。
4、学会测量峰电流和峰电位。
二、实验原理循环伏安法(cyclic voltammetry ,CV )是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。
从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。
可用来检测物质的氧化还原电位, 考察电化学反应的可逆性和反应机理, 判断产物的稳定性,研究活性物质的吸附和脱附现象; 也可用于反应速率的半定量分析等。
循环伏安在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。
由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。
U t + - + + -+ + - +三角波图1 电路的接法一次扫描过程中完成一个氧化和还原过程的循环,称为循环伏安法。
与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。
一般对这类问题要根据固体电极材料不同而采取适当的方法。
循环伏安法控制电极电位φ随时间t 从φi 线性变化增大(或减小)至某电位φτ后,相同速率线性减小(大)归到最初电位φi 。
其典型的CV 法响应电流对电位曲线(循环伏安图)如图1示。
图2. 循环伏安曲线图假如电位从φi 开始以扫描速度υ向负方向扫描, 置φi 较φ (研究电极的标 准电极电位)正得多, 开始时没有法拉第电流, 当电位移向φ 附近时, 还原电流 出现并逐渐增大, 电位继续负移时, 由于电极反应主要受界面电荷传递动力学控 A g /A g c l 铂盘电极制, 电流进一步增大, 当电位负移到足够负时, 达到扩散控制电位后, 电流则转至受扩散过程限制而衰减, 使i φ曲线上出现电流峰i pc , 对应的峰电位为φpc 。
循环伏安法测定铁氰化钾的电极反应过程[实验目的]1) 学习固体电极表面的处理方法。
2) 掌握循环伏安仪的使用技术。
3) 了解扫描速率和浓度对循环伏安图的影响。
[实验原理]铁氰化钾离子-亚铁氰化钾离子:])([])([6463CN Fe K CN Fe K ⇔ 氧化还原电对的标准电极电位:V 36.00=ϕ 峰电流方程:循环伏安法在一定扫描速率下,从起始电位(+0.8V )正向扫描到转折电位(-0.2 V )期间,溶液中[Fe(CN)6]3- -被还原生成[Fe(CN)6]4-,产生还原电流;当负向扫描从转折电位(-0.2 V )变到原起始电位(+0.8 V )期间,在指示电极表面生成的 [Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流。
53/21/21/2p2.6910i n ACD v =⨯为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。
实验前电极表面要处理干净。
在0.10 mol.L -1 NaCl 溶液中[Fe(CN)6]的扩散系数为0.63×10-5 cm.s -1;电子转移速率大,为可逆体系(1.0 mol.L -1 NaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2 cm ·s -1)。
[注意事项和问题]1.实验前电极表面要处理干净。
2. 扫描过程保持溶液静止。
3. 若实验中测得的条件电极电位和与文献值有差异,说明其原因。
i —E曲线循环伏安法测定铁氰化钾的电极反应过程[实验步骤]1. 指示电极的预处理铂电极用Al 2O 3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水超声清洗3min.。
2.配制溶液配制2⨯10-2、2⨯10-3 、8⨯10-4、2⨯10-4 mol ·L -1的K 3[Fe(CN)6]溶液。
3. 不同扫描速率K 3[Fe(CN)6]溶液的循环伏安图先对10-3mol·L -1K 3 [Fe(CN)6]溶液(含支持电解质KNO 3浓度为0.50 mol·L -1, 通氮气除氧5min )以20mV/s 在+0.8至-0.2V 电位范围内扫描循环伏安图。
循环伏安法测定铁氰化钾的电极过程实验目的:1.学习固体电极表面的处理方法;2.掌握循环伏安法的使用技术;3.了解扫描速率和浓度对循环伏安图的影响。
实验原理:所谓的循环伏安法(Cyclic V oltammetry CV),是在工作电极,如铂电极上,加上对称的三角波扫描电势,即从起始电势E0开始扫描到终止电位E1后,再回到扫至起始电势,记录得到相应的电流-电势(i-E)曲线。
图中表明:在三角波扫描的前半部,记录峰形的阴极波,后半部记录的是峰形的阳极波。
一次三角波电势扫描,电极上完成一个还原-氧化循环,从循环伏安图的波形及其峰电势(ϕpc和ϕpa)和峰电流可以判断电极反应的机理。
电极反应可逆性的判据可逆O+ne =R 准可逆不可逆O+ne→R电势响应的性质E p与v无关。
25℃时,ΔE p=59/n mV,与v无关E p随v移动。
低速时,ΔE p≈60/n mV,但随着v的增加而增加,接近于不可逆。
v增加10倍,Ep移向阴极向30/αn mV电流函数的性质(i p/v1/2)与v无关(i p/v1/2)与v无关(i p/v1/2)与v无关阳极电流与阴极电流比的关系i pa/i pc≈1,与v无关仅在α=0.5时,i pa/i pc≈1反扫或逆扫时没有相应的氧化或还原电流循环伏安法是一种十分有用的近代电化学测量技术,能够迅速地观察到所研究体系在广泛电势范围内的氧化还原行为,通过对循环伏安图的分析,可以判断电极反应产物的稳定性,它不仅可以发现中间状态产物并加以鉴定,而且可以知道中间状态实在什么电势范围及其稳定性如何。
此外,还可以研究电极反应的可逆性。
因此,循环伏安法已广泛应用在电化学、无机化学、有机化学和生物化学的研究中。
一般在测定时,由于溶液中被测样品浓度一般都非常低,为维持一定的电流,常在溶液中加入一定浓度的惰性电解质如KCl,KNO3,NaClO4等。
典型的循环伏安图如图所示。
该图是在0.4mol/LKNO3电解质溶液中,5.0×10-4mol/L的K3Fe(CN)6在Pt工作电极上反应得到的结果。
实验四循环伏安法研究铁氰化钾的电极反应过程一、实验目的(1)学习电化学工作站的使用及固体电极表面的处理方法(2)掌握用循环伏安法判断电极过程的可逆性二、实验原理循环伏安法(CV法)是以等腰三角形的脉冲电压加在工作电极上,在电极上施加线形扫描电压,从设定的起始电压开始扫描,到达设定的终止电压后,再反向回扫至设定的起始电压。
如果前半部分电压由高向低扫描,电活性物质在电极上还原(Ox + n e Red),产生还原波;则后半部分电压由低向高扫描时,还原产物又会在电极上氧化(Red -n e Ox),产生氧化波。
得到的电流~电压曲线(i ~ E曲线)称为循环伏安图(CV图)。
一次三角波扫描,完成一个还原和氧化过程的循环。
Fe(CN)63- + e Fe(CN)64-铁氰化钾(K3Fe(CN)6)的峰电流(i p)与电极表面活度的关系式为:式中,n、c和v分别为电活性物质的电子转移数、浓度和扫描速率。
i p与v1/2、c成正比。
对于可逆体系,氧化峰电流(i pa)与还原峰电流(i pc)之比i pa / i pc≈ 1,氧化峰电位(E pa)与还原峰电位(E pc)之差∆E p = E pa- E pc≈ 0.059/n,条件电位Eө' = (E pa + E pc)/2。
如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差,∆E p > 0.059/n,i pa / i pc < 1。
甚至只有一个氧化或还原峰,电极过程即为不可逆。
由此可判断电极反应过程的可逆性。
三、仪器和试剂(1)仪器:CHI620E电化学工作站、三电极系统(玻碳电极、铂丝电极、参比电极)(2)试剂:1.0 × 10-2 mol·L-1 K3Fe(CN)6溶液、1.0 mol·L-1 KNO3溶液四、实验步骤1. 玻碳电极的处理用Al2O3粉将电极表面抛光,用去离子水清洗,超声。
循环伏安法判断铁氰化钾的电极反应过程
一、目的要求
1.掌握用循环伏安法判断电极反应过程的可逆性
2.学会使用电化学工作站
3.学会测量峰电流和峰电位,培养学生的动手操作能力及分析问题解决问题能力
二、实验用品
1.仪器:电化学工作站,三电极系统(两支铂电极,一支甘汞电极),电解杯数只
2.试剂:铁氰化钾标准溶液(6.0×10-3 mol/L ,1.00×10-5、1.00×10-4、1.00×10-3、1.00×10-2含KCl 溶液1.0 mol/L ),
三、实验原理
电化学工作站(Electrochemical workstation )是电化学测量系统的简称,是电化学研究和教学常用的测量设备。
将这种测量系统组成一台整机,内含快速数字信号发生器、高速数据采集系统、电位电流信号滤波器、多级信号增益、IR 降补偿电路以及恒电位仪、恒电流仪。
可直接用于超微电极上的稳态电流测量。
如果与微电流放大器及屏蔽箱连接,可测量1pA 或更低的电流。
如果与大电流放大器连接,电流范围可拓宽为±2A 。
动态范围极为宽广。
可进行循环伏安法、交流阻抗法、交流伏安法等测量。
循环伏安法是用途最广泛的研究电活性物质的电化学分析方法,在电化学、无机化学、有机化学、生物化学等领域得到了广泛的应用。
由于它能在很宽的电位范围内迅速观察研究对象的氧化还原行为,因此电化学研究中常常首先进行的是循环伏安行为研究。
循环伏安是在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。
铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位:
选择施加在起始点的起始电位,沿负的电位正向扫描,当电位
负到能够将O ([Fe(CN)6]3-)还原时,在工作电极上发生还原反应:
O+ Ze = R ,阴极电流迅速增加,电流达到最高峰,此后由于电极附
近溶液中的O ([Fe(CN)6]3-)转变为R ([Fe(CN)6]4-)而耗尽,电流
迅速衰减;电压沿正的方向扫描,当电位正到能够将R ([Fe(CN)6]4-)
氧化时,在工作电极表面聚集的R 将发生氧化反应:R= O+Ze ,阳极电流迅速增加,电流达[][]3466Fe(CN)Fe(CN)e ---+=00.36V(.NHE)vs ϕ=
到最高峰,此后由于电极附近溶液中的R转变为O([Fe(CN)6]3-)而耗尽,电流迅速衰减;当电压达到的起始电位时便完成了一个循环。
重要参数为:阳极峰电流(i pa)、阴极峰电流(i pc)、阳极峰电位(φpa)、阴极峰电位(φpc)。
对于可逆反应,阴阳极峰电位的差值,即△φ=φpa-φpc ≈0.058/Z mv,i pa ≈ i pc峰电位与扫描速度无关。
峰电流i p=2.69×105n3/2AD1/2V1/2C,i p为峰电流(A),n为电子转移数,A为电极面积(cm2),D为扩散系数(cm2/s),V为扫描速度(V/s),C为浓度(mol/L)。
由此可见,i p与V1/2和C 都是直线关系。
在电解过程中,会存在对流力、库仑力和扩散力,会产生对流电流、电迁移电流和扩散电流。
其中只有扩散电流与去极剂有定量关系,所以,应设法消除对流电流和迁移电流。
措施:测定时保持试液静止并加入大量电解质支持。
同时,试液中溶解的O2也能在电极上还原,产生两个极谱波,氧波在相当大的范围内与去极剂的极谱波叠加,影响扩散电流的测定,应除去。
通常用通氮气的方法除氧。
碱性溶液也可用Na2SO3除O2。
四、实验步骤
1.打开电脑,仪器预热20分钟,打开电化学工作站操作界面。
2.将铁氰化钾标准溶液转移至电解池中,插入三支电极连接
(1)选择“实验方法”为“循环伏安法”;
(2)设置实验参数:起始电位(-0.20 V);终止电位(+0.80 V);扫描速度(0.1 V/s);灵敏度(1.0×e-3);点“确定”,“开始”,观察伏安图,记录峰电流、峰电位。
3.考察峰电流与扫描速度的关系。
使用上述溶液,分别以不同的扫描速度:10、40、60、80、100mV/s(其他实验条件同上)分别记录从+0.80V~ -0.20V扫描的循环伏安图。
出图后,单击图,保存。
4.考察峰电流与浓度的关系。
分别移取上述溶液 1.00×10-5、1.00×10-4、1.00×10-3、1.00×10-2mol/L,置于4只电解杯中,以0.1 V/s的扫描速度(灵敏度调为1.0×e-4,其他实验条件同上)分别记录从+0.80V~ -0.20V扫描的循环伏安图。
5.数据转换—文件中的TXT
五、思考题
1.解释溶液的循环伏安图形状;
2.如何用循环伏安法判断电极反应过程的可逆性。