第11章 静电场中的导体和电介质 复习要点
- 格式:pdf
- 大小:139.82 KB
- 文档页数:6
高中物理竞赛静电场中的导体与电介质知识点讲解一、金属导体的电结构导体:当物体的某部分带电后,能够将获得的电荷迅速向其它部分传布开,这种物体称为导电体(导体)。
绝缘体(电介质):物体的某部分带电后,其电荷只能停留在该部分,不能显著地向其它部分传布,这种物体称为绝缘体。
半导体:导电能力介于导体和电介质之间的物质。
★注意:导体、半导体和电介质之间无严格的界限,只是导电的程度不同。
金属导体的电结构:在各种金属导体中,由于原子最外层的价电子与原子核之间的吸引力很弱,很容易摆脱原子的束缚,脱离原来所属的原子在金属中自由移动,成为自由电子;组成金属的原子,由于失去部分价电子成为带正电的离子(晶体点阵)。
(如图)金属导体的电结构:带负电的自由电子和带正电的晶体点阵。
当导体不带电也不受外电场作用时,两种电荷在导体内均匀分布,没有宏观移动,只有微观的热运动。
二、静电感应与静电平衡如果我们把导体放入静电场E中,电场将驱动自由电荷定向运动,形成电流,使导体上的电荷重新分布,见下图(a)。
在电场的作用下导体上的电荷重新分布的过程叫静电感应,感应所产生的电荷分布称为感应电荷,按电荷守恒定律,感应电荷的总电量是零。
感应电荷会产生一个附加电场E',见下图(b),在导体内部这个电场的方向与原场E相反,其作用是削弱原电场。
随着静电感应的进行,感应电荷不断增加,附加电场增强,当导体中总电场的场强00E E E'=+=时,自由电荷的再分布过程停止,静电感应结束,导体达到静电平衡,见下图(c).三、导体的静电平衡条件导体的静电平衡条件:导体处于静电平衡时,导体内部各点的场强为零。
根据静电平衡的条件,可得出如下结论:(1)静电平衡下的导体是等势体,导体的表面是等势面。
(解释)(2)在导体表面外,靠近表面处一点的场强的大小与导体表面对应点处的电荷面密度成正比,方向与该处导体表面垂直。
对结论(2)给予证明:方向:由于电场线处处与等势面垂直,所以导体表面附近若存在电场,则场强方向必与表面垂直。
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。