3三角函数的概念
- 格式:doc
- 大小:210.00 KB
- 文档页数:4
三角函数周期性知识点总结一、三角函数的概念三角函数是一个关于角度或弧度的函数,它是一个周期性函数。
常见的三角函数有正弦函数、余弦函数、正切函数等。
1.正弦函数正弦函数的定义域是整个实数集,值域是[-1,1]。
正弦函数的图像是一条连续的波浪线,它的周期是2π。
2.余弦函数余弦函数的定义域是整个实数集,值域也是[-1,1]。
余弦函数的图像是一条连续的波浪线,它的周期也是2π。
3.正切函数正切函数的定义域是整个实数集,它的图像是一条呈周期性的曲线。
以上是三角函数的基本概念,下面将详细介绍三角函数的周期性特点。
二、正弦函数的周期性正弦函数是一个周期性函数,它的周期是2π。
这意味着,如果一个角度的正弦值是sinθ,那么在θ+2π、θ+4π、θ+6π……等角度上,它的正弦值都是sinθ。
也就是说,正弦函数在每隔2π的角度上都有相同的函数值。
正弦函数的周期性在周期函数中是非常典型的,它在描述周期性现象时有着广泛的应用。
在物理学中,正弦函数可以描述周期性振动的规律,在工程学中,它也常被用来描述交流电流的波形。
三、余弦函数的周期性与正弦函数类似,余弦函数也是一个周期性函数,它的周期也是2π。
这意味着,如果一个角度的余弦值是cosθ,那么在θ+2π、θ+4π、θ+6π……等角度上,它的余弦值都是cosθ。
正弦函数与余弦函数有着相似的周期性特点,它们都在每隔2π的角度上都有相同的函数值。
这说明,正弦函数和余弦函数的周期性是非常紧密相关的,它们在周期性描述上有着相似的特点。
四、三角函数的周期性函数三角函数的周期性特点是它们在描述周期性现象时非常有用的特性。
它们可以帮助我们精确地描述周期性变化,是物理学、工程学等领域中不可或缺的数学工具。
在实际应用中,我们经常会遇到需要描述周期性变化的情况,比如声音的波形、电流的波形、机械振动等。
而三角函数的周期性特点正好可以帮助我们准确地描述这些周期性变化。
总结:三角函数是数学中非常重要的一个概念,它们具有明显的周期性特点。
三角函数的概念三角函数是数学中一种重要的函数类型,它描述了角度和长度之间的关系。
它在几何、物理、工程和计算机图形等领域中具有广泛的应用。
本文将介绍三角函数的概念以及它们的定义、性质和图像特征。
一、三角函数的定义1. 正弦函数(sine function):正弦函数是指一个单位圆上任意角的对应坐标的纵坐标值,用sin表示。
在三角形中,正弦函数表示对边与斜边的比值。
2. 余弦函数(cosine function):余弦函数是指一个单位圆上任意角的对应坐标的横坐标值,用cos表示。
在三角形中,余弦函数表示邻边与斜边的比值。
3. 正切函数(tangent function):正切函数是指一个单位圆上任意角的对应坐标的纵坐标值与横坐标值的比值,用tan表示。
在三角形中,正切函数表示对边与邻边的比值。
二、三角函数的性质1. 周期性:三角函数都具有周期性,周期为360度或2π弧度。
例如,sin(θ)=sin(θ+360°)=sin(θ+2π)。
2. 奇偶性:正弦函数是奇函数(sin(-θ)=-sin(θ)),余弦函数和正切函数是偶函数(cos(-θ)=cos(θ),tan(-θ)=tan(θ))。
3. 值域:正弦函数和余弦函数的值域为[-1, 1];正切函数的值域为全体实数。
三、三角函数的图像1. 正弦函数的图像呈现出周期性的波形,对于一个周期内的任意值,其取值范围在[-1, 1]之间。
2. 余弦函数的图像与正弦函数非常相似,只是在横坐标上有一个相位差。
3. 正切函数的图像在某些角度上会出现无穷大或无穷小,这些角度被称为正切函数的奇点。
四、三角函数的应用1. 几何学应用:三角函数在几何学中广泛应用于解决三角形相关的问题,如计算三角形的边长、角度和面积等。
2. 物理学应用:三角函数在物理学中用于描述波动、振动和周期性现象,如声音和光的传播。
3. 工程学应用:三角函数在工程学中用于解决各种实际问题,如测量、设计和建模等。
三角函数初中数学知识点之三角函数的定义与计算三角函数是数学中重要的基础概念之一,在初中数学中也是必须学习的内容。
本文将介绍三角函数的定义与计算方法,帮助读者更好地理解和掌握这一知识点。
1. 三角函数的定义三角函数是以角度或弧度为自变量的函数,用于描述直角三角形中角与边的关系。
常用的三角函数有正弦函数sin、余弦函数cos和正切函数tan,它们的定义如下:- 正弦函数sin:在直角三角形中,对于一个锐角θ,它的正弦值sinθ等于对边与斜边的比值,即sinθ=对边/斜边。
- 余弦函数cos:在直角三角形中,对于一个锐角θ,它的余弦值cosθ等于邻边与斜边的比值,即cosθ=邻边/斜边。
- 正切函数tan:在直角三角形中,对于一个锐角θ,它的正切值tanθ等于对边与邻边的比值,即tanθ=对边/邻边。
这些定义可以用来计算不同角度下的三角函数值,帮助我们解决与角度和边长相关的问题。
2. 三角函数的计算为了更好地理解和应用三角函数,我们需要学会如何计算不同角度下的三角函数值。
下面是一些常用的计算方法:- 利用已知角度的特殊值:在角度为30°、45°和60°时,三角函数的值是可以直接计算得到的。
例如,sin30°=1/2,cos45°=1/√2,tan60°=√3。
- 利用三角函数的性质:三角函数具有一些特殊的性质,可以帮助我们计算其他角度下的三角函数值。
例如,sin(90°-θ)=cosθ、cos(90°-θ)=sinθ,利用这些性质可以将角度转化为已知角度的三角函数值来求解。
- 利用三角函数的图像:三角函数的图像可以帮助我们直观地理解三角函数的变化规律。
通过观察图像,我们可以推断出不同角度下的三角函数值的大小关系。
- 利用计算器:在实际计算中,我们可以使用计算器来求解不同角度下的三角函数值。
现代计算器已经内置了三角函数的计算功能,只需输入角度即可得到对应的数值。
三角函数的定义与性质三角函数是高中数学中的重要概念之一,它涉及到三角形的边长比例和角度的关系。
本文将从三角函数的定义、三角函数的性质以及三角函数在几何图形中的应用等方面进行探讨。
一、三角函数的定义在直角三角形中,我们可以定义三角函数。
设直角三角形的两条直角边分别为a和b,斜边为c,其中一个锐角为θ。
根据定义,我们有以下三角函数:正弦函数(sinθ):正弦函数定义为直角三角形中对边(b)与斜边(c)的比值,即sinθ = b/c。
余弦函数(cosθ):余弦函数定义为直角三角形中邻边(a)与斜边(c)的比值,即cosθ = a/c。
正切函数(tanθ):正切函数定义为直角三角形中对边(b)与邻边(a)的比值,即tanθ = b/a。
二、三角函数的性质1. 周期性:三角函数都是周期函数,周期为2π或π。
即对于任意实数θ,有sin(θ+2π) = sinθ,cos(θ+2π) = cosθ,tan(θ+π) = tanθ。
2. 奇偶性:正弦函数是奇函数,即sin(-θ) = -sinθ;余弦函数是偶函数,即cos(-θ) = cosθ;正切函数既不是奇函数也不是偶函数,即tan(-θ) ≠ -tanθ。
3. 值域范围:正弦函数和余弦函数的值域范围是[-1, 1],而正切函数的值域是整个实数集。
4. 互余关系:在直角三角形中,两个角的正弦值互为余弦值,两个角的余弦值互为正弦值,即sinθ = cos(π/2 - θ),cosθ = sin(π/2 - θ)。
5. 基本关系:根据勾股定理,有sin^2θ + cos^2θ = 1,这是三角函数的基本关系。
三、三角函数的应用三角函数在几何图形中有广泛的应用,下面介绍三角函数在直角三角形和单位圆中的应用:1. 直角三角形中的应用:- 利用三角函数可以求解直角三角形中的边长和角度。
- 利用正弦定理和余弦定理可以解决一般三角形中的边长和角度问题。
2. 单位圆中的应用:- 在单位圆中,角度θ对应的点坐标为(cosθ, sinθ),这是三角函数与单位圆的重要关系。
三角函数定义及三角函数公式大全三角函数是数学中重要的概念,它们与三角形的角度和边长之间的关系密切相关。
在此,我们将介绍三角函数的定义以及一些重要的三角函数公式。
三角函数的定义:三角函数是用来描述角度与边长之间关系的函数,主要包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
1. 正弦函数(sin)正弦函数描述了一个角的对边与斜边之间的比值,即 sin(A) = a/c,其中A为角A的弧度值,a为角A的对边长度,c为角A的斜边长度。
2. 余弦函数(cos)余弦函数描述了一个角的邻边与斜边之间的比值,即 cos(A) = b/c,其中A为角A的弧度值,b为角A的邻边长度,c为角A的斜边长度。
3. 正切函数(tan)正切函数描述了一个角的对边与邻边之间的比值,即 tan(A) = a/b,其中A为角A的弧度值,a为角A的对边长度,b为角A的邻边长度。
4. 余切函数(cot)余切函数描述了一个角的邻边与对边之间的比值,即 cot(A) = b/a,其中A为角A的弧度值,b为角A的邻边长度,a为角A的对边长度。
5. 正割函数(sec)正割函数描述了一个角的斜边与邻边之间的比值,即 sec(A) = c/b,其中A为角A的弧度值,c为角A的斜边长度,b为角A的邻边长度。
6. 余割函数(csc)余割函数描述了一个角的斜边与对边之间的比值,即 csc(A) = c/a,其中A为角A的弧度值,c为角A的斜边长度,a为角A的对边长度。
下面列出了一些重要的三角函数公式,包括诱导公式、和差公式、倍角公式、半角公式以及倒数公式。
1.诱导公式:sin(-A) = -sin(A)cos(-A) = cos(A)tan(-A) = -tan(A)cot(-A) = -cot(A)sec(-A) = sec(A)csc(-A) = -csc(A)2.和差公式:sin(A + B) = sin(A)cos(B) + cos(A)sin(B)sin(A - B) = sin(A)cos(B) - cos(A)sin(B)cos(A + B) = cos(A)cos(B) - sin(A)sin(B)cos(A - B) = cos(A)cos(B) + sin(A)sin(B)tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A)tan(B))tan(A - B) = (tan(A) - tan(B)) / (1 + tan(A)tan(B))3.倍角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) tan(2A) = 2tan(A) / (1 - tan^2(A))4.半角公式:sin(A/2) = ±√[(1 - cos(A)) / 2]cos(A/2) = ±√[(1 + co s(A)) / 2]tan(A/2) = ±√[(1 - cos(A)) / (1 + cos(A))]5.倒数公式:sin(A) = 1 / csc(A)cos(A) = 1 / sec(A)tan(A) = 1 / cot(A)这些三角函数的定义和公式是数学中计算角度和边长之间关系的基础,它们被广泛应用于几何、物理、工程等领域的问题求解中。
三角函数定义及其三角函数公式大全三角函数是数学中一个重要的概念,它描述了以弧度为单位的角度与一个直角三角形的各边之间的关系。
三角函数在几何、三角学、物理学等领域中都有广泛的应用,所以熟练掌握三角函数及其相关公式是非常重要的。
在三角函数中,有六个基本的三角函数,它们分别是正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
这些函数有特定的定义和性质,下面我们将逐一介绍这些内容。
1. 正弦函数(sin):在一个直角三角形中,正弦函数定义为对边长度与斜边长度之比。
对于一个角度为θ的直角三角形,正弦函数可以表示为sinθ = 对边/斜边。
2. 余弦函数(cos):余弦函数定义为邻边长度与斜边长度之比。
对于一个角度为θ的直角三角形,余弦函数可以表示为cosθ = 邻边/斜边。
3. 正切函数(tan):正切函数定义为对边长度与邻边长度之比。
对于一个角度为θ的直角三角形,正切函数可以表示为tanθ = 对边/邻边。
4. 余切函数(cot):余切函数定义为邻边长度与对边长度之比。
对于一个角度为θ的直角三角形,余切函数可以表示为cotθ = 邻边/对边。
5. 正割函数(sec):正割函数定义为斜边长度与邻边长度之比。
对于一个角度为θ的直角三角形,正割函数可以表示为secθ = 斜边/邻边。
6. 余割函数(csc):余割函数定义为斜边长度与对边长度之比。
对于一个角度为θ的直角三角形,余割函数可以表示为cscθ = 斜边/对边。
除了基本的三角函数,还有一些重要的三角函数公式用于解决各种三角函数之间的关系问题。
1.三角恒等式:- π的周期性:sin(θ+π) = -sin(θ),cos(θ+π) = -cos(θ),tan(θ+π) = tan(θ)- 90度的周期性:sin(θ+90度) = cos(θ),cos(θ+90度) = -sin(θ),tan(θ+90度) = -cot(θ)- 互余:sin(θ) = csc(θ),cos(θ) = sec(θ),tan(θ) =cot(θ)- 余角:sin(π/2 - θ) = cos(θ),cos(π/2 - θ) = sin(θ),tan(π/2 - θ) = cot(θ)2.三角函数的平方和差:- sin(A + B) = sin(A)cos(B) + cos(A)sin(B)- sin(A - B) = sin(A)cos(B) - cos(A)sin(B)- cos(A + B) = cos(A)cos(B) - sin(A)sin(B)- cos(A - B) = cos(A)cos(B) + sin(A)sin(B)3.三角函数的倍角公式:- sin(2θ) = 2sin(θ)cos(θ)- cos(2θ) = cos²(θ) - sin²(θ)- tan(2θ) = 2tan(θ)/(1 - tan²(θ))4.三角函数的半角公式:- sin(θ/2) = ±√((1 - cos(θ))/2)- cos(θ/2) = ±√((1 + cos(θ))/2)- tan(θ/2) = sin(θ)/(1 + cos(θ))5.三角函数的和差化积公式:- sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)- sin(A) - sin(B) = 2cos((A+B)/2)sin((A-B)/2)- cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)- cos(A) - cos(B) = -2sin((A+B)/2)sin((A-B)/2)这些只是三角函数及其公式的一部分,还有更多的公式和关系可以在数学教材和参考资料中找到。
三角函数及其应用三角函数是数学中的一个重要分支,它与三角形的边长和角度之间的关系密切相关。
在数学和物理学等学科中,三角函数被广泛应用于各种问题的求解和描述中。
本文将介绍三角函数的基本概念、性质以及其在实际应用中的重要性。
一、三角函数的定义与性质1. 正弦函数(sin)正弦函数是最基本的三角函数之一,它的值定义为对边与斜边的比值。
在一个直角三角形中,假设其斜边长度为h,其中一个锐角的对边长度为a,则正弦函数被定义为sinθ = a/h。
2. 余弦函数(cos)余弦函数也是一种常用的三角函数,它的值定义为邻边与斜边的比值。
同样在一个直角三角形中,假设其斜边长度为h,其中一个锐角的邻边长度为b,则余弦函数被定义为cosθ = b/h。
3. 正切函数(tan)正切函数是另一个常见的三角函数,它的值定义为对边与邻边的比值。
在直角三角形中,正切函数被定义为tanθ = a/b。
这些基本的三角函数在数学中有许多重要的性质与关系,如同一锐角的正弦与余弦的平方和为1,正弦函数与余弦函数之间存在一个倒数关系等。
这些性质和关系为三角函数的应用提供了坚实的理论基础。
二、三角函数的应用1. 解决三角形问题三角函数在解决三角形相关问题中发挥着重要作用。
例如,已知一个三角形的两边长度和夹角,可以利用三角函数求解该三角形的其他边长和角度。
这在测量学、建筑学和导航等领域中是非常常见的应用。
2. 信号处理与波动模型三角函数在信号处理和波动模型中有广泛的应用。
例如,在音频处理中,正弦函数可以用来描述声音的波动。
在电子通信中,可以利用三角函数描述和分析调制信号的频谱特性。
这些应用使得三角函数成为了数字信号处理和通信工程的重要基础。
3. 物理学中的运动描述在物理学中,三角函数也被广泛用于描述物体的运动。
例如,一个振动的物体可以用正弦函数来描述其位置随时间的变化。
同样地,一段直线运动可以用余弦函数来描述物体的位置随时间的变化。
这些应用使得三角函数在物理学建模和运动分析中具有重要地位。
三角函数概念及定义三角函数可以定义为求解三角形边长和角度之间关系的数学函数,它是建立在极坐标系体系之上的、与圆形有关的一组特殊函数。
普通的几何学中,给定一个三角形,可以通过它的三边长进行计算,即求解三角形的外角。
三角函数就是利用这个原理,形成一系列函数关系,以此来计算三角形的外角和边长等几何数学问题。
三角函数的定义包括三个基本函数,即正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。
正弦函数指的是把一个角度(θ)分解为其对应的弧度,再把它映射到正弦函数上,此时正弦函数的值即为θ的正弦值,记为sinθ。
余弦函数与正弦函数类似,它也将一个角度(θ)分解为其对应的弧度,再把它映射到余弦函数上,此时余弦函数的值即为θ的余弦值,记为cosθ。
正切函数也是把一个角度(θ)分解为其对应的弧度,再把它映射到正切函数上,此时正切函数的值即为θ的正切值,记为tanθ。
此外,三角函数还有两个常用的反函数,即反正弦函数(arcsine)和反余弦函数(arccosine)。
反正弦函数可以用来将正弦函数的值映射回角度上,即从sinθ求解θ,称为反正弦函数,记为arcsinθ。
反余弦函数也是类似,它可以将余弦函数的值映射回角度上,即从cosθ求解θ,称为反余弦函数,记为arccosθ。
三角函数的值是固定的,也就是说,给定一个角度的值,三角函数的值都是一样的,这意味着我们可以通过建立一个将角度和三角函数的值之间的关系表来更有效地确定三角函数的值。
该表称为“三角函数表”,它包括上述三个基本函数的值以及反函数的值,并可以根据不同的角度计算出相应的函数值。
三角函数是圆形几何以及其他相关科学和数学问题中不可或缺的一部分,它可以用来计算角度、边长和位置等概念,并且还可以用来解决古典物理问题,比如电力的传输、圆的绘制等。
因此,三角函数的学习在数学中变得极为重要,它将会帮助我们更好地理解数学原理,解决实际问题,发掘科学的奥秘。
三角函数的概念和计算三角函数通常是中学数学中学习的一章,主要关注三角形中角度和边长之间的关系。
虽然三角函数的定义可能有些晦涩,但它们在现代数学和物理学中的应用非常广泛。
在本文中,我们将学习三角函数的定义、性质和常见的计算。
一、三角函数的定义三角函数主要由正弦函数(sin)、余弦函数(cos)和正切函数(tan)组成。
在直角三角形中,我们可以根据三角形的两条边的长度来定义三角函数。
例如,对于一个角A,其正弦值是对边(与角A不相邻的边)的长度与斜边长度之比。
类似地,余弦值是邻边(与角A相邻的边)的长度与斜边长度之比,正切值是对边的长度与邻边长度之比。
这些定义可以表示为以下方程:sin(A) = opposite/hypotenusecos(A) = adjacent/hypotenusetan(A) = opposite/adjacent另外,我们还可以定义三角函数的余切函数(cot)、正割函数(sec)和余割函数(csc),它们分别是正切函数、余弦函数和正弦函数的倒数,如下所示:cot(A) = 1/tan(A) = adjacent/oppositesec(A) = 1/cos(A) = hypotenuse/adjacentcsc(A) = 1/sin(A) = hypotenuse/opposite二、三角函数的性质三角函数具有许多基本性质,这些性质对于计算三角函数值非常重要。
下面列举了一些重要的性质:1. 周期性:三角函数是周期性的,即对于任何角A,它们的函数值在360度内重复。
例如,sin(30°)的值等于sin(390°)的值。
2. 奇偶性:正弦函数是奇函数,即sin(-A)=-sin(A);余弦函数是偶函数,即cos(-A)=cos(A)。
正切函数是奇函数,即tan(-A)=-tan(A)。
3. 正负性:三角函数在不同象限中的符号不同。
在第一象限中,所有三角函数都是正数。
5.2.1 三角函数的概念(基础知识+基本题型)知识点一 任意角的三角函数 1、单位圆的概念在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆叫单位圆. 2、任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:y 叫做α的正弦,记作sin α,即sin y α=;②x 叫做α的余弦,记作cos α,即cos x α=; ③y x 叫做α的正切,记作tan α,即()tan 0yx xα=≠. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。
拓展:(1)任意角的三角函数的定义一般地,设角α的终边上任意一点的坐标为(,)x y ,它与原点的距离为r =,则sin ,cos ,tan (0)y x yx r r xααα===≠ (2)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集. (3)三角函数值是比值,是一个实数,这个实数的大小和(,)P x y 所在中边上的位置无关,而由角α的终边位置决定.(4)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如()f x 表示自变量为x 的函数一样,离开自变量的“sin α”“cos α”“tan α”等式没有意义的.知识点二 三角函数的定义域和函数值的符号1. 正弦函数、余弦函数、正切函数的定义域如下∶2.在各个象限内的符号,如图所示.【拓展】为了便于记忆,我们把三角函数值在各象限内的符号规律概括为下面口诀:“一全正、二正弦、三正切、四余弦”,意思为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.由于从原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,知 (1)正弦函数的符号取决于纵坐标y 的符号; (2)余弦函数的符号取决于横坐标x 的符号;(3)正切函数的符号是由,x y 的符号共同决定的,即,x y 同号为正,异号为负. 知识点三 诱导公式一公式一:()sin 2sin k παα+⋅= , ()cos 2cos k παα+⋅=, ()tan 2tan k παα+⋅=, 【提示】(1)诱导公式一说明终边相同的角的同一三角函数值相等.(2)任意给定一个角,它的三角函数值是唯一确定的;若给定一个三角函数值,则有无数个角与之对应. (3)利用诱导公式一,可以把求任意角的三角函数值,转化为求0到2π内的角 的三角 函数值.其中 k Z ∈ . 知识点四 三角函数线 1.有向线段带有方向的线段叫做有向线段. 2.三角函数线的定义如图 1.2-4,设任意角α的顶点在原点o (单位圆的圆心),始边与x 轴的非负半轴重合,终边与单位圆相交于点,()P x y ,过点p 作x 轴的垂线,垂足为点M ;过点(1,0)A 作单位圆的切线,设它与角α 的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (因为过切点的半径垂直于圆的切线,所以AT 平行于y 轴 ).于是sin ,cos ,tan y MP AT y MP x OM AT x OM OAααα======== . 我们规定与坐标轴 同向时 ,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α 的正弦线、余弦线、正切线,它们统称为三角函数线.【提示】(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数的绝对值,方向表示三角函数值的正负.(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先作出单位圆. (3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面.考点一 三角函数的定义及函数值符号 【例1】 有下列说法:①终边相同的角的同名三角函数值相等; ②终边不同的角的同名三角函数值不等; ③若sin20α> ,则α 是第一象限角;④若α 是第二象限角,且(,)P x y 是其终边上一点,则cos α= .其中正确说法的个数是 ( ) A.1B.2C.3D.4解析: 对于此类三角函数的题目,需要逐个判断.充分利用三角函数的定义求解是关键.总结: (1)解决此类问题的关键是准确理解任意角的三角函数的定义.(2)注意问题:①对于不同象限的角,求其三角函数值时,要分象限进行讨论;②终边在坐标轴上的角不属于任何象限.考点二 求三角函数的定义域 【例2】 求下列函数的定义域: (1)sin tan y x x =+ ;(2)sin cos tan x xy x+=.解: (1)要使函数有意义, 必须使sin x 与tan x 都有意义, 所以,().2R x k k Z x ππ∈≠+∈⎧⎪⎨⎪⎩ 所以函数sin tan y x x =+的定义域为 2,k x Z x k ππ∈⎧⎫≠+⎨⎬⎩⎭.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠ ,所以,2()Z k x k x k πππ⎧⎪⎨⎪⎩≠+∈≠所以函数sin cos tan x xy x +=的定义域为,2k x x k Z π≠∈⎧⎫⎨⎬⎩⎭. (1)解题时要注意函数本身的隐含条件.(2)求三角函数的定义域,应 熟悉各三角函数在各象限内的符号,并要注意各三角函数的定义域 ,一 般用弧度制表示.考点三 诱导公式一的应用 【例3 】计算下列各式的值:(1) ()()sin 1395cos111cos 1020sin7500︒︒︒︒-+-;(2)1112sin cos tan 465πππ⎛⎫-+ ⎪⎝⎭. 解: (1)原式()()()()sin 454360cos 303360cos 603360sin 302360︒︒︒︒︒︒︒︒=-⨯+⨯+-⨯+⨯ cos30cos60sin30sin 45︒︒︒︒+=1122=⨯14=+=(2)原式()2sin 2cos 2tan 0465πππππ⎛⎫⎛⎫=-+++ ⎪⎪⎝⎭⎝⎭21sincos0652ππ=+⨯= . 利用诱导公式一可把负角的三角函数转化为0~2π 内的角的三角函数,也可把大于2π 的角的三角函数转化为0~2π 内的角的三角函数, 即实现了“负化正 ,大化小”. 要注意记 忆特殊角的三角 函数值.考点四 三角函数线的应用【例4】 利用单位圆中的工角函数线 ,分别确定角θ的取值范围.(1)sin θ(2)1co s 2-≤< .分析: 先作出三角函数在边界时的三角函数线,观察角在什么范围内变化, 再根据范围区域写出θ 的取值范围.解: (1)图①中阴影部分就是满足条件的角θ 的范围, 即,32223k k k Z πππθπ+≤≤∈+ .(2)图②中阴影部分就是满足条件的角θ 的范围,即22362k k πππθπ<--+≤+ 或22,326k k Z k ππθππ<≤+∈+ .解形如()f m α≤ 或()()1f m m α≥< 的式子时,在直角坐标及单位圆中标出满足()f m α= 的两个角的终边(若为正弦函数,则角的终边是直线y m = 与单位圆的两个交点 与原点的连线;若为余弦函数,则角的终边是直线x m = 与单位圆的两个交点与原点的连 线 ;若为正切函数,则角的终边与角的终边的反向延长线表示的正切值相同). 根据三角函数值的大小,先找出α 在0~2π (或 ~ππ- )内 的取值 ,再加上2()k k Z π∈ 即可.。
三角函数的基本概念和性质三角函数是数学中重要的概念之一,它们常被用来描述角度和边长之间的关系。
在本文中,我们将介绍三角函数的基本概念和性质,并探讨它们在数学和实际应用中的重要性。
一、基本概念1. 正弦函数(sine function)正弦函数是一个周期为2π的周期函数,通常用sin表示。
正弦函数描述了一个角度和其对应的斜边与斜边的比值之间的关系。
在一个直角三角形中,正弦值等于对边与斜边的比值。
2. 余弦函数(cosine function)余弦函数也是一个周期为2π的周期函数,通常用cos表示。
余弦函数描述了一个角度和其对应的临边与斜边的比值之间的关系。
在一个直角三角形中,余弦值等于临边与斜边的比值。
3. 正切函数(tangent function)正切函数是一个周期为π的周期函数,通常用tan表示。
正切函数描述了一个角度和其对应的对边与临边的比值之间的关系。
在一个直角三角形中,正切值等于对边与临边的比值。
二、基本性质1. 周期性三角函数都是周期函数,其中正弦函数和余弦函数的周期为2π,正切函数的周期为π。
这意味着当角度增加或减小一个周期时,函数值将回到原始值。
2. 奇偶性正弦函数是奇函数,即sin(-x) = -sin(x)。
余弦函数是偶函数,即cos(-x) = cos(x)。
正切函数是奇函数,即tan(-x) = -tan(x)。
这些性质使得三角函数在对称性和图像的对称性方面有重要的应用。
3. 单调性正弦函数和余弦函数的定义域是整个实数集,而正切函数的定义域是除了π/2 + kπ(其中k是整数)的实数集。
在定义域内,正弦函数和余弦函数是连续且有界的函数。
正切函数在定义域内是连续的,但在一些点上是不连续的。
4. 三角函数的关系正弦函数、余弦函数和正切函数之间存在着一些重要的关系。
其中一个关系是tan(x) = sin(x) / cos(x),这意味着正切函数可以通过正弦函数和余弦函数之间的关系来表示。
三角函数基本概念与图形意义一、三角函数的定义与基本概念1.三角函数的定义:三角函数是描述直角三角形各边长度与角度之间关系的函数。
2.基本三角函数:主要包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
3.角度制与弧度制:角度制是度、分、秒的单位,弧度制是以圆的半径为1,以弧长等于半径的圆心角所对应的弧度值为1。
4.象限与坐标系:平面直角坐标系分为四个象限,第一象限(x>0,y>0)、第二象限(x<0, y>0)、第三象限(x<0, y<0)、第四象限(x>0,y<0)。
5.周期性:三角函数具有周期性,周期是指函数值重复出现的最小正数。
正弦函数、余弦函数的周期为2π,正切函数的周期为π。
6.奇偶性:根据函数的定义,可以判断三角函数的奇偶性。
正弦函数、余弦函数为偶函数,正切函数、余切函数为奇函数。
二、三角函数的图形意义1.正弦函数的图形意义:正弦函数表示单位圆上某一点的纵坐标值,随着角度的增大,正弦函数的值在-1与1之间波动。
2.余弦函数的图形意义:余弦函数表示单位圆上某一点的横坐标值,随着角度的增大,余弦函数的值在-1与1之间波动。
3.正切函数的图形意义:正切函数表示直角三角形中,对边与邻边的比值,随着角度的增大,正切函数的值在-∞与∞之间波动。
4.余切函数的图形意义:余切函数表示直角三角形中,邻边与对边的比值,随着角度的增大,余切函数的值在-∞与∞之间波动。
5.正割函数的图形意义:正割函数表示直角三角形中,斜边与对边的比值,随着角度的增大,正割函数的值在1与∞之间波动。
6.余割函数的图形意义:余割函数表示直角三角形中,斜边与邻边的比值,随着角度的增大,余割函数的值在1与∞之间波动。
三、三角函数的性质与变化规律1.奇偶性:正弦函数、余弦函数为偶函数,正切函数、余切函数为奇函数。
三角函数的概念与基本性质三角函数是高中数学中重要的概念之一,它与三角形的关系密切,是解决三角形相关问题的基础。
本文将介绍三角函数的概念与基本性质,帮助读者更好地理解和应用三角函数。
一、三角函数的概念三角函数是指以角度为自变量,以某一边的长度比例为函数值的函数。
常见的三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
以一个直角三角形为例,假设其中一个锐角为θ。
那么,正弦函数sinθ的定义为:sinθ = 对边/斜边,余弦函数cosθ的定义为:cosθ = 邻边/斜边,正切函数tanθ的定义为:tanθ = 对边/邻边。
这些定义是根据三角形中的几何关系推导而来的。
二、三角函数的基本性质1. 周期性:正弦函数、余弦函数、正切函数都具有周期性。
以正弦函数为例,sin(θ+2π) = sinθ,即正弦函数在每个周期内的取值是相同的。
这一性质在解决三角函数相关问题时非常重要。
2. 奇偶性:正弦函数是奇函数,即sin(-θ) = -sinθ;余弦函数是偶函数,即cos(-θ) = cosθ。
这意味着正弦函数关于原点对称,而余弦函数关于y轴对称。
3. 互余关系:正弦函数和余弦函数具有互余关系,即sinθ = cos(π/2 - θ),cosθ = sin(π/2 - θ)。
这一性质可以通过三角函数的定义和几何关系进行推导。
4. 三角函数的范围:正弦函数和余弦函数的取值范围在[-1, 1]之间,而正切函数的取值范围为全体实数。
5. 三角函数的图像:正弦函数和余弦函数的图像是连续的曲线,呈现周期性变化。
正切函数的图像则是一条连续的曲线,但在某些点上有无穷大的间断点。
三、三角函数的应用三角函数在实际问题中有广泛的应用,以下列举几个常见的应用场景。
1. 三角函数在三角形相关问题中的应用:通过三角函数的定义和性质,可以解决三角形的边长、角度等相关问题。
例如,已知一个三角形的一边和一个角度,可以利用正弦函数或余弦函数求解其他边长或角度。
三角函数定义及其三角函数公式大全1. 三角函数的定义三角函数是描述直角三角形内角与边之间关系的数学函数。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
2. 正弦函数的定义正弦函数是一个周期函数,它表示直角三角形中对边与斜边的比值。
通常用sin表示。
在直角三角形ABC中,角A的正弦值为sinA=对边/斜边。
3. 余弦函数的定义余弦函数也是一个周期函数,它表示直角三角形中邻边与斜边的比值。
通常用cos表示。
在直角三角形ABC中,角A的余弦值为cosA=邻边/斜边。
4. 正切函数的定义正切函数是一个周期函数,它表示直角三角形中对边与邻边的比值。
通常用tan表示。
在直角三角形ABC中,角A的正切值为tanA=对边/邻边。
5. 三角函数公式大全5.1. 三角函数的和差化积公式sin(a ± b) = sinacosb ± cosasinbcos(a ± b) = cosa cosb ∓ sinasinbtan(a ± b) = (tana ± tanb)/(1 ∓ tanatanb)5.2. 三角函数的倍角公式sin2a = 2sinacosbcos2a = cos^2a - sin^2atan2a = (2tana)/(1 - tana^2)5.3. 三角函数的半角公式sin(a/2) = ±√((1 - cosα)/2)cos(a/2) = ±√((1 + cosα)/2)tan(a/2) = ±√((1 - cosα)/(1 + cosα))6. 个人观点和理解三角函数作为数学中重要的概念,对于理解和描述角度、周期性现象等具有重要意义。
学习三角函数不仅可以帮助我们解决几何问题,还可以应用在物理、工程等领域,具有广泛的实际意义。
总结通过本文的介绍,你已经了解了三角函数的定义及其相关公式。
初中数学三角函数知识点归纳三角函数是初中数学中的重要知识点之一,它涉及到了数学中的几何形状和数值关系。
了解和掌握三角函数的概念、性质和相关计算方法,对于学生理解几何形状和解决实际问题具有重要的作用。
一、三角函数的概念三角函数是以单位圆为基础,通过正弦和余弦的数值关系来描述角度与长度的关系。
常用的三角函数有正弦函数、余弦函数和正切函数。
1. 正弦函数(sin):在单位圆上,对于任意一点P(x, y),以原点O为顶点的弧OP所对应的角的正弦值定义为y坐标。
2. 余弦函数(cos):在单位圆上,对于任意一点P(x, y),以原点O为顶点的弧OP所对应的角的余弦值定义为x坐标。
3. 正切函数(tan):在单位圆上,对于任意一点P(x, y),以原点O为顶点的弧OP所对应的角的正切值定义为y坐标与x坐标的比值。
二、三角函数的性质1. 周期性:正弦函数和余弦函数的周期都是2π,即对于任意实数x,有sin(x+2π) = sinx,cos(x+2π) = cosx。
而正切函数的周期是π,即tan(x+π) = tanx。
2. 奇偶性:正弦函数是奇函数,即sin(-x) = -sinx;余弦函数是偶函数,即cos(-x) = cosx;而正切函数既不是奇函数也不是偶函数,即tan(-x) ≠ -tanx。
3. 函数值的范围:对于正弦函数和余弦函数,函数值的范围是[-1, 1];对于正切函数,函数值的范围是全体实数。
4. 特殊角的函数值:常用的特殊角如0°、30°、45°、60°和90°对应的三角函数值需要熟记,以便在计算中能够快速准确地使用。
三、三角函数的计算方法1. 根据已知角度计算三角函数值:根据已知角度,可以利用计算器或查表法来计算其对应的正弦、余弦和正切值。
需要注意的是,计算器需要设置为弧度制或角度制,以便得到正确的计算结果。
2. 根据已知三角函数值求解角度:根据已知的正弦、余弦或正切值,可以利用逆三角函数来求解对应的角度。
第三节:正弦函数和余弦函数的定义
一、三角函数的定义
1,第一定义
2,第二定义:
3,第三定义:
二、三角函数在各象限的符号
口诀:1, “一正二正弦,三切四余弦”,
2, “正弦北,余弦东,正切东北西南中”;
三、诱导公式
(1)关系:α
与2k απ+终边相同;
(2)关系:α
与πα-终边关于y 轴对称;
(3)关系:α
与πα+终边关于原点对称;
(4)关系:α
与2πα-终边关于x 轴对称;
(5)关系:α与α-终边关于x 轴对称;
(6)2
π
α-与α关系
(7)
2
π
α+与α关系
题型1:三角函数第一定义的应用
1,(08,北京,文)若角α的终边经过点P (1,-2),则tan 2α的值为 .
43
变形1,已知角α的终边经过下列各点,求sin ,cos ,tan ααα的值;
(1)(-3,-4);(2)(;(3)(5,-12)
变形3,已知α的终边经过点(2,)P y -,且sin α=y 的值。
变形4,已知角α的终边与函数3
2
y x =的图像重合,求α的正弦、余弦和正切值。
2,求角
3,,
π
π
π的正弦、余弦、正切值;
练习:求值:(1)tan0cos90sin180cos270sin360m x p q r ︒
+--- ;
(2)2233
sin
sin sin sin 6
44362
π
π
πππ+++
题型2:三角函数值的符号
1, 若是第三象限角,判断下列各式的正负 (1)sin cos αα+; (2)tan sin αα-; (3)cot sec αα⋅
(4)sin sec αα⋅。
2, 已知α是第一象限的角,且|sin
|sin
2
2
α
α
=-,则
2
α
是第______象限角。
3,(08,全国Ⅱ,文)若且是,则
是( )
A .第一象限角
B . 第二象限角
C . 第三象限角
D . 第四象限角 4,(07,北京)已知cos θ · tan θ<0,那么角θ是( ) (A )第一或第二象限角 (B )第二或第三象限角 (C )第三或第四象限角 (D )第一或第四象限角 题型3:诱导公式 1,求下列函数值
(1)sin(1650)- ;(2)7sin()4π-;(3)cos(660)- ;(4)19cos()6
π-; (5)sin390
;(6)cos(300)- ;(7)2cos 3π;(8)31cos()6
π-
2,已知1
sin()3
πα+=,求sin(3)πα-+的值
3,化简:
(1)sin(1071)sin99sin(171)sin(261)-+-- (2)21sin(2)sin()cos αππαα+-+- (3)21sin(2)sin()sin ()αππαα---+- (4)
sin()sin(3)sin()sin(2)
sin(4)sin(5)
παπααπαππαπα--+----+
4,(08,陕西)等于( )
A .
B .
C .
D .
5,(07,全国Ⅱ,理) sin210O
= ( )
(A) (B) (C) (D)
6,(04,北京,文)已知sin(+π)<0,cos(-π)>0,则下列不等关系中必定成立的是()
A.sin<0,cos>0
B.sin>0,cos<0
C.sin>0,cos>0
D.sin<0,cos<0。