2020高考一轮复习函数知识点及最新题型归纳
- 格式:doc
- 大小:2.18 MB
- 文档页数:19
1例2.已知函数f(x)2x 2x a ,x[1, )■2020年高考理科数学《函数的定义与性质》题型归纳与训练【题型归纳】题型一求函数的定义域、值域A--------------------------------------- ------------------------------------------------------------例 1 ( 1)函数 f(x) —In C ,x 2 3x 2 . x 2 3x 4)的定义域为()xA.(, 4)[2,);B. ( 4,0) (0,1) ; C. [, 4,0)(0,1]Q . [, 4,0)(0,1)(2)设 fxIg 2x,则 f x f 2的定义域为()2x2xA. 4,0 0,4;B.4, 1 1,4 ; C. 2,11,2 ;D.4, 22,4【答案】( 1)D ; (2) B【解析】(1)欲使函数f (x)有意义,必须并且只需x 2 3x 2 0 2x 3x 4-------------- --------------------- x [ 4,0) (0,1),故应选择 Dx 2 3x 2 x 2 3x 4 0x 0【易错点】抽象函数的定义域【思维点拨】 如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:①分母不能为 0;②对数的真数必须为正;③偶次根式中被开方数应为非负数;④零指数幕中,底 数不等于0;⑤负分数指数幕中,底数应大于 0;⑥若解析式由几个部分组成,则定义域为各个部分相应集 合的交集;⑦如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意 定义域优先原则,实际问题的定义域不要漏写。
求复合函数定义域,即已知函数f (x)的定义为[a,b ],则函数f [g(x)]的定义域是满足不等式 a g(x) b 的x 的取值范围;一般地,若函数f [g(x)]的定义域是[a,b ], 指的是x [a,b ],要求f (x)的定义域就是x [a,b ]时g(x)的值域。
2020年高考数学一轮复习《二次函数》考纲解读 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.命题趋势探究 对于二次函数,高考中主要考察二次函数的性质及其应用,尤其是二次函数、一元二次方程及一元二次不等式的综合应用.重点考察数形结合与等价转化以及分类讨论三种数学思想.由于二次函数、一元二次方程、一元二次不等式之间有着密切的联系,在高中数学中应用十分广泛,并对考查学生的数学能力有重要意义,所以以二次函数为命题背景仍将是一个热点.知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程.(3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标.2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2bx a =-时, 2min 4()4ac b f x a-=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,;2max4()ac b f x -=.(2) 与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==; (2) 若02b p x a <-<,则(),()2bm f M f q a =-=; (3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=; (4) 若2bq a-≥,则(),()m f q M f p ==. 三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔21212400b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示. 表2-5四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立0a >⎧⇔⎨∆<⎩;()0f x <恒成立0a <⎧⇔⎨∆<⎩. 注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负. 题型归纳及思路提示题型20 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式 1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ).A. m A ∀∈ ,都有(3)0f m +>B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<解析 依题意f(1)=0,且a>0,c<0,函数f(x)的图像如图2-47所示,且f(-2)=4a-2b+c=a+b+c+3a-3b=3(a-b)>0, 因此,若f(m)<0,且f(m+3)>0,故选A.变式2已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ). A. 12()()f x f x < B. 12()()f x f x = C. 12()()f x f x > D. 1()f x 与2()f x 的大小不能确定解析 解法一 :因为0<a <3,x 2>x 1,x 1+x 2=1-a,所以f(x 2)-f(x 1)=a(x 2-x 1)( x 1+x 2+2) =(x 2-x 1)(3-a ) >0,所以f(x 2) >f(x 1).故选A.解法二:(数形结合)如图2-48所示,x 2>x 1,x 1+x 2=1-a,1211(1,)222x x a +-=∈-, 故x 1离对称轴近,因此f(x 1)< f(x 2).例 2.42 已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c <()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x a x x b c+=-⎧⎨=-⎩,12||x x -=6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=. 变式1 设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =.解析 ①当a=1时,不等式可化为-(x 2-x-1)≥0,若x >0时均有x 2-x-1≤0,由二次函数的图像知,显然不成立,所以a ≠1. ②当a<1时,因为x>0,(a-1)x-1<0,且二次函数y=x 2-ax-1的图像开口向上,所以不等式x 2-ax-1≤0在x ∈(0, +∞)上不能恒成立,所以a<1不成立. ③当a>1时,如图2-49所示,令f(x)= (a-1)x-1, g(x)=x 2-ax-1,两函数的图像均过定点(0,-1).要满足对任意的x ≥0时.不等式[(a-1)x-1]( x 2-ax-1)≥0成立,则一次函数y=(a-1)x-1与二次函数y= x 2-ax-1在x 轴上有相同交点(11a -,0),所以有 (11a -)2-11a --1=0, 整理得2a 2-3a=0,解得a=32,或a=0(舍去),综上可知,a=32.变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________.解析 对于条件①:因为g(x)=2x -2,得g(1)=0,当x ≥1时,g(x)≥0,要使得对任意的x ∈R ,f(x)<0或g(x) <0,故当x ≥1时,f(x)<0恒成立,则021,4031m m m m <⎧⎪<-<<⎨⎪--<⎩得, 对于条件②:x ∃∈∞(-,-4),f(x)g(x)<0,又当x ∈(-∞,-4)时,g(x)<0, 故x ∃∈∞(-,-4),使得f(x)>0.(ⅰ)当2m=-m-3时,得m=-1,显然函数f(x)=-(x+2)2≤0,x ∈(-∞,-4)不满足要求; (ⅱ)当2m<-m-3时,得m<-1,则-4>2m,即m<-2满足题意.(ⅲ)当2m>-m-3时,得m>-1,则-m-3<-4,即m>1不满足m ∈(-4,0). 综上,m 的取值范围时(-4,-2).题型21 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围.分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围.解析 解法一: 由于方程(1-m 2)x 2+2mx-1=0的判别式△=b 2-4ac=4m 2+4(1-m 2)=4>0,又f(0)=-1<0,根据已知两根一个小于0,一个大于1可知,抛物线y=(1-m)x 2+2mx-1开口向上,且f(1)<0,故2210,1020m m m m ⎧->⎪-<<⎨-+<⎪⎩得. 解法二: 原方程可化为[(1-m)x+1][ (1+m)x-1] =0,解得,,因为m+1>m-1,且x 1,x 2一正一负,故有 11,10101m m m ⎧>0⎪⎪+-<<⎨⎪<⎪-⎩得.所以m 的取值范围是(-1,0) 变式 2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围. 解析 由题意知f(1)=1+2b+c=0,所以c=-1-2b.记g(x)=f(x)+x+b=x 2+(2b+1)x-b-1,则(3)(3)15015,(0)1057(1)1g b g b b g b g b -=5-7>0⎧⎪-=-<⎪<<⎨=--<⎪⎪=+>0⎩得,故实数b 的取值范围是15(,)57 例 2.44 已知方程32230(,,)x ax bx c a b c R +++=∈的三个实根可分别作为一个椭圆、一).A. )+∞B. )+∞C. )+∞D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---. 32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围.解析 由222330y x mx y =-+⎧⎨--=⎩,消去y 得22430x mx m -++=由题意,方程22430xmx m -++=有两根且均在(1,+∞)内,设22()430f x x mx m =-++=,所以222(4)4(3)042(1)1430m m m f m m ⎧=--+>⎪-⎪->1⎨⎪⎪=-++>⎩ 解得m>1且m ≠2.设Q,R 的坐标分别为(x Q ,y Q ),(X R ,Y R ),由|PQ|<|PR|有22R Q x m x m ==-113(1)R Q PR x PQ x ====-+-.由m>1且m ≠2,有1< 1-<7+4.且1-+≠7. PRPQ的取值范围是(1,7)∪(7,7+.题型22 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a )x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围.解析 作出函数f(x)在[-1, +∞)上符合单调递增的图像,如图2-50所示,那么对称轴x=≤-1,得k ≤-4,所以k 的取值范围是(-∞,-4].评注 通过本题,希望同学们了解“函数的单调区间是M ”与“函数在区间N 上是增函数”两个概念的不同,应该知道这两者间存在子集关系,即N ⊆M ,由题意,此二次函数开口向上,故其单调区间为[, +∞),故应有[-1, +∞)⊆[, +∞),所以≤-1,即k ≤-4. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系.解析 2()21f x x a x =--,抛物线()y f x =开口向上,对称轴x a =. (1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --. (2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-. (4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.解析 函数f(x)=4x 2-4ax+a 2-2a+2=4(x-)2-2a+2,其图像开口向上,对称轴为x=. ① 当≤0,即a≤0时,函数在区间[0,2]上为增函数, 故f(x)min = f(0)= a 2-2a+2, a 2-2a+2=3,得1a =±a ≤0,所以1a =② 当2,即4时,对称轴为x=处于区间[0,2]内部,故函数的最小值在对称轴处取得,故f(x)min =f()= -2a+2,由-2a+2=3,得a=-,又4,故舍去. ③ 当2,即a ≥4时,函数在区间[0,2]上为减函数,④ 故f(x)min = f(2)= a 2-10a+18,由a 2-10a+18=3,得5a =±又a ≥4,所以5a =+综上所述,满足条件的实数a的取值为1a =5a =评注 由本题求解过程可知: 本题为已知二次函数在某区间上的的最值求系数问题,解这类题时一般要进行分类讨论,注意二次函数在各定区江山的最值只可能在区间两个端点处或对称轴处取得。
2024高考一轮复习函数知识点及最新题型归纳函数是数学领域的一个重要概念,在高考中占据着很大的比重。
下面是2024年高考一轮复习函数知识点及最新题型的详细归纳。
1.函数的定义函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
通常用f(x)表示函数,其中x是函数的自变量,f(x)是函数的因变量。
2.函数的表示方法函数可以用解析式、图像、表格等多种方式表示。
其中,解析式是最常见的表示方法,常见的函数表示如下:线性函数:f(x) = ax + b二次函数:f(x) = ax^2 + bx + c指数函数:f(x)=a^x对数函数:f(x) = loga(x)三角函数:sin(x),cos(x),tan(x)3.函数的性质-定义域和值域:函数的定义域是自变量能取的全部实数值的集合,值域是因变量能取的全部实数值的集合。
-奇偶性:若对于函数的定义域内的任意x,有f(-x)=f(x),则称函数是偶函数;若对于函数的定义域内的任意x,有f(-x)=-f(x),则称函数是奇函数。
-单调性:如果对于函数的定义域内的任意x₁和x₂,当x₁<x₂时,有f(x₁)<f(x₂),则称函数是递增的;如果当x₁<x₂时,有f(x₁)>f(x₂),则称函数是递减的。
-周期性:如果对于函数的定义域内的任意x,有f(x)=f(x+T),其中T为正常数,则称函数具有周期T。
4.函数的运算函数之间可以进行加法、减法、乘法和除法等运算。
-两个函数的和:(f+g)(x)=f(x)+g(x)-两个函数的差:(f-g)(x)=f(x)-g(x)-两个函数的乘积:(f*g)(x)=f(x)*g(x)-一个函数除以另一个函数:(f/g)(x)=f(x)/g(x)随着高考的,函数的考查形式也在不断变化,以下是一些最新的函数题型归纳:-函数的图像分析:考生需要根据给定函数的解析式或表格,画出其对应的图像,然后分析图像的特点,如极值、拐点、单调性等。
2020年领军高考数学一轮复习(文理通用)专题04函数及其表示最新考纲1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).基础知识融会贯通1.函数与映射于集合A 中的任意一个数x ,在集合B 2.(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)函数的三要素:定义域、对应关系和值域. (3)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 【知识拓展】 简单函数定义域的类型(1)f (x )为分式型函数时,定义域为使分母不为零的实数集合; (2)f (x )为偶次根式型函数时,定义域为使被开方式非负的实数的集合;(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合; (4)若f (x )=x 0,则定义域为{x |x ≠0}; (5)指数函数的底数大于0且不等于1;(6)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z .重点难点突破【题型一】函数的概念【典型例题】若函数y =f (x )的定义域为M ={x |﹣2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )A .B .C .D .【解答】解:对A 不符合定义域当中的每一个元素都有象,即可排除; 对B 满足函数定义,故符合;对C 出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定; 对D 因为值域当中有的元素没有原象,故可否定. 故选:B .【再练一题】下列四组函数中,表示同一函数的是( ) A .B .y =arcsin (sin x )和y =sin (arcsin x )C .y =x 和y =arccos (cos x )D.y=x(x∈{0,1})和y=x2(x∈{0,1})【解答】解:A.y=log22x=x,函数的定义域为R,y x,函数的定义域为{x|x>0},两个函数的定义域不相同,不是同一函数B.y=sin(arcsin x)的定义域为[﹣1,1],y=arcsin(sin x)的定义域是R,两个函数的定义域不相同,不是同一函数.C.y=arccos(cos x)的值域是[,],y=x的值域是R,不是相同函数.D.y=x对应的点为(0,0),(1,1),y=x2对应的点为(0,0),(1,1),两个函数是同一函数,故选:D.思维升华函数的值域可由定义域和对应关系唯一确定;判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同.【题型二】函数的定义域问题命题点1求函数的定义域【典型例题】若函数f(x)ln(x+1),则函数g(x)=f(x)+f(﹣x)的定义域为()A.(﹣1,2] B.(﹣1,1)C.(﹣2,2)D.[﹣2,2]【解答】解:解得,﹣1<x≤2;∴要使g(x)有意义,则:;解得﹣1<x<1;∴g(x)的定义域为(﹣1,1).故选:B.【再练一题】已知函数f(x)的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2)B.(1,4)C.R D.(,﹣1)∪(1,)【解答】解:∵数f(x)的定义域为(1,2),∴由1<x2<2,得x<﹣1或1<x.即函数f(x2)的定义域是(,﹣1)∪(1,).故选:D.命题点2已知函数的定义域求参数范围【典型例题】设函数f(x).(1)当a=5时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,试求a的取值范围.【解答】解:(1)当a=5时,f(x),由|x﹣1|+|x﹣2|﹣5≥0,得或或,解得:x≥4或x≤﹣1,即函数f(x)的定义域为{x|x≤﹣1或x≥4}.(2)由题可知|x﹣1|+|x﹣2|﹣a≥0恒成立,即a≤|x﹣1|+|x﹣2|恒成立,而|x﹣1|+|x﹣2|≥|(x﹣1)+(2﹣x)|=1,所以a≤1,即a的取值范围为(﹣∞,1].【再练一题】函数的定义域为R,则实数k的取值范围是.【解答】解:函数的定义域为R,∴关于x的不等式2kx2﹣kx0恒成立,k=0时,不等式为0恒成立;k≠0时,应满足△=k2﹣4×2k0,解得0<k<3,综上,实数k的取值范围是[0,3).故答案为:[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,可借助于数轴,注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域. (3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.【题型三】求函数解析式【典型例题】 已知函数f (2)=x +45,则f (x )的解析式为( )A .f (x )=x 2+1 B .f (x )=x 2+1(x ≥2) C .f (x )=x 2 D .f (x )=x 2(x ≥2)【解答】解:;∴f (x )=x 2+1(x ≥2). 故选:B .【再练一题】若函数f (x )对于任意实数x 恒有f (x )﹣2f (﹣x )=3x ﹣1,则f (x )等于( ) A .x +1B .x ﹣1C .2x +1D .3x +3【解答】解:函数f (x )对于任意实数x 恒有f (x )﹣2f (﹣x )=3x ﹣1, 令x =﹣x ,则:f (﹣x )﹣2f (x )=3(﹣x )﹣1. 则:,解方程组得:f (x )=x +1. 故选:A .思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式; (4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).【题型四】分段函数命题点1 求分段函数的函数值 【典型例题】已知函数,则的值是()A.﹣1 B.3 C.D.【解答】解:由题意可得,f() 1∴f(f())=f(﹣1)=3﹣1故选:C.【再练一题】设f(x)则使得f(m)=1成立的m值是()A.10 B.0,10 C.0,﹣2,10 D.1,﹣1,11 【解答】解:当m<1时,f(m)=(m+1)2=1∴m=﹣2或m=0当m≥1时,f(m)=4 1∴m=10综上:m的取值为:﹣2,0,10故选:C.命题点2分段函数与方程、不等式问题【典型例题】已知f(x)则不等式x+(x+2)•f(x+2)≤5的解集是()A.[﹣2,1] B.(﹣∞,﹣2] C.D.【解答】解:①当x+2≥0时,即x≥﹣2,f(x+2)=1由x+(x+2)•f(x+2)≤5可得x+x+2≤5∴x即﹣2≤x当x+2<0即x<﹣2时,f(x+2)=﹣1由x+(x+2)•f(x+2)≤5可得x﹣(x+2)≤5即﹣2≤5∴x<﹣2综上,不等式的解集为{x|x}故选:D.【再练一题】函数,若f(a)=f(b)=f(c)且a,b,c互不相等,则abc的取值范围是()A.(1,10)B.(10,12)C.(5,6)D.(20,24)【解答】解:函数的图象如图:∵f(a)=f(b)=f(c)且a,b,c互不相等∴a∈(0,1),b∈(1,10),c∈(10,12)∴由f(a)=f(b)得|lga|=|lgb|,即﹣lga=lgb,即ab=1∴abc=c由函数图象得abc的取值范围是(10,12)故选:B.思维升华(1)分段函数的求值问题的解题思路①求函数值:当出现f(f(a))的形式时,应从内到外依次求值.②求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.(2)分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.基础知识训练1.下列图象中可作为函数图象的是()A.B.C.D.【答案】C【解析】∵函数要求对应定义域P中任意一个x都有唯一的y值与之相对应,也就是说函数的图象与任意直线x=c(c∈P)只有一个交点;选项A、B、D中均存在直线x=c,与图象有两个交点,故不能构成函数;故选:C.2.下列四个图象中,不能作为函数图象的是()A.B.C.D.【答案】C【解析】由函数的定义可知,对定义域内的任意一个自变量x的值,都有唯一的函数值y与其对应,故函数的图象与直线x=a至多有一个交点,图C中,当﹣2<a<2时,x=a与函数的图象有两个交点,不满足函数的“唯一性”,故C不是函数的图象.故选:C.3.函数的定义域为A.B.C.D.【答案】D【解析】解:要使函数有意义,则:;解得,且;该函数的定义域为:.故选:D.4.已知函数,则的定义域为A.B.C.D.【答案】B【解析】解:要使f(x)有意义,则4﹣x>0;∴x<4;∴f(x)的定义域为(﹣∞,4);∴函数g(x)满足:;∴x<2,且x≠1;∴g(x)的定义域为(﹣∞,1)∪(1,2).故选:B.5.函数的定义域为()A.B.C.D.【答案】C【解析】由,解得x≥0且x≠1.∴函数的定义域为[0,1)∪(1,+∞).故选:C.6.已知函数,则( )A.1 B.C.D.【答案】D【解析】依题意,故,解得.故,所以.故选D. 7.已知f()=,则f(x)的解析式为()A.B.C.D.【答案】D【解析】由可知,函数的定义域为{x|x≠0,x≠﹣1},将x换为,代入上式得:f(x),故选:D.8.设f(x)=,则下列结论错误的是()A.B.C.D.【答案】A【解析】根据题意,依次分析选项:对于A,=f(x),A错误;对于B,,B正确;对于C,,C正确;对于D,=f(x),D正确;故选:A.9.已知函数,则满足的t的取值范围是A.B.C.D.【答案】C【解析】函数,可得时,递增;时,递增,且,可得在R上为增函数,由,即,解得,即t的范围是.故选:C.10.已知函数,则函数的零点个数为A.B.C.D.【答案】B【解析】当时,,据此可得函数在区间上单调递增,在区间上单调递减,在区间上单调递增,由函数的解析式易知函数在区间上单调递减,绘制函数图像如图所示,注意到,故方程的解:,则原问题转化为求方程时解的个数之和,由函数图像易知满足题意的零点个数为7个.本题选择B选项.11.定义在上的奇函数,当时,则关于的函数的所有零点之和为()A.B.C.D.【答案】A【解析】因为当时,,即时,,当时,,当时,,画出时,的图象,再利用奇函数的对称性,画出时的图象,如图所示:则直线的图象有5个交点,则方程共有5个实根,最左边两根之和为,最右边两根之和为,因为时,,所以,又,所以,所以中间的一个根满足,即,解得,所以所有根的和为,故选A.12.设函数,若,则实数a的取值范围是( )A.B.C.D.【答案】C【解析】解:当时,不等式可化为,即,解得;当时,不等式可化为,所以.故的取值范围是,故选C.13.若函数的值域是,则实数a的取值范围是A.B.C.D.【答案】D【解析】当时,,要使的值域是,则当时,恒成立,即,若,则不等式不成立,当时,则由,则,,即,故选:D.14.已知f(x)为定义在R上的奇函数,当x>0时,, 则()A.4 B.-4 C.D.【答案】B【解析】结合奇函数的概念,可知,所以,故选B。
新高考数学一轮知识点归纳总结随着新高考的实施,数学成为了考试科目之一,为了更好地应对新高考数学考试,掌握数学知识点是非常关键的。
在这篇文章中,我将对新高考数学一轮的知识点进行归纳总结,并提供一些备考建议。
一、函数与方程1. 一次函数- 定义:一次函数是指函数的最高次数是1的函数,通常表示为y = kx + b。
- 性质:一次函数的图像是直线,具有斜率k和截距b。
2. 二次函数- 定义:二次函数是指函数的最高次数是2的函数,通常表示为y = ax^2 + bx + c。
- 性质:二次函数的图像是抛物线,开口方向由系数a的符号决定。
3. 指数函数- 定义:指数函数是指以常数e为底的函数,通常表示为y = a^x。
- 性质:指数函数的图像是增长或衰减的曲线,取决于底数a的大小。
4. 对数函数- 定义:对数函数是指与指数函数相对应的函数,通常表示为y = loga(x)。
- 性质:对数函数的图像是上升或下降的曲线,取决于底数a的大小。
二、数列与数学归纳法1. 等差数列- 定义:等差数列是指数列中相邻两项之差为常数的数列。
- 性质:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
2. 等比数列- 定义:等比数列是指数列中相邻两项之比为常数的数列。
- 性质:等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
3. 数学归纳法- 定义:数学归纳法是一种证明数学命题的方法,分为初值、归纳假设和归纳步骤三个部分。
- 步骤:首先证明当n取初值时命题成立;然后假设当n=k时命题成立;最后证明当n=k+1时命题也成立。
三、几何与空间1. 平面几何- 点、线、面的定义和性质- 直线与平面的位置关系- 平行线与垂线的性质2. 三角形- 三角形的分类和性质- 三角形的周长和面积计算公式 - 三角形的相似性质3. 圆与圆的位置关系- 圆的定义和性质- 圆的面积和周长计算公式- 圆与直线的位置关系四、概率与统计1. 概率- 事件与样本空间的定义- 概率的定义和性质- 概率计算公式的应用2. 统计- 数据收集和整理的方法- 数据的表示和分析- 统计指标的计算和应用以上是新高考数学一轮的主要知识点归纳总结,希望对大家的复习备考有所帮助。
高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。
②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。
B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。
二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。
求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。
3。
复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。
三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。
2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。
专题2.1 函数的概念【考试要求】1.了解构成函数的要素,能求简单函数的定义域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用;3.通过具体实例,了解简单的分段函数,并能简单应用.【知识梳理】1.函数的概念设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【微点提醒】1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.( )(2)对于函数f:A→B,其值域是集合B.( )(3)f (x )=x -3+2-x 是一个函数.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( ) 【答案】 (1)× (2)× (3)× (4)× 【解析】(1)错误.函数y =1的定义域为R ,而y =x 0的定义域为{x|x≠0},其定义域不同,故不是同一函数. (2)错误.值域C ⊆B ,不一定有C =B. (3)错误.f(x)=x -3+2-x 中x 不存在.(4)错误.若两个函数的定义域、对应法则均对应相同时,才是相等函数. 【教材衍化】2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】 B【解析】 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( )A.y =(x +1)2B.y =3x 3+1 C.y =x 2x+1D.y =x 2+1【答案】 B【解析】 对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应法则分别对应相同,是相等函数;对于C.函数y =x 2x+1的定义域为{x |x ≠0},与函数y =x +1的定义域x ∈R 不同,不是相等函数;对于D ,定义域相同,但对应法则不同,不是相等函数.【真题体验】4.(2019·北京海淀区期中)已知f (x 5)=lg x ,则f (2)=( ) A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 3 【答案】 A【解析】 令x 5=2,则x =215,∴f (2)=lg 215=15lg 2.5.(2019·河南、河北两省重点高中联考)函数f (x )=4-4x+ln(x +4)的定义域为________. 【答案】 (-4,1]【解析】 f (x )有意义,则⎩⎪⎨⎪⎧4-4x≥0,x +4>0,解得-4<x ≤1.6.(2019·济南检测)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 【答案】 -2【解析】 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 【考点聚焦】考点一 求函数的定义域【例1】 (1)函数y =1-x 2+log 2(tan x -1)的定义域为________; (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________. 【答案】 (1)⎝ ⎛⎦⎥⎤π4,1 (2)[0,1) 【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π2(k∈Z ).∴-1≤x ≤1且π4+k π<x <k π+π2,k ∈Z ,可得π4<x ≤1.则函数的定义域为⎝ ⎛⎦⎥⎤π4,1. (2)因为y =f (x )的定义域为[0,2],所以要使g (x )有意义应满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域是[0,1).【规律方法】 1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.(2)若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. 【训练1】 (1)(2019·深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1](2)(2019·山西名校联考)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A.(-9,+∞) B.(-9,1) C.[-9,+∞)D.[-9,1)【答案】 (1)C (2)B【解析】 (1)要使函数有意义,则⎩⎪⎨⎪⎧-x 2-x +2≥0,ln x ≠0,解得⎩⎪⎨⎪⎧-2≤x ≤1,x >0且x ≠1.∴函数的定义域是(0,1).(2)易知f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0,解得-9<x <1.故f [f (x )]的定义域为(-9,1). 考点二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________;(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.【答案】 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13【解析】 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1,所以⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,将x 换成1x ,则1x换成x ,得f ⎝ ⎛⎭⎪⎫1x=2f (x )·1x-1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,解得f (x )=23x +13.【规律方法】 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).【训练2】 (1)(2019·杭州检测)已知函数f (x )=ax -b (a >0),且f [f (x )]=4x -3,则f (2)=________; (2)若f (x )满足2f (x )+f (-x )=3x ,则f (x )=________. 【答案】 (1)3 (2)3x【解析】 (1)易知f [f (x )]=a (ax -b )-b =a 2x -ab -b , ∴a 2x -ab -b =4x -3(a >0),因此⎩⎪⎨⎪⎧a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧a =2,b =1. 所以f (x )=2x -1,则f (2)=3. (2)因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x . 考点三 分段函数 角度1 分段函数求值【例3-1】 (2018·江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上, f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f [f (15)]的值为________.【答案】22【解析】 因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (15)=f (-1)=12,因此f [f (15)]=f ⎝ ⎛⎭⎪⎫12=cos π4=22. 角度2 分段函数与方程、不等式问题【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=4,则b =( )A.1B.78C.34D.12(2)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.【答案】 (1)D (2)⎝ ⎛⎭⎪⎫-14,+∞【解析】 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b , 若52-b <1,即b >32时, 则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4, 解得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b=4,解得b =12. (2)当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=(x +1)+⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x +32>1,解得-14<x ≤0,当0<x ≤12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x+x +12>1,该式恒成立,当x >12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +2x -12,又x >12时,2x+2x -12>212+20=1+2>1恒成立, 综上可知,不等式的解集为⎝ ⎛⎭⎪⎫-14,+∞.【规律方法】 1.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.2.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 【提醒】 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( )A.-12B.2C.4D.11(2)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)由题意知f (1)=12+2=3, 因此f [f (1)]=f (3)=3+13-2=4.(2)当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.【反思与感悟】1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法. 【易错防范】1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.函数f (x )=2x-1+1x -2的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)【答案】 C【解析】 由题意知⎩⎪⎨⎪⎧2x-1≥0,x -2≠0,得⎩⎪⎨⎪⎧x ≥0,x ≠2,所以函数的定义域为[0,2)∪(2,+∞). 2.(2019·郑州调研)如图是张大爷晨练时离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )【答案】 D【解析】 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意. 3.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A.y =xB.y =lg xC.y =2xD.y =1x【答案】 D 【解析】 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ;D 中y =1x 的定义域、值域均为(0,+∞).4.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12【答案】 C【解析】 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1, ∴f (log 212)=2(log 212)-1=2log 26=6,因此f (-2)+f (log 212)=3+6=9.5.(2019·西安联考)已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是( ) A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]【答案】 C【解析】 f (x )=-x 2+4x =-(x -2)2+4. 当x =2时,f (2)=4.由f (x )=-x 2+4x =-5,得x =5或x =-1.∴要使f (x )在[m ,5]上的值域是[-5,4],则-1≤m ≤2.6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510【答案】 B【解析】 代表人数与该班人数的关系是除以10的余数大于6,即大于等于7时要增加一名,故y =⎣⎢⎡⎦⎥⎤x +310.7.(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A.2B.4C.6D.8【答案】 C【解析】 由已知得0<a <1,则f (a )=a ,f (a +1)=2a , 所以a =2a ,解得a =14或a =0(舍去),所以f ⎝ ⎛⎭⎪⎫1a=f (4)=2(4-1)=6. 8.(2019·上饶质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-2)∪(2,+∞)【答案】 D【解析】 当a =0时,显然不成立.当a >0时,不等式a [f (a )-f (-a )]>0等价于a 2-2a >0,解得a >2. 当a <0时,不等式a [f (a )-f (-a )]>0等价于a 2+2a >0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞). 二、填空题9.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.【答案】 (0,1]【解析】 要使函数f (x )有意义, 则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1].10.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫1x+1xf (-x )=2x (x ≠0),则f (-2)=________.【答案】 72【解析】 令x =2,可得f ⎝ ⎛⎭⎪⎫12+12f (-2)=4,①令x =-12,可得f (-2)-2f ⎝ ⎛⎭⎪⎫12=-1② 联立①②解得f (-2)=72.11.下列四个结论中,正确的命题序号是________.①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=0.【答案】 ②③【解析】 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域和对应关系均分别对应相同,所以f (x )与g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f (0)=1.12.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 【解析】 由题意知,若x ≤0,则2x =12,解得x =-1; 若x >0,则|log 2x |=12,解得x =212或x =2-12. 故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 【能力提升题组】(建议用时:15分钟)13.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数: ①y =x -1x ;②y =ln 1-x 1+x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1. 其中满足“倒负”变换的函数是( )A.①②B.①③C.②③D.①【答案】 B【解析】 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f (x )=ln 1-x 1+x ,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 则f ⎝ ⎛⎭⎪⎫1x =-f (x ). 所以满足“倒负”变换的函数是①③.14.(2019·河南八市联考)设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1(λ∈R ),2x ,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( ) A.(0,2]B.[0,2]C.[2,+∞)D.(-∞,2) 【答案】 C【解析】 当a ≥1时,2a ≥2.∴f [f (a )]=f (2a )=22a =2f (a )恒成立.当a <1时,f [f (a )]=f (-a +λ)=2f (a )=2λ-a ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2,综上,λ的取值范围是[2,+∞).15.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 【答案】 f (x )=-log 2 x【解析】 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x . 16.(2019·绍兴调研)设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (1))=________;不等式f (x )>2的解集为________.【答案】 1 (1,2)∪(10,+∞)【解析】 f (1)=2e 0=2,f (f (1))=f (2)=log 3(4-1)=1.当x <2时,f (x )>2即ex -1>1=e 0,∴x >1,∴1<x <2.当x ≥2时,f (x )>2即为log 3(x 2-1)>2=log 332,∴x 2>10,即x >10或x <-10,∴x >10.【新高考创新预测】17.(多选题)已知定义域内的函数f (x )满足:f (f (x ))-x >0恒成立,则f (x )的解析式不可能是( )A.f (x )=2 019xB.f (x )=e xC.f (x )=x 2D.f (x )=lg 1+x 2 【答案】 ACD【解析】A 中,f (f (x ))=f ⎝ ⎛⎭⎪⎫2 109x =x (x ≠0)恒成立, 所以f (f (x ))-x >0不恒成立,A 正确;B 中,因为e x >x ,所以ee x >e x >x ,所以f (f (x ))=ee x>x 恒成立,B 错误;C 中,f (f (x ))=x 4=x ,此方程有x =0或x =1两个根,所以f (f (x ))-x >0不恒成立,C 正确;D 中,x =0时,f (f (x ))=x 成立,所以f (f (x ))-x >0不恒成立,D 正确.。
2020届高考理科数学一轮复习要点+题型解析导数与函数、不等式的综合应用一、利用导数解不等式问题【题型解析】【题型一】)(x f 与)(x f '共存类问题【要点解析】1、对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ).2、对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx .3、对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).4、对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).5、对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.6、对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )x n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x,则F ′(x )=xf ′(x )-f (x )x 2>0. 7、对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ). 8、对于不等式f ′(x )-f (x )>0(或<0),构造函数F (x )=f xe x. 【例1】 (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________. 【解析】 (1)由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).【例2】(1)设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x【解析】(1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数. ∵f (x )是奇函数,f (-1)=0, ∴f (1)=-f (-1)=0, ∴g (1)=f (1)=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.【例3】(1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e xf (x )-e 2x >0的解集为________.【解析】(1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0得2⎥⎦⎤⎢⎣⎡'+)()(21x f x f >0,可构造函数h (x )=e 2x f (x ),则h ′(x )=12e 2x[f (x )+2f ′(x )]>0,所以函数h (x )=e 2x f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e x f (x )-e 2x>0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e xf (x )-e 2x >0的解集为(2,+∞).【题型二】不等式恒成立问题【要点解析】不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.求解不等式恒成立问题的方法(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.【例1】 已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.【解析】法一:构造函数法设g (x )=x e 2x -ax -ln x -1(x >0),对任意的x >0,f (x )≤x e 2x 恒成立,等价于g (x )≥0在(0,+∞)上恒成立,则只需g (x )min ≥0即可.因为g ′(x )=(2x +1)e 2x -a -1x ,令h (x )=(2x +1)e 2x -a -1x (x >0),则h ′(x )=4(x +1)e 2x +1x2>0,所以h (x )=g ′(x )在(0,+∞)上单调递增,因为当x ―→0时,h (x )―→-∞,当x ―→+∞时,h (x )―→+∞, 所以h (x )=g ′(x )在(0,+∞)上存在唯一的零点x 0, 满足(2x 0+1)e2x 0-a -1x 0=0,所以a =(2x 0+1)e2x 0-1x 0,且g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0e2x 0-ax 0-ln x 0-1=-2x 20e2x 0-ln x 0, 则由g (x )min ≥0,得2x 20e2x 0+ln x 0≤0, 此时0<x 0<1,e2x 0≤-ln x 02x 20,所以2x 0+ln(2x 0)≤ln(-ln x 0)+(-ln x 0), 设S (x )=x +ln x (x >0),则S ′(x )=1+1x >0,所以函数S (x )在(0,+∞)上单调递增,因为S (2x 0)≤S (-ln x 0), 所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2]. 法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立.令m (x )=e 2x-ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln xx 2,再令g (x )=2x 2e 2x +ln x (x >0),则g ′(x )=4(x 2+x )e 2x +1x >0,所以g (x )在(0,+∞)上单调递增,因为⎪⎭⎫⎝⎛41g =e 8-2ln 2<0,g (1)=2e 2>0,所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0,所以ln 2+2ln x 0+2x 0=ln(-ln x 0), 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0), 设s (x )=ln x +x (x >0),则s ′(x )=1x +1>0,所以函数s (x )在(0,+∞)上单调递增, 因为s (2x 0)=s (-ln x 0),所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2]. 【例2】设函数f (x )=ln x +kx,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 【解析】:(1)由条件得f ′(x )=1x -k x2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-221⎪⎭⎫ ⎝⎛-x +14恒成立,∴k ≥14.故k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,41【题型三】可转化为不等式恒成立问题可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .此类问题解法(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.【例题】已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1, 所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0.(2)f (x )=3x -3x +1=x +-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈⎥⎦⎤⎢⎣⎡2131,所以-6x +1∈[-3,-2], 所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ). 因为a <0,所以当x ∈[1,2]时,g ′(x )<0, 所以g (x )在[1,2]上单调递减, 故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3,即g (x )在[1,2]上的值域为⎥⎦⎤⎢⎣⎡---21233a ,因为对于任意的x 1∈[1,2] ,总存在x 2∈[1,2], 使得f (x 1)=g (x 2),所以[0,1]⊆⎥⎦⎤⎢⎣⎡---21233a ,, 所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].二、利用导数证明不等式问题【题型一】单变量不等式的证明待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证. 1、移项做差法【例1】已知函数f (x )=1-ln x x ,g (x )=a e e x +1x-bx (e 为自然对数的底数),若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)求证:当x ≥1时,f (x )+g (x )≥2x .【解析】 (1)因为f (x )=1-ln x x, 所以f ′(x )=ln x -1x 2,f ′(1)=-1. 因为g (x )=a e e x +1x -bx ,所以g ′(x )=-a e e x -1x2-b .因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1,即g (1)=a +1-b =1,g ′(1)=-a -1-b =1, 解得a =-1,b =-1.(2)证明:由(1)知,g (x )=-e e x +1x +x ,则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x +x ≥0.令h (x )=1-ln x x -e e x -1x+x (x ≥1),则h ′(x )=-1-ln x x 2+e e x +1x 2+1=ln x x 2+ee x +1. 因为x ≥1,所以h ′(x )=ln x x 2+eex +1>0,所以h (x )在[1,+∞)上单调递增,所以h (x )≥h (1)=0,即1-ln x x -e e x -1x+x ≥0, 所以当x ≥1时,f (x )+g (x )≥2x. 2、隔离审查分析法【例2】已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e. 【证明】 要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x. 令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x 2, 易知h (x )在⎪⎭⎫ ⎝⎛e 10,上单调递减,在⎪⎭⎫ ⎝⎛+∞,1e 上单调递增,则h (x )min =⎪⎭⎫ ⎝⎛e h 1=0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x,故原不等式成立. 3、放缩法证明不等式【要点解析】导数的综合应用题中,最常见就是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以先对e x 和ln x 进行放缩,使问题简化,便于化简或判断导数的正负.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)e x ≥e x ,当且仅当x =1时取等号;(3)当x ≥0时,e x ≥1+x +12x 2, 当且仅当x =0时取等号;(4)当x ≥0时,e x ≥e 2x 2+1, 当且仅当x =0时取等号; (5)x -1x≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号; (6)当x ≥1时,2(x -1)x +1≤ln x ≤x -1x,当且仅当x =1时取等号. 【例3】 已知函数f (x )=ax -ln x -1.(1)若f (x )≥0恒成立,求a 的最小值;(2)求证:e -xx +x +ln x -1≥0; (3)已知k (e -x +x 2)≥x -x ln x 恒成立,求k 的取值范围. 【解析】(1)f (x )≥0等价于a ≥ln x +1x. 令g (x )=ln x +1x (x >0),则g ′(x )=-ln x x2, 所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1(t >0).令e -xx =t ,则-x -ln x =ln t , 所以e -xx ≥-x -ln x +1, 即e -xx +x +ln x -1≥0. (3)因为k (e -x +x 2)≥x -x ln x 恒成立,即k ⎪⎪⎭⎫ ⎝⎛+-x x e x ≥1-ln x 恒成立,所以k ≥1-ln x e -x x +x =-e -x x +x +ln x -1e -x x +x +1, 由(2)知e -x x +x +ln x -1≥0恒成立, 所以-e -x x +x +ln x -1e -x x +x +1≤1,所以k ≥1. 故k 的取值范围为[1,+∞).【题型二】双变量不等式的证明【要点解析】破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.【例1】已知函数f (x )=ln x -12ax 2+x ,a ∈R. (1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 【解析】(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又因为f ′(x )=1x+1,所以切线斜率k =f ′(1) =2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0).由f (x 1)+f (x 2)+x 1x 2=0,即ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2,设φ(t )=t -ln t (t >0),则φ′(t )=1-1t =t -1t, 易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1, 所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 【例2】已知函数f (x )=ln x +a x. (1)求f (x )的最小值;(2)若方程f (x )=a 有两个根x 1,x 2(x 1<x 2),求证:x 1+x 2>2a .【解析】:(1)因为f ′(x )=1x -a x 2=x -a x2(x >0), 所以当a ≤0时,f (x )在(0,+∞)上单调递增,函数无最小值.当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.函数f (x )在x =a 处取最小值f (a )=ln a +1.(2)证明:若函数y =f (x )的两个零点为x 1,x 2(x 1<x 2),由(1)可得0<x 1<a <x 2.令g (x )=f (x )-f (2a -x )(0<x <a ),则g ′(x )=(x -a )⎥⎦⎤⎢⎣⎡--22)2(11x a x =-4a (x -a )2x 2(2a -x )2<0, 所以g (x )在(0,a )上单调递减,g (x )>g (a )=0,即f (x )>f (2a -x ).令x =x 1<a ,则f (x 1)>f (2a -x 1),所以f (x 2)=f (x 1)>f (2a -x 1),由(1)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1,故x 1+x 2>2a .【题型三】 证明与数列有关的不等式证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的.此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),还要注意指、对数式的互化,如e x >x +1可化为ln(x +1)<x 等.【例1】 已知函数f (x )=ln(x +1)+a x +2. (1)若x >0时,f (x )>1恒成立,求a 的取值范围;(2)求证:ln(n +1)>13+15+17+…+12n +1(n ∈N *). 【解析】 (1)由ln(x +1)+a x +2>1,得 a >(x +2)-(x +2)ln(x +1).令g (x )=(x +2)[1-ln(x +1)],则g ′(x )=1-ln(x +1)-x +2x +1=-ln(x +1)-1x +1. 当x >0时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.所以g (x )<g (0)=2,故a 的取值范围为[2,+∞).(2)证明:由(1)知ln(x +1)+2x +2>1(x >0), 所以ln(x +1)>x x +2.令x =1k (k >0),得ln ⎪⎭⎫ ⎝⎛+11k >1k1k+2, 即ln k +1k >12k +1. 所以ln 21+ln 32+ln 43+…+ln n +1n >13+15+17+…+12n +1, 即ln(n +1)>13+15+17+…+12n +1(n ∈N *). 【例2】已知函数f (x )=e x ,g (x )= ln(x +a )+b .(1)若函数f (x )与g (x )的图象在点(0,1)处有相同的切线,求a ,b 的值;(2)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(3)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <e e -1(n ∈N *). 【解析】:(1)因为函数f (x )和g (x )的图象在点(0,1)处有相同的切线,所以f (0)=g (0)且f ′(0)=g ′(0),又因为f ′(x )=e x ,g ′(x )=1x +a ,所以1=ln a +b,1=1a , 解得a =1,b =1.(2)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2),当a ≤2时,ln(x +a )≤ln(x +2)<e x ,所以当a ≤2时,f (x )-g (x )>0恒成立.当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立.故整数a 的最大值为2.(3)证明:由(2)知e x >ln(x +2),令x =-n +1n, 则e -n +1n >ln ⎪⎭⎫ ⎝⎛++-21n n , 即e -n +1>n nn ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-21ln =[ln(n +1)-ln n ]n , 所以e 0+e -1+e -2+…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n 1-1e <11-1e=e e -1, 所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <e e -1. 三、导数与函数的零点问题【题型一】判断零点的个数【例1】 设函数f (x )=ln x +m x ,m ∈R.讨论函数g (x )=f ′(x )-x 3零点的个数. 【解析】 由题设,g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设φ(x )=-13x 3+x (x >0), 则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.所以x =1是φ(x )的极大值点,也是φ(x )的最大值点.所以φ(x )的最大值为φ(1)=23. 由φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点; ②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点. 【例2】.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32,求方程f (x )=0的解的个数. 【解析】:因为f (x )=3ln x -12x 2+2x -3ln 3-32(x >0), 所以f ′(x )=3x -x +2=-x 2+2x +3x =-(x -3)(x +1)x, 当x ∈(0,3)时,f ′(x )>0,f (x )单调递增;当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (3)=3ln 3-92+6-3ln 3-32=0, 因为当x →0时,f (x )→-∞;当x →+∞时,f (x )→-∞,所以方程f (x )=0只有一个解.【例3】设f (x )=x -1x-2ln x .(1)求证:当x ≥1时,f (x )≥0恒成立;(2)讨论关于x 的方程x -1x -f (x )=x 3-2e x 2+tx 根的个数.【解析】:(1)证明:f (x )=x -1x -2ln x 的定义域为(0,+∞).∵f ′(x )=1+1x 2-2x =x 2-2x +1x 2=(x -1)2x 2≥0,∴f (x )在[1,+∞)上是单调增函数,∴f (x )≥f (1)=1-1-2ln 1=0对于x ∈[1,+∞)恒成立.故当x ≥1时,f (x )≥0恒成立得证.(2)化简方程得2ln x =x 3-2e x 2+tx .注意到x >0,则方程可变为2ln x x =x 2-2e x +t .令L (x )=2ln x x ,H (x )=x 2-2e x +t ,则L ′(x )=2(1-ln x )x 2.当x ∈(0,e)时,L ′(x )>0,∴L (x )在(0,e)上为增函数;当x ∈(e ,+∞)时,L ′(x )<0,∴L (x )在(e ,+∞)上为减函数.∴当x =e 时,L (x )max =L (e)=2e .函数L (x )=2ln x x ,H (x )=(x -e)2+t -e 2在同一坐标系内的大致图象如图所示.由图象可知,①当t -e 2>2e ,即t >e 2+2e 时,方程无实数根;②当t -e 2=2e ,即t =e 2+2e 时,方程有一个实数根;③当t -e 2<2e ,即t <e 2+2e 时,方程有两个实数根.【题型二】由零点个数来求参数根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x 轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.【例1】已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .【解析】 (1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0. 设函数g (x )=(x 2+1)e -x -1, 则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x . 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x . f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x . 当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h (2)=1-4a e 2是h (x )在(0,+∞)上的最小值. ①当h (2)>0,即a <e 24时,h (x )在(0,+∞)上没有零点. ②当h (2)=0,即a =e 24时,h (x )在(0,+∞)上只有一个零点.21 ③当h (2)<0,即a >e 24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点. 由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3e 2a 2>1-16a 32a 4=1-1a >0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e 24. 【例2】已知函数f (x )=x 33+x 22与g (x )=6x +a 的图象有3个不同的交点,则a 的取值范围是________.【解析】:原问题等价于函数h (x )=x 33+x 22-6x 与函数y =a 的图象有3个不同的交点, 由h ′(x )=x 2+x -6=(x -2)(x +3),得x =2或x =-3,当x ∈(-∞,-3)时,h ′(x )>0,h (x )单调递增;当x ∈(-3,2)时,h ′(x )<0,h (x )单调递减;当x ∈(2,+∞)时,h ′(x )>0,h (x )单调递增.且h (-3)=272,h (2)=-223, 数形结合可得a 的取值范围是⎪⎭⎫ ⎝⎛-227322,。
第二部分 函数1. 了解映射:f A B →的概念注意:(1)映射可以是多对一,也可以是一对一的对应,但不能是一对多的对应;(2)A 中元素在B 中必须都有象且唯一;(3)B 中元素在A 中不一定都有原象,若有原象也不一定唯一.2. 函数:f A B →是特殊的映射.特殊在定义域A 和值域C 都是非空数集!注意值域C B ⊆.函数的三要素:定义域、对应法则、值域,其中值域由定义域和对应法则确定, 也就是说,确定一个函数,只需确定函数的定义域和对应法则.3. 求函数定义域的常用方法:(1)偶次根式的被开方数非负;分式的分母不能为零;对数log a x 中0x >,0a >且1a ≠;三角形中0A π<<, 最大角3π≥,最小角3π≤等等.(2)根据实际问题的要求确定自变量的范围.注意单位.[注]:定义域要用集合或区间表示,不能用不等式表示.4. 求函数值域(最值)的方法:基本初等函数直接利用单调性;导数;均值定理;三角代换;数形结合;几何意义等.5. 指数函数()x f x a =()0,1a a >≠且的反函数是()1log a f x x -=()0,1a a >≠且, 反之亦然.它们的定义域与值域互换,图象关于直线y =x 对称.6. 函数的奇偶性:(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称.(2)确定函数奇偶性的常用方法(若函数的解析式较为复杂,应先化简,再判断其奇偶性,但要注意定义域的变化,如2()1x x f x x -=-): ①直接利用奇偶性定义判断:②利用奇偶性定义的等价形式:()()0f x f x ±-=或()()()()10f x f x f x -=±≠.如:奇函数(lg y x =±,11x x a y a +=-()0,1a a >≠且的判断. (3)函数奇偶性的性质:① 奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.② 若()f x 为偶函数,则()()f x f x =,此性质常用于根据单调性解不等式. ③ 若()f x 为奇函数,且0在函数的定义域中,则必有()00f =,常用此性质解题,但要注意:()00f =是()f x 为奇函数的既不充分也不必要条件.7. 函数的单调性:(1)确定函数的单调性或单调区间的常用方法:①在解答题中常用:定义法:(取值――作差――变形――定号);导数法:(在区间(),a b 内,若总有()'0f x >,则()f x 为增函数;反之,若()f x 在区间(),a b 内为增函数,则()'0f x ≥.请注意两者的区别:前者不含等号,后者含等号.②选择填空题还可用数形结合法、特殊值法等等, 特别要注意b y ax x=+型函数的图象和单调性在解题中的运用 (,a b 同号时,对勾函数;,a b 异号时,在()()0,,0+∞-∞上分别单调)③复合函数法:复合函数单调性的特点是同增异减.如:函数()20.5log 2y x x =-+的单调递增区间是?(答:(1,2)).关注定义域. 函数sin 23y x π⎛⎫=-⎪⎝⎭的单调递增区间是?(应首先将x 的系数化为正数) 答:511(,),1212k k k ππππ++∈Z . (2)特别提醒:求单调区间时要注意,一是勿忘定义域;二是不能用不等式表示;三是单调区间尽可能包括端点,但由导数求得的单调区间一律为开区间.(3)注意函数单调性与奇偶性的应用:①比较大小;②解不等式;③求参数范围.8. 常见的图象变换:(1)平移变换:()f x →()f x a ±或 ()f x a ±;函数()y f x a =±)0(>a 的图象是把函数()x f y =的图象沿x 轴左(右)平移a 个单位得到的;函数()x f y =±a )0(>a 的图象是把函数()x f y =的图象沿y 轴向上(下)平移a 个单位得到的;(2)伸缩变换:()f x →()f ax 或 ()af x ;函数()ax f y =)0(>a 的图象是把函数()x f y =的图象沿x 轴伸缩为原来的a1倍得到的;函数()x af y =)0(>a 的图象是把函数()x f y =的图象沿y 轴 伸缩为原来的a 倍得到的.*9. 函数的对称性:(1)一个函数本身的性质:若()()f a x f b x +=-对任意x 恒成立,则函数()f x 的图象关于直线2a b x +=轴对称;若()()0f a x f b x ++-=对任意x 恒成立,,则()f x 的图象关于点,02a b +⎛⎫ ⎪⎝⎭中心对称. (2)两个函数的关系:若()f x 与()g x 关于直线x a =对称,则()()2g x f a x =-;若()f x 与()g x 关于点(),0a 中心对称,则()()0f a x g a x ++-=.(3)特别关注形如ax b y cx d+=+的函数,其图象是双曲线,其两渐近线分别是直线d x c=-(由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c- (4)如何画出|()|f x 的图象?如何画出(||)f x 的图象?*10. 函数的周期性:对于函数()f x ,如果存在一个非零常数T ,使得定义域内的每一个x值,都满足()()f x T f x +=,那么这个函数()f x 就叫作周期函数.注意:①周期函数的定义域一定是无界的;②定义在R 上的常数函数也是周期函数,因而周期函数不一定有最小正周期;(1) 若()f x 图象有两条对称轴,()x a x b a b ==≠,则()f x 是周期函数,且2||a b -为一个周期;(2) 若()f x 图象有两个对称中心(,0),(,0)()A a B b a b ≠,则()f x 是周期函数,且2||a b -为一个周期;(3) 如果函数()y f x =的图象有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且4||a b -为一个周期;(4)若0a ≠,且()f x 满足()()x a f x f +=-,或1()()f x a f x +=; 或1()()f x a f x +=-;则均可得出2a 是()f x 的一个周期.11. 指数式、对数式:log a N a N =,log log log c a c b b a=, log log m n a a n b b m =,()n m mn a a =. 12. 指、对、幂函数:①指数函数x y a =的图象分两类(0a >、0a <);②对数函数log a y x =的图象也分两类(1a >、01a <<);③幂函数y x α=的图象首先关注第一象限,再根据定义域及奇偶性作出其它象限的图象.在同一坐标系中作出不同类型的幂函数.13. 指数、对数值的大小比较主要方法为:(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);14. 函数的应用:求解数学应用题,要特别注意:设(解答中涉及到的字母),定义域(实际问题,注意单位),答(将所得的数学结果,回归到实际问题中去).*15. 抽象函数:抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如:函数的定义域、单调性、奇偶性、解析递推式等)的函数问题.求解抽象函数问题的常用方法是:(1)利用赋值法探究性质(如令x =0或1,求出(0)f 或(1)f ;令y x =或y x =-或将x 换成-x ,将y 换成-y 等);(2)利用函数的性质进行演绎探究(如奇偶性、单调性、周期性、对称性等);(3)借鉴函数模型进行类比探究.几类常见的抽象函数为 :①正比例函数型:()(0)f x kx k =≠ -----()()()f x y f x f y ±=±;②幂函数型:2()f x x = -----()()()f xy f x f y =,()()()x f x f y f y =; ③指数函数型:()x f x a = -----()()()f x y f x f y +=,()()()f x f x y f y -=; ④对数函数型:()log a f x x = -----()()()f xy f x f y =+,()()()x f f x f y y =-; ⑤三角函数型:()tan f x x = ----- ()()()1()()f x f y f x y f x f y ++=-. 需要注意的是:函数模型只是满足所对应的抽象函数的一种函数类型,它只能帮助我们思考问题,但不能作为推理、论证的依据.16. 高考试题中关于基本初等函数性质考查的基本类型:函数是北京高考考查能力的重要素材,以函数为基础与其它章节在知识交汇点命制的考查能力的试题在历年的高考试卷中占有较大的比重.以选择题、填空题形式主要考查函数的基本概念、函数图象、函数性质(单调性、奇偶性、周期性)等重要知识;同时关注函数知识的应用,突出函数与方程的思想、数形结合的思想. 例1:对于函数: ①1()45f x x x=+-,②21()log ()2x f x x =-,③()cos(2)cos f x x x =+-, 判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是( D )(A )① (B )② (C )①③ (D )①② 例2:如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.(1)设BP x =,MN y =,则函数()y f x =的图象大致是( B )(2)设BP x =,四边形面积1D MBN S y =,则函数()y f x =的图象大致是( B )例3:已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立, 则实数a 的取值范围是( A )(A )2a(B )2a (C )22a (D )2a 或2a第三部分 导数1. 导数的背景:瞬时速度与瞬时变化率(平均变化率的极限).AB CDM N P A 1B 1C 1D 1。
2020届高考理科数学一轮复习要点+题型解析导数及其应用一、导数的运算问题【要点解析】1.基本初等函数的导数公式表2.导数的四则运算法则设f(x),g(x)是可导的,则(1)(f(x)±g(x))′=f′(x)±g′(x);(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);(3)'⎥⎦⎤⎢⎣⎡)()(xgxf=g(x)f′(x)-f(x)g′(x)g2(x)(g(x)≠0).(g(x)≠0).3.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y 对x的导数等于y对u的导数与u对x的导数的乘积.【题型解析】【例1】.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.【例2】.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2【解析】:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.【例3】.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 【解析】:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 【答案】:-2二、导数的几何意义【要点解析】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(1)斜率:αtan )(0='=x f k(2)切点:())(00x f x ',在切线上,也在曲线上。
2020届高考理科数学基本初等函数一轮复习要点题型解析一、幂函数【要点解析】1、幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.2、在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.3、在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【题型解析】【例1】.若幂函数的图象经过点⎪⎭⎫ ⎝⎛41,2,则它的单调递增区间是( ) A .(0,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0) 【答案】 D【解析】 设f (x )=x α,则2α=14,α=-2,即f (x )=x -2,它是偶函数,单调递增区间是(-∞,0).故选D. 【例2】.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c 【答案】 B【解析】 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B.【例3】.已知幂函数f (x )=223(22)n n n n x -+-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2【答案】 B【解析】 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B. 二、二次函数【要点解析】常用结论归纳1.一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”.(2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”.2.二次函数在闭区间上的最值设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ].(1)当-b 2a≤m 时,最小值为f (m ),最大值为f (n ); (2)当m <-b 2a ≤m +n 2时,最小值为f ⎪⎭⎫ ⎝⎛a b 2-,最大值为f (n ); (3)当m +n 2<-b 2a ≤n 时,最小值为f ⎪⎭⎫ ⎝⎛a b 2-,最大值为f (m ); (4)当-b 2a>n 时,最小值为f (n ),最大值为f (m ). 【题型解析】【题型一】二次函数的解析式【例1】 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解析】 法一:利用二次函数的一般式设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧ a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7.法二:利用二次函数的顶点式设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+-2=12. ∴m =12,又根据题意函数有最大值8,∴n =8, ∴y =f (x )=a 221⎪⎭⎫ ⎝⎛-x +8. ∵f (2)=-1,∴a 2212⎪⎭⎫ ⎝⎛-+8=-1,解得a =-4, ∴f (x )=-4221⎪⎭⎫ ⎝⎛-x +8=-4x 2+4x +7. 法三:利用零点式由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a -2a --a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7.【例2】已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.【解析】:法一:利用二次函数的一般式设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎨⎧-b 2a =-2,4ac -b 24a =-1,a +b +c =0,解得⎩⎪⎨⎪⎧ a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59. 法二:设所求解析式为f (x )=ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧ -b 2a =-2,4a -2b +c =-1,a +b +c =0,解得⎩⎪⎨⎪⎧ a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59. 法三:设所求解析式为f (x )=a (x -h )2+k .由已知得f (x )=a (x +2)2-1,将点(1,0)代入,得a =19, 所以f (x )=19(x +2)2-1, 即f (x )=19x 2+49x -59. 【题型二】二次函数的单调性与最值【解题指导】1.二次函数最值问题的类型及解题思路(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题.2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.【例1】 (1)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时,有最大值2,则a 的值为________.(2)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.【解析】(1)函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1.当0≤a ≤1时,f (x )max =a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去). 当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.(2)依题意a ≠0,二次函数f (x )=ax 2-2ax +c 图象的对称轴是直线x =1,因为函数f (x )在区间[0,1]上单调递减,所以a >0,即函数图象的开口向上,所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.【例2】已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.【解析】 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38; (3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3. 【题型三】二次函数中的恒成立问题【解题指导】由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【例1】(1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.【答案】 (-∞,-1)【解析】 设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =223⎪⎭⎫ ⎝⎛-x -54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2)函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.【答案】 2【解析】 令a x =t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎥⎦⎤⎢⎣⎡a a ,1显然g (t )在⎥⎦⎤⎢⎣⎡a a,1单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有 a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.【例2】已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( )A.54B .1或54C .-1或54D .-5或54 【解析】:选D f (x )=-422⎪⎭⎫ ⎝⎛-a x -4a ,对称轴为直线x =a 2. ①当a 2≥1,即a ≥2时,f (x )在[0,1]上单调递增, ∴f (x )max =f (1)=-4-a 2.令-4-a 2=-5,得a =±1(舍去).②当0<a 2<1,即0<a <2时,f (x )max =f ⎪⎭⎫ ⎝⎛2a =-4a . 令-4a =-5,得a =54. ③当a 2≤0,即a ≤0时,f (x )在[0,1]上单调递减, ∴f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,得a =-5或a =1(舍去).综上所述,a =54或-5. 三、指数与指数函数【要点解析】1.指数与指数运算(1)根式的性质①(na)n=a(a使na有意义).②当n是奇数时,na n=a;当n是偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.(2)分数指数幂的意义分数指数幂的意义是解决根式与分数指数幂互化问题的关键.①a mn=na m(a>0,m,n∈N*,且n>1).②a -mn==1na m(a>0,m,n∈N*,且n>1).③0的正分数指数幂等于0,0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①a r·a s=a r+s(a>0,r,s∈Q);②a ra s=ar-s(a>0,r,s∈Q);③(a r)s=a rs(a>0,r,s∈Q);④(ab)r=a r b r(a>0,b>0,r∈Q).(1)有理数指数幂的运算性质中,要求指数的底数都大于0,否则不能用性质来运算.(2)有理数指数幂的运算性质也适用于无理数指数幂.【题型解析】【题型一】指数幂的运算【解题指导】1、指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.2、当底数是负数时,先确定符号,再把底数化为正数.3、运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【例1】若实数a>0,则下列等式成立的是()A.(-2)-2=4 B.2a-3=12a3C.(-2)0=-1 D.414a-⎛⎫⎪⎝⎭=1a【答案】 D【解析】 对于A ,(-2)-2=14,故A 错误;对于B,2a -3=2a 3,故B 错误;对于C ,(-2)0=1,故C 错误;对于D ,414a -⎛⎫ ⎪⎝⎭=1a ,故D 正确.【例2】.计算:23278-⎛⎫- ⎪⎝⎭+120.002--10(5-2)-1+π0=________. 【答案】 -1679【解析】 原式=223-⎪⎭⎫ ⎝⎛-+12500-5+5-5++1=49+105-105-20+1=-1679. 【例3】.化简:()()31211332140.1a b ---⎛⎫⋅ ⎪⎝⎭⋅⋅(a >0,b >0)=________.【答案】 85 【解析】 原式=2×333223322210a ba b--⋅⋅⋅⋅=21+3×10-1=85. 【题型二】 指数函数的图象及应用【解题指导】 1、已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.2、对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.【例1】 函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0【答案】 D【解析】 由f (x )=a x-b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1,函数f (x )=a x -b 的图象是在y =a x 的基础上向左平移得到的,所以b <0.【例2】已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <2【答案】 D【解析】作出函数f(x)=|2x-1|的图象,如图,∵a<b<c且f(a)>f(c)>f(b),结合图象知,0<f(a)<1,a<0,c>0,∴0<2a<1.∴f(a)=|2a-1|=1-2a<1,∴f(c)<1,∴0<c<1.∴1<2c<2,∴f(c)=|2c-1|=2c-1,又∵f(a)>f(c),∴1-2a>2c-1,∴2a+2c<2,故选D.【题型三】指数函数的性质及应用1、比较大小问题:利用指数函数的函数性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量;【例1】(1)已知a=432,b=254,c=1325,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 【答案】 A【解析】由a15=15432⎛⎫⎪⎝⎭=220,b15=15452⎛⎫⎪⎝⎭=212,c15=255>220,可知b15<a15<c15,所以b<a<c.(2)若-1<a<0,则3a,13a,a3的大小关系是__________.(用“>”连接)【答案】3a>a3>1 3 a【解析】易知3a>0,13a<0,a3<0,又由-1<a<0,得0<-a<1,所以(-a)3<()13a-,即-a3<-13a,所以a3>13a,因此3a>a3>13a.【例2】已知a=243,b=425,c=2513,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【解析】因为a=243,b=425=245,由函数y=2x在R上为增函数知,b<a;又因为a=243=423,c=2513=523,由函数y=x23在(0,+∞)上为增函数知,a<c.综上得b<a<c.故选A.2、解简单的指数方程或不等式【解题指导】简单的指数方程或不等式问题的求解策略(1)a f (x )=a g (x )⇔f (x )=g (x ).(2)a f (x )>a g (x ),当a >1时,等价于f (x )>g (x );当0<a <1时,等价于f (x )<g (x ).(3)解决简单的指数不等式的问题主要利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.【例l 】若偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为________.[解析] ∵f (x )为偶函数,当x <0时,-x >0,则f (x )=f (-x )=2-x -4. ∴f (x )=⎩⎪⎨⎪⎧ 2x -4, x ≥0,2-x -4,x <0,当f (x -2)>0时,有⎩⎪⎨⎪⎧ x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0.∴不等式的解集为{x |x >4或x <0}.【例2】已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______. 【答案】 12【解析】 当a <1时,41-a =21,解得a =12;当a >1时,代入不成立.故a 的值为12. 3 指数函数性质的综合应用(1) 利用指数函数的函数性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量;(2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.【例1】函数f (x )=x 2-bx +c 满足f (x +1)=f (1-x ),且f (0)=3,则f (b x )与f (c x )的大小关系是( )A .f (b x )≤f (c x )B .f (b x )≥f (c x )C .f (b x )>f (c x )D .与x 有关,不确定 【答案】 A【解析】 ∵f (x +1)=f (1-x ),∴f (x )关于x =1对称,易知b =2,c =3,当x =0时,b 0=c 0=1,∴f (b x )=f (c x ),当x >0时,3x >2x >1,又f (x )在(1,+∞)上单调递增,∴f (b x )<f (c x ),当x <0时,3x <2x <1,又f (x )在(-∞,1)上单调递减,∴f (b x )<f (c x ),综上,f (b x )≤f (c x ).【例2】已知函数f (x )=2|2x-m |(m 为常数),若f (x )在区间[2,+∞)上单调递增,则m 的取值范围是________.【答案】 (-∞,4]【解析】 令t =|2x -m |,则t =|2x -m |在区间⎪⎭⎫⎢⎣⎡+∞,2m 上单调递增,在区间⎥⎦⎤ ⎝⎛∞-2m ,上单调递减.而y =2t 在R 上单调递增,所以要使函数f (x )=2|2x-m |在[2,+∞)上单调递增,则有m 2≤2,即m ≤4,所以m 的取值范围是(-∞,4].【例3】函数f (x )=4x -2x+1的单调增区间是________.【答案】 [0,+∞) 【解析】 设t =2x (t >0),则y =t 2-2t 的单调增区间为[1,+∞),令2x ≥1,得x ≥0,又y =2x 在R 上单调递增,所以函数f (x )=4x -2x +1的单调增区间是[0,+∞).四、对数及对数函数【要点解析】对数常用结论归纳1.换底公式的变形(1)log a b ·log b a =1,即log a b =1log b a(a ,b 均大于0且不等于1); (2)log am b n =n mlog a b (a ,b 均大于0且不等于1,m ≠0,n ∈R); (3)log N M =log a M log a N =log b M log b N(a ,b ,N 均大于0且不等于1,M >0). 2.换底公式的推广log a b ·log b c ·log c d =log a d (a ,b ,c 均大于0且不等于1,d >0).3.对数恒等式a log a N =N (a >0且a ≠1,N >0).【题型解析】题型一 对数的运算错误!错误!错误!错误!对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.【例1】设2a =5b =m ,且1a +1b=2,则m 等于( ) A.10 B .10 C .20 D .100【答案】 A【解析】 由已知,得a =log 2m ,b =log 5m ,则1a +1b =1log 2m +1log 5m=log m 2+log m 5=log m 10=2.解得m =10.【例2】.计算:(1-log 63)2+log 62·log 618log 64=________. 【答案】 1【解析 原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1. 4.设函数f (x )=3x +9x ,则f (log 32)=________.答案 6解析 ∵函数f (x )=3x +9x ,∴f (log 32)=3log 23+3log 29=2+9log 49=2+4=6.【题型二】对数函数的图像【例1】函数y =2log 4(1-x )的图象大致是( )【答案】 C【解析】 函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.故选C.【例2】已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是____________.【答案】 (1,+∞)【解析】 如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与y =f (x )只有一个交点.【题型三】 对数函数的性质及应用1、比较对数值的大小【例1】已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( ) A .a >b >cB .b >a >cC .c >b >aD .c >a >b【解析】因为c =log 1213=log 23>log 2e =a , 所以c >a .因为b =ln 2=1log 2e<1<log 2e =a ,所以a >b . 所以c >a >b .【例2】 设a =log 412,b =log 515,c =log 618,则( )A .a >b >cB .b >c >aC .a >c >bD .c >b >a 【答案】 A【解析】 a =1+log 43,b =1+log 53,c =1+log 63,∵log 43>log 53>log 63,∴a >b >c .2、解简单对数方程、不等式【例1】 已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.【解析】 原不等式⇔⎩⎪⎨⎪⎧ 0<x <1,2x 2+1>3x >1①或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1②,解不等式组①得13<x <12,不等式组②无解,所以实数x 的取值范围是⎪⎭⎫ ⎝⎛2131,【例2】方程log 2(x -1)=2-log 2(x +1)的解为________.【答案】 x = 5【解析】 原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x = 5.3 对数函数性质的综合应用【例1】若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A .(-∞,4)B .(-4,4]C .(-∞,-4)∪[-2,+∞)D .[-4,4)【答案】 D 【解析】 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上单调递减,则a 2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4),故选D. 【例2】已知函数f (x )=log 4(ax 2+2x +3),若f (1)=1,求f (x )的单调区间.【解析】因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3,函数f (x )的定义域为(-1,3).令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减.又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).。
高考一轮复习---函数的单调性与最值知识点与题型一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征:一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范:(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论:(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f(x)单调递减,g(x)单调递减,则f(x)+g(x)是减函数;(3)函数f(x)单调递增,g(x)单调递减,则f(x)-g(x)是增函数;(4)函数f(x)单调递减,g(x)单调递增,则f(x)-g(x)是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反;(6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.三、考点解析考点一 确定函数的单调性(区间))例、(1)求函数f (x )=-x 2+2|x |+1的单调区间.(2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.跟踪训练1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1) 2.函数f (x )=log 12(x 2-4)的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(2,+∞) D .(-∞,-2)3.判断函数f (x )=x +a x(a >0)在(0,+∞)上的单调性. 考点二 求函数的值域(最值))例、(1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-a x +b (a >0)在]2,21[上的值域为]2,21[,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.注: (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.跟踪训练1.函数f (x )=x 2+4x的值域为________. 2.若x ∈]32,6[ππ-,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.3.已知f (x )=x 2+2x +a x,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.考点三 函数单调性的应用考法(一) 比较函数值的大小例、偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式例、设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,2] C .[2,6] D .[2,+∞)[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)例、已知函数f (x )=x -a x +a 2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.跟踪训练1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =)21(-f ,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是课后作业一1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x | 2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .125.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)6.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2-ax -5,x ≤1,a x,x >1是R 上的增函数,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-2] C .[-3,-2] D .(-∞,0)7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.8.函数f (x )=⎩⎪⎨⎪⎧ 1x ,x ≥1,-x 2+2,x <1的最大值为________. 9.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________. 10.若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________. 11.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在]2,21[上的值域是]2,21[,求a 的值.12.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.课后作业二1.若f(x)=-x2+4mx与g(x)=2mx+1在区间[2,4]上都是减函数,则m的取值范围是()A.(-∞,0)∪(0,1] B.(-1,0)∪(0,1] C.(0,+∞) D.(0,1] 2.已知函数f(x)=ln x+x,若f(a2-a)>f(a+3),则正数a的取值范围是________.3.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.。
函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。
2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。
(常见方法有哪些)4、如何求函数的值域。
(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。
2020届高考理科数学一轮复习要点+题型解析函数的图像、函数与方程 一、函数的图像问题【要点解析】关于函数图像常用结论1.函数图象自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图象关于y 轴对称;(2)函数y =f (x )的图象关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x ); (3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称.2.函数图象自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图象关于原点对称;(2)函数y =f (x )的图象关于(a,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x );(3)函数y =f (x )的图象关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ).3.两个函数图象之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图象关于直线x =b -a2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称; (3)函数y =f (x )与y =2b -f (-x )的图象关于点(0,b )对称; (4)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )对称.【题型解析】【题型一】 作函数的图象 【解题指导】1、熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.2、若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序. 【例题】分别画出下列函数的图象: (1)y =|lg(x -1)|; (2)y =2x +1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1.【解析】 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图⇔所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图⇔所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图⇔所示.(4)⇔y =2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图⇔所示.【题型二】 函数图象的辨识 【解题指导】1.函数图象与解析式之间的4种对应关系(1)从函数的定义域,判断图象的左右位置,从函数的值域(或有界性),判断图象的上下位置;(2)从函数的单调性,判断图象的升降变化趋势;(3)从函数的奇偶性,判断图象的对称性:奇函数的图象关于原点对称,在对称的区间上单调性一致,偶函数的图象关于y 轴对称,在对称的区间上单调性相反;(4)从函数的周期性,判断图象是否具有循环往复特点. 2.通过图象变换识别函数图象要掌握的两点(1)熟悉基本初等函数的图象(如指数函数、对数函数等函数的图象); (2)了解一些常见的变换形式,如平移变换、翻折变换. 3.借助动点探究函数图象解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象,也可以采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择. 【例1】函数y =x 2ln|x ||x |的图象大致是( )【答案】 D【解析】 从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间⎪⎭⎫ ⎝⎛e 10,上单调递减,在区间⎪⎭⎫ ⎝⎛∞+,e 1上单调递增.由此可知应选D.【例2】已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥01x,x <0,g (x )=-f (-x ),则函数g (x )的图象是( )【解析】:选D法一:由题设得函数g (x )=-f (-x )=⎩⎪⎨⎪⎧-x 2,x ≤0,1x ,x >0,据此可画出该函数的图象,如题图选项D 中图象.故选D.法二:先画出函数f (x )的图象,如图1所示,再根据函数f (x )与-f (-x )的图象关于坐标原点对称,即可画出函数-f (-x ),即g (x )的图象,如图2所示.故选D.【例3】函数f (x )=e x -e -xx 2的图象大致为( )【答案】 B【解析】 ⇔y =e x -e -x 是奇函数,y =x 2是偶函数,⇔f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,⇔1e <12,⇔e -1e >32,排除C 选项.【题型三】 函数图象的应用 1、利用函数的图象研究函数的性质【解题指导】对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究:(1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性. 【例1】)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,单调递增区间是(0,+∞) B .f (x )是偶函数,单调递减区间是(-∞,1) C .f (x )是奇函数,单调递减区间是(-1,1) D .f (x )是奇函数,单调递增区间是(-∞,0) 【答案】 C【解析】 将函数f (x )=x |x |-2x去掉绝对值,得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.【例2】已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.【答案】 9【解析】 作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n 且mn =1. 若f (x )在[m 2,n ]上的最大值为2, 从图象分析应有f (m 2)=2, ⇔log 3m 2=-2,⇔m 2=19. 从而m =13,n =3,故nm =9.2、解不等式问题【解题指导】当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题,从而利用数形结合法求解【例1】若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )A .(1,2]B.⎪⎪⎭⎫⎝⎛122, C .(1,2) D .(2,2)【解析】 要使当x ⇔(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ⇔(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].【例2】设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)【解析】:选D 因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0可化为x x f )(<0,即xf (x )<0,f (x )的大致图象如图所示. 所以xf (x )<0的解集为(-1,0)⇔(0,1).【例3】已知函数()12log ,020x x x f x x >⎧⎪⎨⎪≤⎩,=,,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________. 【答案】 (0,1]【解析】 作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ⇔(0,1].二、函数的零点问题【要点解析】1.函数的零点(1)零点的定义:对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)零点的几个等价关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(3)函数的零点不是函数y =f (x )与x 轴的交点,而是y =f (x )与x 轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数. 2.函数的零点存在性定理(1)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ⇔(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.(2)函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.3.二分法的定义对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.4.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.【题型解析】【题型一】函数零点个数、所在区间的判定问题【解题指导】1.掌握判断函数零点个数的3种方法(1)解方程法若对应方程f(x)=0可解,通过解方程,即可判断函数是否有零点,其中方程有几个解就对应有几个零点.(2)定理法利用函数零点的存在性定理进行判断,但必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数的零点个数.(3)数形结合法合理转化为两个函数的图象(易画出图象)的交点个数问题.先画出两个函数的图象,看其是否有交点,若有交点,其中交点的个数,就是函数零点的个数.2.判断函数零点所在区间问题的策略判断函数零点所在区间的基本依据是零点存在性定理.对于含有参数的函数的零点区间问题,往往要结合图象进行分析,一般是转化为两函数图象的交点,分析其横坐标的情况进行求解.【例1】.函数f (x )=ln x -2x -1的零点所在的区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5) 【答案】 B【解析】 函数f (x )=ln x -2x -1在(1,+∞)上是增函数,且在(1,+∞)上连续.因为f (2)=ln 2-2<0,f (3)=ln 3-1>0,所以f (2)f (3)<0,所以函数的零点所在的区间是(2,3).【例2】函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.【答案】 2【解析】 当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上,f (x )有一个零点;当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.【例3】函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3 【答案】 C【解析】 由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示. 由图可知函数f (x )在定义域内的零点个数为2.【例4】.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内【答案】 A【解析】 ⇔a <b <c ,⇔f (a )=(a -b )(a -c )>0, f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函数零点存在性定理可知,在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点.因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内,故选A. 【例5】已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3【解析】解方程法令f (x )+3x =0,则⎩⎪⎨⎪⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x+3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.【例6】设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎪⎭⎫ ⎝⎛11,e ,(1,e)内均有零点 B .在区间⎪⎭⎫ ⎝⎛11,e ,(1,e)内均无零点 C .在区间⎪⎭⎫ ⎝⎛11,e 内有零点,在区间(1,e)内无零点D .在区间⎪⎭⎫ ⎝⎛11,e 内无零点,在区间(1,e)内有零点 【解析】法一:图象法令f (x )=0得13x =ln x .作出函数y =13x 和y =ln x 的图象,如图, 显然y =f (x )在⎪⎭⎫ ⎝⎛11,e 内无零点,在(1,e)内有零点. 法二:定理法当x ⇔⎪⎭⎫ ⎝⎛e e ,1时,函数图象是连续的,且f ′(x )=13-1x =x -33x <0,所以函数f (x )在⎪⎭⎫ ⎝⎛e e ,1上单调递减.又⎪⎭⎫ ⎝⎛e f 1=13e +1>0,f (1)=13>0,f (e)=13e -1<0,所以函数有唯一的零点在区间(1,e)内.【题型二】 函数零点的应用【解题指导】根据函数零点的情况求参数有三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.1、已知函数零点个数求参数范围【例1】已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【解析】 令h (x )=-x -a ,则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象,可知当直线y =-x -a 过点(0,1)时,有2个交点,此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意.当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意.综上,a 的取值范围为[-1,+∞).【例2】已知函数()21211log 1x x f x x x ⎧⎪⎨⎪⎩-,<,=,≥,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是______.【答案】 (-1,0)【解析】 关于x 的方程f (x )=k 有三个不同的实根,等价于函数y =f (x )与函数y =k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0).2.根据函数零点的范围求参数【例1】若函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3)B .(1,2)C .(0,3)D .(0,2)【解析】:选C 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3.【例2】已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a的取值范围是________.【答案】(-∞,0)⇔(1,+∞)【解析】令φ(x)=x3(x≤a),h(x)=x2(x>a),函数g(x)=f(x)-b有两个零点,即函数y=f(x)的图象与直线y=b有两个交点,结合图象(图略)可得a<0或φ(a)>h(a),即a<0或a3>a2,解得a<0或a>1,故a⇔(-∞,0)⇔(1,+∞).。
-一轮复习 函数题型归纳(第二章)题型一、函数概念的考察 (1)函数概念的考察(2)判断函数相等(是否为同一函数)例1;下列图象中,不可能成为函数y =f(x)图象的是( )例2:下列函数中表示同一函数的是( ) ①22)()(,)(x x g x x f ==②01x x g x f ==)(,)(③⎩⎨⎧-<---≥+=1111x x x x x f ,,)(,||)(1+=x x g ④ 1112--=+=x x x g x x f )(,)( ⑤2y x =与2t s =题型二、函数的定义域(*)(1)已知解析式求定义域(*)(2)抽象函数定义域的求法(*)(3)已知函数定义域,求参数的取值范围例3:求下列函数的定义域①()01y x =- ②2()lg(1)f x x =+③()tan(2)4f x x π=- ④()f x =例4:已知函数(1)f x +的定义域为[]2,3-,则()21f x -的定义域为例5: 若函数()32y f x =-的定义域为[]1,2-,则函数()1f x y x =-的定义域为例6:已知函数()f x =的定义域为R ,则实数k 的取值范围是题型三、求函数解析式(1)待定系数法 (*) (2)换元法 (*) (3)配凑法(4)解方程组法例7:已知()f x 是二次函数,且()02f =,()()13f x f x x +-=例8:已知)132fx =+,则()f x 解析式为例9:已知2211()f x x x x+=+,求()f x例10:已知()()22f x f x x x --=-,求()f x题型四、求函数的值域(*) (1)直接观察法(2)配方法(二次函数) (3)换元法(*)(4)一次分式型函数(分离常数法)(*)(5)二次分式型函数(函数法、判别式法、不等式法)例11:22y x =-21y x =-例12:函数223y x x =--,()4,1-∈x 的值域为例13:求函数31(12)12x y x x-=-≤≤-的值域例14:求函数2y x =例:函数y =例15:求函数()22211x x y x x ++=>-+的值域例16:求函数2231x x y x x -+=-+的值域题型五、分段函数(*)1. 利用分段函数,画函数图像、求值2. 求复合函数的值3. 利用分段函数,解方程、不等式4. 分段函数的单调性例16:已知函数⎪⎪⎩⎪⎪⎨⎧≥<<--≤+=)()()()(22212122x x x x x x x f(1)画出函数)(x f 的图像;(2)求)(((47-f f f ;(3)若f(a)=3,求实数a例17:若{}min,,a b c 表示,,a b c 中的最小值,设(){}min 2,2,10x f x x x =+-,则()f x 的最大值为( ) A .6 B .4 C .1 D .2例18:设函数则不等式的解集是( )A.B. C. D.例:已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()11f a f a -=+,则a =例19:()21(,1),()11xf x x R xg x x x -=∈≠-=-+且求()()()()2f g f g x 的值与的解析式例20:若函数()633,7(),7x a x x f x a x -⎧--≤⎪=⎨>⎪⎩在R 上单调递增,则实数a 的取值范围是题型六、函数的单调性与最值(*)(1)判断、证明函数单调性与单调区间(*) (2)复合函数的单调性(*)(3)单调性应用:求单调性、最值、求参数范围(*) (4)利用单调性比较大小、解不等式(*) (5)抽象函数的单调性(6)“存在性与任意性”问题(*)例25:判断函数()3()(1),2,2x x f x a a x x -=+>∈-+∞+的单调性,并用单调性的定义证明你的结论例:已知函数()y f x =的定义域为R ,对任意12x x <,都有()1212()1f x f x x x ->--,则下列说法正确的是:⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f )1()(f x f >),3()1,3(+∞⋃-),2()1,3(+∞⋃-),3()1,1(+∞⋃-)3,1()3,(⋃--∞A. ()y f x x =+是增函数B.()y f x x =+是减函数C .()y f x =是增函数 D.()y f x =是减函数例26:求函数y =例:求函数()22()log 34f x x x =--的单调递增区间例:.函数()()()0.50.5log 2log 2f x x x =-++的单调递增区间是A. ()2,+∞B.(),2-∞-C.()0,2D.()2,0-例:函数21()log (2)3xf x x ⎛⎫=-+ ⎪⎝⎭在区间[]1,1-上的最大值为例31:已知函数()ln 2x f x x =+,若2(4)2f x -<,则实数x 的取值范围是例32:已知函数()22444a a ax x x f --+-=,求()x f 在区间[]1,0上的最值例;()1f x x a =-+在[)2,+∞上是增函数,则实数a 的取值范围为例28:若函数()248f x x kx =--在[5,20]上是单调递增函数,则实数k 的取值范围是________.若()22f x x ax =-+与()1ag x x =+在区间[]1,2上都是减函数,则a 的取值范围是 例27:定义在[]1,1-上的减函数()f x ,且满足()()211f a f a -<-,求a 的取值范围例 ;函数()11x xe f x e +=-,若11(),(ln 2),(ln )23a f b f c f =-==,则 A .cb a >> B .b ac >> C .c a b >> D .b c a >>例:(2020全国II 卷)若2233,xy x y ---<-则A. 1(1)0n y x -+>B. 1(1)0n y x -+<C. ln 0x y ->D. 10nx y -<例:定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<, (1)求()0f 的值;(2)判断()f x 的单调性并证明你的结论.例30:已知()f x 是定义()0,+∞在上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭,()21f =且满足()123f x f x ⎛⎫-≤ ⎪-⎝⎭,求x 的取值范围已知()21f x x x =-+在[]1,1x ∈-时,函数()y f x =的图像恒在2y x m =+的图像的上方,求实数m 的取值范围 已知函数()22()x f x x a g x x e =-+=,,若对任意的[]21,1x ∈-,存在唯一的11,22x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则实数a 的取值范围是A . (],4eB . 1,44e ⎛⎤+⎥⎝⎦ C . 1,44e ⎛⎫+ ⎪⎝⎭ D .1,44⎛⎤⎥⎝⎦题型七、函数的奇偶性(1)函数奇偶性的判断(*)(2)利用奇偶性求函数解析式(*)(3)函数奇偶性的应用:求函数值、求参数值例33:判断函数奇偶性①3223y x x x =-+ ②1lg1xy x+=-③(0,1)x x x xa a y a a a a ---=>≠+ ④(2log y x =+例34:偶函数()x f 在区间[]13--,上是单减函数,则()3-f 、()1f 、()2f 的大小关系为例35:已知()835-++=bx ax x x f ,且()102=-f ,则()2f 等于.已知函数()()20217,310af x x f x=---=,则()3f 的值为例36:函数()x f 是R 上的奇函数,当x>0时,12)(2--=x x x f ,则()x f 的解析式为例37:若函数()b a bx ax x f +++=32是偶函数,定义域为[]a a 21,-,则=a =b例38:设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式0>-+xx f x f )()(的解集为8. 已知函数()y f x =在R 上的偶函数,且在(],0-∞上是减函数,若()()2f a f ≥,则实数a 的取值范围例39:已知函数)(x f 是奇函数,其定义域为),(11-,且在),[10上为增函数,若0232<-+-)()(a f a f ,试求实数a 的取值范围.题型八、函数的周期性(*)例40:若函数()f x 是定义在R 上的函数,满足()(3)1f x f x +=-,且当(]2,0x ∈-时,()2f x x =,则当(]2,4x ∈时,函数()f x 的解析式为例41:定义在R 上的函数()f x 满足()()12f x f x =-+,且当(]2,0x ∈-时,()124xf x =-,则()2log 20f =( ) A .16- B .116-C .34- D .4- 题型九、函数的对称性(*)(1)绝对值一次函数的对称性(*) (2)函数的轴对称(*) (3)函数的中心对称例42:已知函数()x af x e-=(a 为常数),若()f x 在区间[)1,+∞上是增函数,则实数a 的取值范围是 已知函数()ln ln()f x x a x =+-的图像关于直线1x =对称,则(1)f =例43:(多选)如果函数()f x 的图像关于直线1x =对称,那么A. ()()2f x f x -=B.()()11f x f x -=+C.()1y f x =+是偶函数 D.()1y f x =-是偶函数已知函数()f x 的定义域为R ,且满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点从左到右依次为()()()11221010,,,,,,x y x y x y ,则所以交点的横坐标和纵坐标之和为A.10B. 10- C . 5 D .20例44:定义在R 上的奇函数满足()()20f x f x -+=,当[)0,1x ∈时,()1xf x x =-,则172f ⎛⎫= ⎪⎝⎭例45:已知函数()2221xf x x -=-,则122019201920192019f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=题型十、函数性质的综合应用(单调性、奇偶性、周期性、对称性) (1)利用函数性质求值(2)利用函数性质解抽象函数不等式例46:若奇函数()f x 满足()(2)f x f x +=-,当01x ≤≤时,2()f x x =,则()()()()1232022f f f f ++++=例:已知函数()f x 是定义域为(,)-∞+∞的奇函数,满足()1(1)f x f x -=+,若(1)2f =,则()()()(1)2350f f f f ++++=例47: 若函数()f x 满足()()111f x f x +=-和()()21f x f x -=+,且当13,22x ⎛⎤∈ ⎥⎝⎦时,()22f x x =+,则()2022f =例48:若函数()x x f x e e -=-,则不等式(21)(2)0f x f x ++->的解集为例49:已知函数21()log (1)f x x =+()lg 3f x >的解集为例50:已知()f x 是定义在区间[]1,1-上的奇函数,当0x <时,()()1f x x x =-,则关于m 的不等式()()2110f m f m -+-<的解集为A.[)0,1 B.()2,1- C.(- D.⎡⎣二次函数题型(1)二次函数图像 (2)二次函数单调性 (3)二次函数最值问题 (4)根的分布问题 例1:设0abc >,则二次函数2()f x ax bx c =++的图像可能是( )例2:求下列函数的值域 (1)12y x x =+-(2)4325(02)x x y x =-⋅+≤≤例3:如果函数()2f x x ax a =--在区间[]0,2上的最大值为1,那么实数a =例4:已知2()3f x ax bx a b =+++是偶函数,且其定义域为[]1,2a a -,则()y f x =的值域为例5:已知二次函数()y f x =对任意实数x ,都有()()11f x f x +=-,()f x 的图像与x 轴交于,A B 两点,且23AB =它在y 轴上的截距为4.(1)求函数()f x 的解析式(2)若函数()f x 的图像一直都在直线y x c =+的下方,求实数c 的取值范围例6:已知关于x 的二次方程22210x mx m +++=(1)若方程有两个实根分别在区间()1,0-和()1,2内,求m 的取值范围(2)若方程两实根都在区间(0,1)内,求m 的取值范围。
2017年高考数学一轮复习函数知识点归纳一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。