昆明理工大学物理习题集(下)第十一章元答案
- 格式:wps
- 大小:211.10 KB
- 文档页数:9
S 1S 2 第十四章 光学一、选择题1. 有三种装置(1)完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2)同一盏钠光灯,用黑纸盖住其中部,将钠光灯分成上下两部分,同时照射到屏上;(3)用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行,且间距很小的两条狭缝,此二亮缝的光照射到屏上。
以上三种装置,能在屏上形成稳定干涉花样的是:[ A ](A )装置(3) (B )装置(2) (C )装置(1)、(3) (D )装置(2)(3)2. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为:[ A ](A )1.5λ (B )1.5λ/n (C )1.5n λ (D )3λ3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中:[ C ](A )传播的路程相等,走过的光程相等; (B )传播的路程相等,走过的光程不相等;(C )传播的路程不相等,走过的光程相等; (D )传播的路程不相等,走过的光程不相等。
4. 如图,如果S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分为真空,光沿这两条路径的光程差等于:[ B ](A ) 222111()();r n t r n t +-+(B ) 222111[(1)][(1)];r n t r n t +--+- (C ) 222111()();r n t r n t ---(D ) 2211n t n t -5. 双缝干涉实验中,入射光波长为λ,用玻璃纸遮住其中一缝,若玻璃纸中光程比相同厚度的空气大λ5.2,则屏上原0级明纹中心处 [ B ](A ) 仍为明纹中心 (B ) 变为暗纹中心(C ) 不是最明,也不是最暗 (D ) 无法确定6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为:[ B ](A ) 5.0×10-4cm (B ) 6.0×10-4cm(C ) 7.0×10-4cm (D ) 8.0×10-4cm7. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
大物下册课后习题答案大物下册课后习题答案大学物理是一门重要的基础学科,它涉及到我们周围的自然现象和物质运动规律的研究。
作为学习大学物理的学生,课后习题是巩固知识、提高能力的重要途径。
下面将为大家提供大物下册课后习题的答案,希望对大家的学习有所帮助。
第一章:运动的描述1. 速度与位移的区别是什么?答:速度是描述物体在单位时间内位移的快慢,是矢量量,有大小和方向;位移是描述物体从一个位置到另一个位置的距离和方向,是矢量量,有大小和方向。
2. 什么是匀速直线运动?答:匀速直线运动是指物体在相等时间内位移相等的运动。
在匀速直线运动中,速度大小和方向保持不变。
3. 什么是加速度?答:加速度是描述物体速度变化率的物理量,是矢量量,有大小和方向。
加速度的大小等于速度变化量与时间的比值。
第二章:牛顿定律与运动学1. 牛顿第一定律是什么?答:牛顿第一定律,也称为惯性定律,指出当物体受力为零时,物体将保持静止或匀速直线运动的状态。
2. 什么是牛顿第二定律?答:牛顿第二定律指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。
3. 什么是牛顿第三定律?答:牛顿第三定律指出,任何一个物体受到的作用力都有一个大小相等、方向相反的反作用力作用在另一个物体上。
第三章:动能、功和能量守恒定律1. 动能是什么?答:动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。
动能的表达式为:K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。
2. 什么是功?答:功是描述力对物体做功的物理量,它等于力与物体位移的乘积。
功的表达式为:W=Fs,其中W为功,F为力,s为物体的位移。
3. 能量守恒定律是什么?答:能量守恒定律指出,在一个封闭系统内,能量的总量是不变的。
能量可以相互转化,但不能被创造或破坏。
第四章:动量和碰撞1. 动量是什么?答:动量是物体运动的量度,它等于物体的质量与速度的乘积。
大学物理(下)练习题大学物理习题集第六章 光的干涉6.1 在空气中做杨氏双缝干涉实验,缝间距为d = 0.6mm ,观察屏至双缝间距为D = 2.5m ,今测得第3级明纹与零级明纹对双缝中心的张角为2.724×10-3rad ,求入射光波长及相邻明纹间距.[解答]根据双缝干涉公式sin θ = δ/d ,其中sin θ≈θ,d = kλ = 3λ,可得波长为 λ = d sin θ/k = 5.448×10-4(mm) = 544.8(nm).再用公式sin θ = λ/d = Δx/D ,得相邻明纹的间距为 Δx = λD/d = 2.27(mm).[注意]当θ是第一级明纹的张角时,结合干涉图形,用公式sin θ = λ/d = Δx/D 很容易记忆和推导条纹间隔公式.6.2 如图所示,平行单色光垂直照射到某薄膜上,经上下两表面反射的两束光发生干涉,设薄膜厚度为e ,n 1>n 2,n 2<n 3,入射光在折射率为n 1的媒质中波长为λ,试计算两反射光在上表面相遇时的位相差.[解答]光在真空中的波长为λ0 = n 1λ. 由于n 1>n 2,所以光从薄膜上表面反射时没有半波损失;由于n 1>n 2,所以光从薄膜下表面反射时会产生半波损失,所以两束光的光程差为 δ = 2n 2e +λ0/2,位相差为:21012/222n e n n λδϕππλλ+∆==.6.3用某透明介质盖在双缝干涉装置中的一条缝,此时,屏上零级明纹移至原来的第5条明纹处,若入射光波长为589.3nm ,介质折射率n = 1.58,求此透明介质膜的厚度.[解答]加上介质膜之后,就有附加的光程差δ = (n – 1)e , 当δ = 5λ时,膜的厚度为:e = 5λ/(n – 1) = 5080(nm) = 5.08(μm).6.4 为测量在硅表面的保护层SiO 2的厚度,可将SiO 2的表面磨成劈尖状,如图所示,现用波长λ = 644.0nm 的镉灯垂直照射,一共观察到8根明纹,求SiO 2的厚度.[解答]由于SiO 2的折射率比空气的大,比Si 的小,所以半波损失抵消了,光程差为:δ = 2ne . 第一条明纹在劈尖的棱上,8根明纹只有7个间隔,所以光程差为:δ = 7λ. SiO 2的厚度为:e = 7λ/2n = 1503(nm) = 1.503(μm).6.5 折射率为1.50的两块标准平板玻璃间形成一个劈尖,用波长λ = 5004nm 的单色光垂直入射,产生等厚干涉条纹.当劈尖内充满n = 1.40的液体时,相邻明纹间距比劈尖内是空气时的间距缩小Δl = 0.1mm ,求劈尖角θ应是多少?[解答]空气的折射率用n 0表示,相邻明纹之间的空气的厚度差为Δe 0 = λ/2n 0;明纹之间的距离用ΔL 0表示,则:Δe 0 = θΔL 0, 因此:λ/2n 0 = θΔL 0.当劈尖内充满液体时,相邻明纹之间的液体的厚度差为:Δe = λ/2n ; 明纹之间的距离用ΔL 表示,则:Δe = θΔL ,n 1 n 2 λ n 3(1) (2)图6.2n 1=1.00 n 2=3.42 λn =1.50 Si SiO 2图6.4因此:λ/2n = θΔL .由题意得Δl = ΔL 0 – ΔL ,所以劈尖角为00()11()22n n l n nlnn λλθ-=-=∆∆= 7.14×10-4(rad).6.6 某平凹柱面镜和平面镜之间构成一空气隙,用单色光垂直照射,可得何种形状的的干涉条纹,条纹级次高低的大致分布如何?[解答]这种情况可得平行的干涉条纹,两边条纹级次低,越往中间条纹级次越高,空气厚度增加越慢,条纹越来越稀.6.7设牛顿环实验中平凸透镜和平板玻璃间有一小间隙e 0,充以折射率n 为1.33的某种透明液体,设平凸透镜曲率半径为R ,用波长为λ0的单色光垂直照射,求第k 级明纹的半径.[解答] 第k 级明纹的半径用r k 表示,则 r k 2= R 2 – (R – e )2 = 2eR .光程差为δ = 2n (e + e 0) + λ0/2 = kλ0,解得0012()22e k e n λ=--, 半径为: 001[()2]2k r k e R nλ=--.6.8 白光照射到折射率为1.33的肥皂上(肥皂膜置于空气中,若从正面垂直方向观察,皂膜呈黄色(波长λ = 590.5nm ),问膜的最小厚度是多少?[解答]等倾干涉光程差为:δ = 2nd cos γ + δ`,从下面垂直方向观察时,入射角和折射角都为零,即γ = 0;由于肥皂膜上下两面都是空气,所以附加光程差δ` = λ/2.对于黄色的明条纹,有δ = kλ,所以膜的厚度为:(1/2)2k d nλ-=.当k = 1时得最小厚度d = 111(nm).6.9光源发出波长可继续变化的单色光,垂直射入玻璃板的油膜上(油膜n = 1.30),观察到λ1 = 400nm 和λ2 = 560nm 的光在反射中消失,中间无其他波长的光消失,求油膜的厚度.[解答]等倾干涉光程差为;δ = 2nd cos γ + δ`,其中γ = 0,由于油膜的折射率比空气的大、比玻璃的小,所以附加光程差δ` = 0.对于暗条纹,有δ = (2k + 1)λ/2, 即 2nd = (2k 1 + 1)λ1/2 = (2k 2 + 1)λ2/2.由于λ2 > λ1,所以k 2 < k 1,又因为两暗纹中间没有其他波长的光消失,因此k 2 = k 1 – 1.光程差方程为两个:2nd /λ1 = k 1 + 1/2,2nd /λ2 = k 2 + 1/2, 左式减右式得:2nd /λ1 - 2nd /λ2 = 1,解得:12212()d n λλλλ=-= 535.8(nm).6.10 牛顿环实验装置和各部分折射率如图所示,试大致画出反射光干涉条纹的分布. [解答]右边介质的折射率比上下两种介质的折射率大,垂直入射的光会有半波损失,中间出现暗环;左边介质的折射率 介于上下两种介质的折射率之间,没有半波损失, 平面镜 柱面镜图6.6λ 图6.71.621.50 1.75 1.62 1.50 图6.10λR r e 0e中间出现明环.因此左右两边的明环和暗是交错的, 越往外,条纹级数越高,条纹也越密.6.11 用迈克尔逊干涉仪可测量长度的微小变化,设入射光波长为534.9nm ,等倾干涉条纹中心冒出了1204条条纹,求反射镜移动的微小距离.[解答]反射镜移动的距离为Δd = mλ/2 = 3.22×105nm = 0.322(mm).6.17 在迈克尔逊干涉仪一支光路中,放入一折射率为n 的透明膜片,今测得两束光光程差改变为一个波长λ,求介质膜的厚度.[解答]因为δ = 2(n – 1)d = λ,所以d = λ/2(n – 1).第七章 光的衍射7.1 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,并垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第三级衍射极小相重合,试问:(1)这两种波长之间有什么关系;(2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? [解答](1)单缝衍射的暗条纹形成条件是δ = a sin θ = ±k`λ,(k` = 1,2,3,…),当条纹重合时,它们对应同一衍射角,因此λ1 = 3λ2.(2)当其他极小重合时,必有k 1`λ1 = k 2`λ2, 所以 k 2` = 3k 1`.7.2 单缝的宽度a = 0.40mm ,以波长λ = 589nm 的单色光垂直照射,设透镜的焦距f = 1.0m .求:(1)第一暗纹距中心的距离; (2)第二明纹的宽度;(3)如单色光以入射角i = 30º斜射到单缝上,则上述结果有何变动? [解答](1)单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…),当k` = 1时,y 1 = fλ/a = 1.4725(mm).(2)除中央明纹外,第二级明纹和其他明纹的宽度为Δy = y k`-1 - y k` = fλ/a = 1.4725(mm). (3)当入射光斜射时,光程差为 δ = a sin θ – a sin φ = ±k`λ,(k` = 1,2,3,…). 当k` = 1时,可得 sin θ1 = sin φ ± λ/a = 0.5015和0.4985, cos θ1 = (1 – sin 2θ1)1/2 = 0.8652和0.8669.两条一级暗纹到中心的距离分别为y 1 = f tan θ1 = 579.6(mm)和575.1(mm). 当k` = 2时,可得sin θ2 =a sin φ ± λ/a = 0.5029和0.4971,cos θ2 = (1 – sin 2θ2)1/2= 0.8642和0.8677. 两条二级暗纹距中心的距离分别为:y 2 = f tan θ2 = 581.9(mm)和572.8(mm).φ θ a O第二明纹的宽度都为Δy = y 2 – y 1 = 2.3(mm),比原来的条纹加宽了.7.3 一单色平行光垂直入射于一单缝,若其第三级衍射明纹位置正好和波长为600 nm 的单色光垂直入射该缝时的第二级衍射明纹位置一样,求该单色光的波长.[解答]除了中央明纹之外,单缝衍射的条纹形成的条件是sin (21)2a k λδθ==±+,(k = 1,2,3,…).当条纹重合时,它们对应同一衍射角,因此(2k 1 + 1)λ1 = (2k 2 + 1)λ2, 解得此单色光的波长为12122121k k λλ+=+= 428.6(nm).7.4 以某放电管发出的光垂直照射到一个光栅上,测得波长λ1 = 669nm 的谱线的衍射角θ = 30º.如果在同样的θ角处出现波长λ2 = 446nm 的更高级次的谱线,那么光栅常数最小为多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2,方程可化为两个:(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为:212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 3/2,所以当k 1 = 2时,. k 2 = 3,因此光栅常数最小值为:2112()sin a b λλλλθ+=-= 2676(nm).7.5 一衍射光栅,每厘米有400条刻痕,刻痕宽为1.5×10-5m ,光栅后放一焦距为1m 的的凸透镜,现以λ = 500nm 的单色光垂直照射光栅,求:(1)透光缝宽为多少?透光缝的单缝衍射中央明纹宽度为多少? (2)在该宽度内,有几条光栅衍射主极大明纹? [解答](1)光栅常数为:a + b = 0.01/400 = 2.5×10-5(m), 由于刻痕宽为b = 1.5×10-5m ,所以透光缝宽为:a =(a + b ) – b = 1.0×10-5(m).根据单缝衍射公式可得中央明纹的宽度为:Δy 0 = 2fλ/a = 100(mm). (2)由于:(a + b )/a = 2.5 = 5/2,因此,光栅干涉的第5级明纹出现在单缝衍射的第2级暗纹处,因而缺级;其他4根条纹各有两根在单缝衍射的中央明纹和一级明纹中,因此单缝衍射的中央明纹宽度内有5条衍射主极大明纹,其中一条是中央衍射明纹.7.6 波长为600 nm 的单色光垂直入射在一光栅上,第二、第三级主极大明纹分别出现在sin θ = 0.2及sin θ = 0.3处,第四级缺级,求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)屏上一共能观察到多少根主极大明纹? [解答](1)(2)根据光栅方程得:(a + b )sin θ2 = 2λ; 由缺级条件得(a + b )/a = k/k`,其中k` = 1,k = 4.解缺级条件得b = 3a ,代入光栅方程得狭缝的宽度为:a = λ/2sin θ2 = 1500(nm). 刻痕的宽度为:b = 3a = 4500(nm), 光栅常数为:a + b = 6000(nm).(3)在光栅方程(a + b )sin θ = kλ中,令sin θ =1,得:k =(a + b )/λ = 10. 由于θ = 90°的条纹是观察不到的,所以明条纹的最高级数为9.又由于缺了4和8级明条纹,所以在屏上能够观察到2×7+1 = 15条明纹.7.7 以氢放电管发出的光垂直照射在某光栅上,在衍射角θ = 41º的方向上看到λ1 =656.2nm 和λ2 = 410.1nm 的谱线重合,求光栅常数的最小值是多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2, 方程可化为两个(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为;212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 1.6 = 16/10 = 8/5,所以当k 1 = 5时,. k 2 = 8,因此光栅常数最小值为:21123()sin a b λλλλθ+=-= 5000(nm).其他可能值都是这个值的倍数.7.8 白光中包含了波长从400nm 到760nm 之间的所有可见光谱,用白光垂直照射一光栅,每一级衍射光谱是否仍只有一条谱线?第一级衍射光谱和第二级衍射光谱是否有重叠?第二级和第三级情况如何?[解答]方法一:计算法.根据光栅方程(a + b )sin θ = kλ,对于最短波长λ1 = 400nm 和最长波长λ2 = 760nm 的可见光,其衍射角的正弦为sin θ1 = kλ1/(a + b )和sin θ2 = kλ2/(a + b ),数值如下表所示.可见第一级衍射光谱与第二级衍射光谱没有重叠,第二级衍射光谱与第三级衍射光谱从量值1200到1520是重叠的,第三级衍射光谱与第四级衍射光谱从量值1600到2280是重叠的.方法二:曲线法。
第十二章 振动一.选择题1、劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为: [ C ](A )21212)(2k k k k m T +=π (B )212k k m T +=π (C )2121)(2k k k k m T +=π(D )2122k k m T +=π 2. 一弹簧振子作简谐振动,当位移的大小为振幅的一半时,其动能为振动总能量的[ D ](A )1/4 (B )1/2 (C )2/1 (D )3/4 (E )2/33. 一质点作简谐振动,当它由平衡位置向x 轴正方向运动时,对应的振动相位是: [ C ](A )π (B )0 (C )-π/2 (D )π/24. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,角频率为ω,则此简谐振动的振动方程为:[ C ](A ))cm )(32cos(πω+=t x (B ))cm )(32cos(2πω-=t x (C ))cm )(32cos(2πω+=t x (D ))cm )(32cos(2πω+-=t x 5. 一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为:[ C ](A )T /4 (B )T /12 (C )T /6 (D )T /86.一质点在x 轴上做简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为:[ B ](A )1s (B )(2/3)s (C )(4/3)s (D )2s7.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m /2的物体,则系统振动周期T 2等于:[ D ](A ) 2 T 1 (B ) T 1 (C ) 2/1T (D ) T 1/2 (E ) T 1 /48.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相ϕ=-π/3,则下图中与之对应的振动曲线是:[ A ]9.一倔强系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示,则振动系统的频率为:[ B ](A ) m k π21(B ) m k 621π (C )m k 321π (D ) m k 321π 10.一质点作简谐振动,振动方程为x =cos(ωt +ϕ),当时间t =T /2时,质点的速为:[ A ](A ) A ωsin ϕ (B )-A ωsin ϕ (C ) -A ωcos ϕ (D ) A ωcos ϕ11.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ C ](A ) θ (B ) π (C ) 0 (D ) π/212.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为x 1=A cos(ωt +α),当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:[ B ](A ) x 2=A cos (ω t +α +π/2) (B ) x 2=A cos (ω t +α -π/2)(C ) x 2=A cos (ω t +α-3π/2) (D ) x 2=A cos (ω t +α + π)13.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为下图中哪一图?[ B ]14. 一质点在x 轴作简谐振动,已知0=t 时,m x 01.00-=,s m /03.00=v ,s /3=ω,则质点的简谐振动方程为:[ B ](A ) ))(3cos(02.032SI t x π+= (B ) ))(3cos(02.034SI t x π+=(C ) ))(3cos(01.032SI t x π+= (D ) ))(3cos(01.034SI t x π+=15. 如图所示为质点作简谐振动时的x -t 曲线,则质点的振动方程为:[ C ](A ) ))(cos(2.03232SI t x ππ+=(B ) ))(cos(2.03232SI t x ππ-=(C ) ))(cos(2.03234SI t x ππ+=(D ) ))(cos(2.03234SI t x ππ-=16. 两个同方向、同频率、等振幅的简谐振动,合成后振幅仍为A ,则这两个分简谐振动的(C) (B) (A) (D)O x ω -A /2 A O x A /2 ω A x O A /2 A ω O x A ω -A /2相位差为:[ C ](A ) 60° (B ) 90° (C ) 120° (D ) 180°17. 两个同周期简谐振动曲线如图所示,1x 的相位比2x 的相位:[ B ](A )落后2/π(B )超前2/π(C )落后π(D )超前π18. 一质点做简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数描述,这质点的初相位应为:[ C ](A )6/π(B ) 6/5π(C ) 6/5π-(D ) 6/π-19. 弹簧振子在光滑水平面上做简谐振动时,弹性力在半个周期内所做的功为:[ D ](A ) 2kA (B ) 221kA (C ) 241kA (D ) 020. 一简谐振动振幅A ,则振动动能为能量最大值一半时振动物体位置x 等于:[ B ](A ) 2A (B ) 22A (C ) 23A (D ) A 二、填空题 1、一质点作简谐振动,速度最大值cm/s 5m =v ,振幅A =2cm 。
昆明理工大学物理习题册带答案第一章质点运动学一.选择题:1.质点就是一个:[](a)质量不大的物体.(b)体积不大的物体.(c)就可以并作对应状态的物体.(d)根据其运动情况,被看作具有质量而没有大小和形状的理想物体.2.质点的运动方程为x?6?3t?5t(si),则该质点作[](a)匀加速直线运动,加速度沿x轴正方向.(b)匀加速直线运动,加速度沿x轴负方向.(c)变加速直线运动,加速度沿x轴正方向.(d)变加速直线运动,加速度沿x轴负方向.3.质点在某瞬时坐落于矢径r(x,y)的端点处其速度大小为[]322drdrd|r|?dx??dy?(a)(b)(c)(d)??dtdtdt?dt??dt?4.如图所示,湖中存有一小船,有人用绳绕开岸上一定高度处的定滑轮扎湖中的船向岸边运动.勒维冈县人以匀速率为v0收绳,绳不弯曲,湖水恒定,则小船的运动就是:[](a)匀加速运动(b)匀减速运动v0(c)变加速运动(d)变减速运动(e)匀速直线运动5.一个质点在做匀速率圆周运动时[](a)轴向加速度发生改变,法向加速度也发生改变.(b)轴向加速度维持不变,法向加速度发生改变.(c)切向加速度不变,法向加速度也不变.(d)切向加速度改变,法向加速度不变.6.如右图所示,几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选[](a)30.(b)45.(c)60.(d)75.7.一质点并作直线运动,某时刻的瞬时速度v?2m/s,瞬时加速度a??2m/s,则一秒钟后质点的速度[](a)等于零.(b)等于?2m/s.(c)等于2m/s.(d)不能确定.l275060045030000008.质点沿半径为r的圆周并作匀速率为运动,每t秒转一圈.在2t时间间隔中,其平均速度大小与平均速率大小分别为[](a)2?r2?r2?r2?r,.(b)0,.(c)0,0.(d),0.ttttv(m/s)9.一质点沿x轴作直线运动,其v?t曲线如下图所示,如t?0时,质点位1o21?12.54.51234t(s)于座标原点,则t?4.5s时质点在x轴上的边线为[](a)0m.(b)5m.(c)2m.(d)?2m.(e)?5m.10.一小球沿斜面向上运动,其运动方程为s?5?4t?t(si),则小球运动到最高点的时刻是[]。
城市学院物理习题解答(48学时)第一章 质点运动学一、选择题:1(D ),2(D ), 3(C ), 4(B ), 5(D ), 6(B ), 7(B ), 8(B ),9(D ), 10(C ), 11(B ), 12(C ) 二、填空题:1、 )]()5cos()5sin([50SI j t i t+-, 0, 圆;2、]sin 2cos )[(22t t Aetωβωωωββ+--, 2,1,0)21(=+n n ωπ;3、tS ∆,t v ∆-02 ;4、24020)(,R bt v b bt v +++;5、)/(4,1622s rad Rt ; 6、(1),(3),(4);7、)1(22S S +;8、)(4SI j i+-; 9、)/(20s m ;10、)/(1.02s m ;11、)(1,)(,2RC b cRct b c ±--;12、)/(20),/(3.17s m s m三、计算题1.解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 04, 22t v =22/t dt dx v ==⎰⎰=xtdt t dx 10022)(103/23SI t x +=.3.解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =, gt v y =.速度大小为: 222022t g v v v v y x +=+=.方向为:与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v 同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.解:由t kv dt dv 2/-=ktdt v dv -=2 积分:⎰⎰-=tdt k v dv2C kt v +-=-2211当0=t 时,0v v = 01v C -=∴ 得:21211v kt v += 5.解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x v dx x vdv 020)62(s m x x v /)(22/13+=6.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v大小未知,方向与竖直方向夹030牵连速度:s m v s s /35=',方向水平; 相对速度:s p v '大小未知,方向偏向车后045. 由速度合成定理:s s s p ps v v v ''+=由矢量关系式画出矢量图,由几何关系可得:3530sin 30cos 00=+ps ps v vss 's m v ps /6.25=.第二章 牛顿定律一、选择题:1(B ),2(D ), 3(E ), 4(C ), 5(B ), 6(C )。
第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数 ()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
第十六章 量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A ) 频率高的光子易显示波动性 (B ) 个别光子产生的效果以显示粒子性(C ) 光的衍射说明光具有粒子性 (D ) 光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A ) 入射光的频率 (B ) 入射光的强度(C ) 金属的逸出功 (D ) 入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比 (B )与入射光的强度成正比(C )与入射光的频率成线性关系 (D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同 (B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同 (D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加 (B )逸出的光电子初动能增大(C )光电效应的红限频率增大 (D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B ) 1ν<2ν (C ) 1ν=2ν (D )不能确定8. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
第十章气体动理论一、选择题1.关于温度的意义,有以下几种说法:〔1〕气体的温度是分子平均平动动能的量度;〔2〕气体的温度是大量气体分子热运动的集体表现,具有统计意义;〔3〕温度的上下反映物质局部子运动剧烈程度的不同;〔4〕从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的选项是:[ (B) ]〔A〕〔1〕、〔2〕、〔4〕〔B〕〔1〕、〔2〕、〔3〕〔C〕〔2〕、〔3〕、〔4〕〔D〕〔1〕、〔3〕、〔4〕2.一瓶氦气和一瓶氧气,它们的压强和温度都一样,但体积不同,那么它们的[ (A ) ] 〔A〕单位体积的分子数一样〔B〕单位体积的质量一样〔C〕分子的方均根速率一样〔D〕气体能一样3.一瓶氦气和一瓶氮气质量密度一样,分子平均平动动能一样,而且它们都处于平衡状态,那么它们[ (B) ]〔A〕温度一样、压强一样〔B〕温度一样,但氦气的压强大于氮气的压强〔C〕温度、压强都不一样〔D〕温度一样,但氮气的压强大于氦气的压强4.两容器分别盛有氢气和氦气,假设它们的温度和质量分别相等,那么:[ (A) ]〔A〕两种气体分子的平均平动动能相等〔B〕两种气体分子的平均动能相等〔C〕两种气体分子的平均速率相等〔D〕两种气体的能相等.5.在标准状态下,体积比为1:2的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的能之比为[ (C) ]6.在常温下有1mol的氢气和1mol的氦气各一瓶,假设将它们升高一样的温度,那么[ (A ) ] 〔A〕氢气比氦气的能增量大〔B〕氦气比氢气的能增量大〔C〕氢气和氦气的能增量一样〔D〕不能确定哪一种气体能的增量大7.温度、压强一样的氦气和氧气,它们分子的平均动能ε和平均平动动能w一定有如下关系[ (C ) ]〔A〕ε和w都相等〔B〕ε相等,而w不相等〔C 〕w 相等,而ε不相等 〔D 〕ε和w 都不相等8.1mol 刚性双原子分子理想气体,当温度为T 时,其能为 [ (C) ]9.在容积不变的封闭容器,理想气体分子的平均速率假设提高为原来的2倍,那么 [ (D) ] 〔A 〕温度和压强都提高为原来的2倍〔B 〕温度为原来的2倍,压强为原来的4倍〔C 〕温度为原来的4倍,压强为原来的2倍〔D 〕温度和压强都为原来的4倍。
第11章 热力学基础 习题及答案1、 内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。
答:内能是组成物体的所有分子的动能与势能的总和。
热量是热传递过程中所传递的能量的量度。
内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。
(1) 错。
热量是过程量,单一状态的热量无意义。
(2) 对。
物体的内能与温度有关。
2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E经绝热b a →过程 012=+∆A E 012<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvRp =故bc 过程为等压过程ca 是等温过程(2)V p -图如图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。
第十六章 量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A ) 频率高的光子易显示波动性 (B ) 个别光子产生的效果以显示粒子性(C ) 光的衍射说明光具有粒子性 (D ) 光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A ) 入射光的频率 (B ) 入射光的强度(C ) 金属的逸出功 (D ) 入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比 (B )与入射光的强度成正比(C )与入射光的频率成线性关系 (D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同 (B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同 (D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加 (B )逸出的光电子初动能增大(C )光电效应的红限频率增大 (D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B ) 1ν<2ν (C ) 1ν=2ν (D )不能确定8. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
⼤学物理教材下册习题及答案(学⽣⽤)[1]教材下册习题及答案(校正版2011年8⽉)第12章课后习题知识点1⾄6题应⽤理想⽓体状态⽅程计算V,摩尔质量M 和数密度n; 7题计算⾃由度;7.8.9.10.11题温度公式.内能公式及状态⽅程的综合应⽤计算; 12题(供参考)考虑重⼒时的粒⼦分布;13.14.15.16.17.18.19应⽤麦⽒速率函数的计算问题; 20.21.22.23计算平均⾃由程和碰撞频率;24,25题(供参考)由粘滞系数、导热系数求分⼦有效直径26题(供参考)应⽤范⽒⽅程计算压强并和理想⽓体计算结果进⾏⽐较.第12章课后习题答案1.122121T p T p l l = 2. 0.028kg/mol3.()()Vp p RTM M 2121-- 4. 3510452-?cm.5. 321098--??mkg . 6. 2.9×103Pa 7.(1)2(2)3(3) 6 8. (1)32510452-?m. (2)kg.2610315-? (3)3301-?mkg. (4)121084(5)2110216-?.J (6)210797?.J9.(1)310743?.J(2)310492?.J(3)20.8J10. 310675?.J,410611?.J 11.10:3,5:3 12. m .310302? (题⽬修改为273K ) 13. 0.83% 14. 1310711-??sm.1310841-??sm ., 1310501-??sm .氧⽓分⼦的三种速率为氢⽓分⼦相应速率的四分之⼀ 15. ()1 2500-?=sm O p v ;()122000-?=sm H p v ;()1221222450-?=sm H v16. (1)032v N a=(2)N127(有误)应该为7108N(3)23631v m 17.(1)略(2)0 v NK=(2)05402v v .;(有误)应该为00;23v18.(a)()2x kTm x f -=π(b)()k kTk kekT m f επεε-=23124221pkpm kT v ==ε(有误)应该为(a)()22xf x x e-=(b)()321k f ek T ε?=12k p19.1221m m =v v VU p34=20. m.710092-?,1910138-?=s.z21. (1)m.81074-?=λ,11010061-?=s.z(2) 1182⼩时 22. Pa p 1.0? 23. (1)1 91077-?=s.z (2)1321038-?s.81059-?=λ,m.d81003-?= 25.m.d 101022-?=26. Pa.,Pa .771044910994??第13章课后习题知识点1.2.3.4.6.7.8.10题是四个等值过程的功.热量和内能的计算; 5.9.10.题有关热容量的计算; 11题绝热过程与12章综合 12.13.14计算热机效率; 15.计算卡诺热机效率;16.*17是有关线性过程的功.内能和热量的计算; 18.19题计算卡诺致冷循环效率; 20题应⽤热⼆律证明; 21.22.23题计算熵.第13章课后习题答案2.(1)252J ,(2)放热294J 3. (1)JE 21056.4?=?总J.A 210325?=总JQ 21088.9?=总(2)10564?-=? J.A 210043?-=J.Q 210607?-= (3)J.A 210193?=4.(1) J E 3 106.0?=?总J.A 31090?=总 J Q 3 105.1?=总(2) JE 3106.0?=?总 J .A 310231?=总JQ 31083.1?=总5. J Q V 690=J Q P 966=(原书答案此处有误,题⽬改为51.0110p a)15.J.A310341?= (原书答案此处有误)16. (1)21→:?E=6232.5J A=1246.5J Q=7479J32→:?E=-6232.5J A=6232.5J Q=0 13→:?E=0 A=Q=-5184J (2)30.7%*17.超基过难。
第一章 静力学公理和物体的受力分析一、是非判断题1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ) 1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( ) 1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( ) 1.4 力的可传性只适用于刚体,不适用于变形体。
( ) 1.5 两点受力的构件都是二力杆。
( ) 1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( ) 1.7 力的平行四边形法则只适用于刚体。
( ) 1.8 凡矢量都可以应用平行四边形法则合成。
( ) 1.9 只要物体平衡,都能应用加减平衡力系公理。
( ) 1.10 凡是平衡力系,它的作用效果都等于零。
( ) 1.11 合力总是比分力大。
( ) 1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( ) 1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ) 1.14 当软绳受两个等值反向的压力时,可以平衡。
( ) 1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ) 1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
1.17 凡是两端用铰链连接的直杆都是二力杆。
( )1.18 如图所示三铰拱,受力F ,F 1作用, 其中F 作用于铰C 的销子上,则AC 、 BC 构件都不是二力构件。
( )二、填空题 1.1 力对物体的作用效应一般分为 效应和 效应。
1.2 对非自由体的运动所预加的限制条件称为 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 ;约束力由 力引起,且随 力的改变而改变。
1.3 图示三铰拱架中,若将作用于构件AC 上的力偶M处的约束力 。
A. 都不变;B. 只有C 处的不改变;C. 都改变;D. 只有C 处的改变。
三、受力图1-1 画出各物体的受力图。
第十一章 热力学基础一.选择题1.以下是关于可逆过程和不可逆过程的判断,其中正确的是: [ D ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
(A )(1)、(2)、(3) (B )(1)、(3)、(4)(C )(2)、(4) (D )(1)、(4)2.如图,一定量的理想气体,由平衡状态A 变到平衡状态)(B A p p B =,则无论经过的是什么过程,系统必然:[ B ](A )对外作正功 (B )内能增加(C )从外界吸热 (D )向外界放热3.一定量某理想气体所经历的循环过程是:从初态) ,(00T V 开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度0T ,最后经等温过程使其体积回复为0V ,则气体在此循环过程中: [ B ](A )对外作的净功为正值 (B )对外作的净功为负值(C )内能增加了 (D )从外界净吸的热量为正值4.1mol 理想气体从p –V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b 。
已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是: [ A ]0 (A)21>>Q Q 0 (B)12>>Q Q0 (C)12<<Q Q 0 (D)21<<Q Q5. 1mol 理想气体从同一状态出发,分别经绝热、等压、等温三种膨胀过程,则内能增加的过程是: [ B ](A )绝热过程 (B )等压过程 (C )等温过程 (D )不能确定6. 一定量的理想气体的初态温度为T ,体积为V ,先绝热膨胀使体积变为2V ,再等容吸热使温度恢复为T ,最后等温压缩为初态,则在整个过程中气体将: [ A ](A )放热 (B )对外界作功 (C )吸热 (D )内能增加 (E )内能减少7. 一定量的理想气体经等容升压过程,设在此过程中气体内能增量为ΔU ,气体作功为W ,外界对气体传递的热量为Q ,则: [ D ](A )∆U < 0,W < 0 (B )∆U > 0,W > 0(C )∆U < 0,W = 0 (D )∆U > 0,W = 08. 图中直线ab 表示一定量理想气体内能U 与体积V 的关系,其延长线通过原点O ,则ab 所代表的热力学过程是:[ B ](A )等温过程 (B )等压过程(C )绝热过程 (D )等容过程9.一定量的理想气体经历acb 过程时吸热200 J ,则经历acbda 过程时,吸热为:[ B ](A )-1200 J (B )-1000 J(C )-700 J (D )1000 J10.一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),两过程气体吸、热情况是: [ B ](A )(1)过程吸热,(2)过程放热(B )(1)过程放热,(2)过程吸热(C )两过程都吸热(D )两过程都放热11.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
习 题(参考答案)1.仪器误差为0.005mm 的螺旋测微计测量一根直径为D 的钢丝,直径的10次测量值如下表:试计算直径D 的平均值、不确定度(用D 表示)和相对不确定度(用Dr 表示),并用标准形式表示测量结果。
解: 平均值 mm D D i i 054.2101101==∑= 标准偏差:mm D Di iD 0029.0110)(1012≈--=∑=σ算术平均误差: mm DDi iD 0024.010101≈-=∑=δ不确定度A 类分量mm U D A 0029.0==σ, 不确定度B 类分量mm U B 005.0=∆=仪∴ 不确定度mm U U UB A D006.0005.00029.02222≈+=+=相对不确定度%29.0%100054.2006.0%100≈⨯=⨯=D U U D Dr钢丝的直径为:%29.0)006.0054.2(=±=Dr D mmD或 不确定度A 类分量mm U D A 0024.0==δ , 不确定度B 类分量mm U B 005.0=∆=仪∴ 不确定度mm U U UB A D006.0005.00024.02222≈+=+=相对不确定度%29.0%100054.2006.0%100≈⨯=⨯=D U U D Dr 钢丝的直径为: %29.0)006.0054.2(=±=Dr D mm D2.指出下列测量值为几位有效数字,哪些数字是可疑数字,并计算相对不确定度。
(1) g =(9.794±0.003)m ·s2-答:四位有效数字,最后一位“4”是可疑数字,%031.0%100794.9003.0≈⨯=gr U ; (2) e =(1.61210±0.00007)⨯1019- C答:六位有效数字,最后一位“0”是可疑数字,%0043.0%10061210.100007.0≈⨯=er U ;(3) m =(9.10091±0.00004) ⨯1031-kg答:六位有效数字,最后一位“1”是可疑数字,%00044.0%10010091.900004.0≈⨯=mr U ;(4) C =(2.9979245±0.0000003)810⨯m/s 答:八位有效数字,最后一位“5”是可疑数字,%00001.0%1009979245.20000003.0≈⨯=Cr U 。
第十一章 热力学基础一.选择题1.以下是关于可逆过程和不可逆过程的判断,其中正确的是: [ D ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
(A )(1)、(2)、(3) (B )(1)、(3)、(4)(C )(2)、(4) (D )(1)、(4)2.如图,一定量的理想气体,由平衡状态A 变到平衡状态)(B A p p B =,则无论经过的是什么过程,系统必然:[ B ](A )对外作正功 (B )内能增加(C )从外界吸热 (D )向外界放热3.一定量某理想气体所经历的循环过程是:从初态) ,(00T V 开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度0T ,最后经等温过程使其体积回复为0V ,则气体在此循环过程中: [ B ](A )对外作的净功为正值 (B )对外作的净功为负值(C )内能增加了 (D )从外界净吸的热量为正值4.1mol 理想气体从p –V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b 。
已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是: [ A ]0 (A)21>>Q Q 0 (B)12>>Q Q0 (C)12<<Q Q 0 (D)21<<Q Q5. 1mol 理想气体从同一状态出发,分别经绝热、等压、等温三种膨胀过程,则内能增加的过程是: [ B ](A )绝热过程 (B )等压过程 (C )等温过程 (D )不能确定6. 一定量的理想气体的初态温度为T ,体积为V ,先绝热膨胀使体积变为2V ,再等容吸热使温度恢复为T ,最后等温压缩为初态,则在整个过程中气体将: [ A ](A )放热 (B )对外界作功 (C )吸热 (D )内能增加 (E )内能减少7. 一定量的理想气体经等容升压过程,设在此过程中气体内能增量为ΔU ,气体作功为W ,外界对气体传递的热量为Q ,则: [ D ](A )∆U < 0,W < 0 (B )∆U > 0,W > 0(C )∆U < 0,W = 0 (D )∆U > 0,W = 08. 图中直线ab 表示一定量理想气体内能U 与体积V 的关系,其延长线通过原点O ,则ab 所代表的热力学过程是:[ B ](A )等温过程 (B )等压过程(C )绝热过程 (D )等容过程9.一定量的理想气体经历acb 过程时吸热200 J ,则经历acbda 过程时,吸热为:[ B ](A )-1200 J (B )-1000 J(C )-700 J (D )1000 J10.一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),两过程气体吸、热情况是: [ B ](A )(1)过程吸热,(2)过程放热(B )(1)过程放热,(2)过程吸热(C )两过程都吸热(D )两过程都放热11.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
若把隔板抽出,气体将进行自由膨胀,达到平衡后 [ A ](A )温度不变,熵增加 (B )温度升高,熵增加。
(C )温度降低,熵增加 (D )温度不变,熵不变。
12.气缸中有一定量的氮气(初为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,问气体分子的平均速率变为原来的几倍? [ D ]522 (A) 512 (B ) 722 (C ) 712 (D )13. 如图一定量的理想气体从相同的初态A 分别经准静态过程AB ,AC(绝热过程)及AD 到达温度相同的末态,则气体吸(放)热的情况是:[ B ](A )AB 吸热,AD 吸热 (B )AB 放热,AD 吸热(C )AB 放热,AD 放热 (D )AB 吸热,AD 放热14.如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功A 1和A 2的关系是 [ D ]2121 , (A)A A ==ηη 2121 , (B)A A =>ηη2121 , (C)A A >=ηη 2121 , (D)A A <=ηη15. 工作在相同的高温热源和低温热源的两热机,其工作物质不同,则两部可逆热机的效率η1和η2的关系为: [ B ](A )η1>η2 (B )η1=η2 (C ) η1<η2 (D )不能确定16.根据热力学第二定律可知:[ D ](A )功可以全部转换为热,但热不能全部转换为功(B )热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C )不可逆过程就是不能向相反方向进行的过程(D )一切自发过程都是不可逆的17.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功”。
对此说法,有如下几种评论,正确的是:[ C ](A )不违反热力学第一定律,但违反热力学第二定律(B )不违反热力学第二定律,但违反热力学第一定律(C )不违反热力学第一定律,也不违反热力学第二定律(D )违反热力学第一定律,也违反热力学第二定律18.一定量的理想气体向真空作绝热自由膨胀,体积由V 1增至V 2,在此过程中气体的[ A ](A )内能不变,熵增加 (B )内能不变,熵减少(C )内能不变,熵不变 (D )内能增加,熵增加19.在下列各种说法中,哪些是正确的? [ B ](1)热平衡过程就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在p - V 图上可用一连续曲线表示。
(A )(1)、(2) (B )(4)、(3)(C )(2)、(3)、(4) (D )(1),(2)、(3)、(4)二、填空题1、一定量的理想气体在等压过程中,气体密度随___温度压强_______________而变化,在等温过程中,气体密度随_____压强___________而变化。
2、 热力学系统的内能是系统____温度_____________的单值函数,要改变热力学系统的内能,可以通过对热力学系统__做功或热传递_____________来达到目的。
3、如图所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化ΔE ,Q ___>0_______,ΔE ____>0______。
(填“> 0”或 “< 0”)4、压强为1×105帕,体积为3升的空气(视为理想气体)经等温压缩到体积为0.5升时,则空气____放_______热(填“吸”或“放”),传递的热量为______537j______(ln6=1.79)。
5、1 mol 的单原子理想气体,从状态Ⅰ(p 1,V 1,T 1)变化至状态Ⅱ(p 2,V 2,T 2),如图所示。
则此过程气体对外作功为:))((211221V V p p -+_, 吸收热量为:)(23))((21121221T T R V V p p -+-+ 6、处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸收热量416J ;若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸收热量582J 。
所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所作的功为_166J________。
7、一定量理想气体,从同一状态开始使其容积由V 1膨胀到2V 1,分别经历以下三种过程:⑴等压过程;⑵等温过程;⑶绝热过程。
其中:____等压_______________过程气体对外作功最多;____等压_________过程气体内能增加最多;____等压_________过程气体吸收的热量最多。
8、某理想气体等温压缩到给定体积时外界对气体作功1A ,又经绝热膨胀返回原来体积时气体对外作功2A ,则整个过程中气体从外界吸收的热量Q =1A -;内能增加了ΔE =2A -9、一定量的单原子理想气体在等压膨胀过程中对外作的功A 与吸收的热量Q 之比A /Q =___2/5___________,若为双原子理想气体,则比值A /Q =_____2/7_____________。
10、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209 J ,气体升温1 K ,此过程中气体内能增量为___124.7j_________,外界传给气体的热量为______-84.3j__________ 。
11、刚性双原子分子的理想气体在等压下膨胀所作的功为A ,则传递给气体的热量为______7A/2__________。
12、图示为一理想气体几种状态变化过程的p –V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:⑴温度降低的是____AM____________过程;⑵气体放热的是____BM____________过程。
13、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为______500__________ K 。
今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加____100___________K 。
14、一卡诺热机在每次循环中都要从温度为400K 的高温热源吸热418J,向低温热源放热334.4J,则可知低温热源的温度为____320K____________。
15、卡诺致冷机,其低温热源温度为T 2 = 300K ,高温热源温度为T 1 = 450K ,每一循环从低温热源吸热Q 2 = 400J 。
已知该致冷机的致冷系数为 2122T T T W Q e -==(式中W 为外界对系统作的功),则每一循环中外界必须作功W =______200J_____________________。
16、一热机由温度为727℃ 的高温热源吸热,向温度为527℃ 的低温热源放热。
若热机在最大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功_____400___________J 。
17、所谓第二类永动机是指___从单一热源吸热,在循环中不断对外作功的热机,它不可能制成是因为违背了 热力学第二定律18、热力学第二定律的克劳修斯叙述热力学第二定律, 热量不能自动地从低温物体传向高温物体开尔文叙述是:不可能制成一种循环动作的热机,只从单一热源吸热完全变为有用的功,而其它物体不发生任何变化。