高考数学最全总结高中数学选修2-2知识点总结清单
- 格式:docx
- 大小:23.92 KB
- 文档页数:4
高中数学选修2-2知识点第一章 导数及其应用一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ 二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()x f x e '=7 若()log xa f x =,则1()ln f x x a'= 8 若()ln f x x =,则1()f x x '= 2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤(1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章 推理与证明1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。
高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。
2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。
通项公式可以是一个数学式子,也可以是一个算法。
3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。
递推公式是数列中相邻两项之间的关系式。
4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。
- 奇数列:数列中的每一项都是奇数。
- 偶数列:数列中的每一项都是偶数。
- 单调递增数列:数列中的每一项都比前一项大。
- 单调递减数列:数列中的每一项都比前一项小。
- 正项数列:数列中的每一项都是正数。
- 负项数列:数列中的每一项都是负数。
3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。
- 利用数列的性质,进行数学推理和证明。
- 利用数列的规律,设计算法解决问题。
典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。
解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。
数学选修2-2知识点总结导数及其应用 一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0xx =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在x x =处的导数,记作0()f x '或|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数.()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '=7 若()log xaf x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x'=导数的运算法则1.[()()]()()f x g x f x g x '''±=± 2.[()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=• 三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
高中数学选修2-2知识点总结第一章、导数注1:其中X 是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数y f(X )在XX o 处的瞬时变化率是则称函数y f(x)在点X O 处可导,并把这个极限叫做y f(x)在xo 处的导数,记作3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度; 5、常见的函数导数函数导函数 (i)y c y' o (2)y x n n Ny' nx ni x⑶ y a a o,a i y' a x In a ⑷y e xy' e(5) y log a x a o,a i,x oy' xlna⑹ y In xy'丄X(7) y sin x y' cosx (8) y cosxy'sin xf(X 2) f(X i )X if(X iX ) f(X i ) Xy |X Xo,y即仏)=啊匚 lim f(Xo X) f(Xo)x oxf(Xj)f '(Xo)或1 •函数的平均变化率为丄x6常见的导数和定积分运算公式若f x , g x均可导(可积),则有:①求函数f(x)的导数f '(x)②令f'(x)>0,解不等式,得x的范围就是递增区间.③令f'(x)<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1) 确定函数的定义域。
(2) 求函数f(x)的导数f'(x)(3) 求方程f '(x) =0的根⑷用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查fix)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值8利用导数求函数的最值的步骤:求f(x)在a,b上的最大值与最小值的步骤如下:⑴求f (x)在a,b上的极值;⑵将f(x)的各极值与f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为yx fxf(x)f(x)f(x1x)f(x1)21x2x1x注1:其中x是自变量的改变量,平均变化率可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
y f(x x)lim lim2、导函数的概念:函数y f(x)在x x0处的瞬时变化率是xxx0x0f(x),'x 则称函数y f(x)在点x0处可导,并把这个极限叫做y f(x)在x0处的导数,记作f(0)或'y|,即()f= x x'x00y f(x x)f(x)00 lim limx x x0x0.3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;5、常见的函数导数函数导函数(1) y c y'0(2) ny x*n N'1ny nx(3) x xy a a0,a1'lny a a(4) x xy e y'e(5) y log a x a0,a1,x0y'1 xln a(6) y ln x y'1 x(7) y sin x y'cos x(8) y cos x y'sin x6、常见的导数和定积分运算公式:若f x,g x均可导(可积),则有:和差的导数运算'''f(x)g(x)f(x)g(x)'''f(x)g(x)f(x)g(x)f(x)g(x)积的导数运算特别地:Cf x'Cf'x'''f(x)f(x)g(x)f(x)g(x)2g(x)g(x)(g(x)0)商的导数运算特别地:1g'(x)'2g x g x复合函数的导数y y ux u x微积分基本定理baf x dx F(a)--F(b) (其中F'x f x)和差的积分运算b b ba[f(x)f(x)]dx a f(x)dx a f(x)dx 1212特别地:b bkf(x)dx k f(x)dx(k为常数)a ab c b积分的区间可加性f(x)dx f(x)dx f(x)dx(其中a c b)a a c.用导数求函数单调区间的步骤:①求函数f(x)的导数f'(x)②令f'(x)>0,解不等式,得x 的范围就是递增区间.③令f'(x)<0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
高中数学选修2_2知识点总结(最全版)
一、三角函数基本知识
1. 弧度制和角度制的相互转换
2. 正弦函数、余弦函数、正切函数和余切函数的定义与性质
3. 周期、对称性及图像变换
4. 函数值、解析式和定义域、值域
5. 三角函数间的基本关系
6. 弦割定理和余弦正弦定理
二、三角函数的图像及其相关式子
1. 函数y=sin(x)
三、三角函数的诱导公式
1. 诱导公式的基本概念
2. 诱导公式的归纳证明
3. 应用:求三角函数值
1. 三角函数和差化积公式
3. 正弦和余弦的二倍角公式
6. 万能公式:将任意一个三角函数表达为tan(x/2)的形式
1. 三角函数在一定区间内的值域和零点
2. 基本方程的分类及其解法
3. 一次三角方程及其解法
3. 三角函数的附加恒等式
4. 三角函数的化简或证明
1. 直角三角形的三角函数关系及其应用
2. 等边三角形、等腰三角形、直角三角形的周长和面积的计算
4. 海伦公式及其应用
五、导数与微分的基本概念
1. 函数的概念及其分类
2. 极限的概念及其基本性质
4. 可导函数的判定方法
5. 常用函数的导数公式
6. 导数与函数图象的关系
六、函数的单调性、最值和曲线的几何特征
1. 函数的单调性和最值
2. 曲线的拐点和点的分类
3. 曲线的凸凹性及其判定方法
4. 图象和函数的简图
七、导数的应用
3. 曲线的渐近线
4. 物理学中的应用:单位变化法
八、反三角函数
3. 反三角函数的图像及其性质。
第一章导数1。
1 导数当x变化时,f’(x)是x的一个函数,我们称它为f(x)的导函数(derivative function)(简称导数):f′(x)=y′=limΔx→0f(x+Δx)−f(x)Δx函数在某一点x0处的导数:f′(x0)=y′=limΔx→0f(x0+Δx)−f(x0)Δx1。
2.2 基本初等函数的导数公式复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′∙u x′即y对x的导数等于y对u的导数与u对x的导数的乘积。
1。
3 导数在研究函数中的应用1.3。
1 函数的单调性与导数在某个区间(a,b)内,如果f’(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)〈0,那么函数y=f(x)在这个区间内单调递减。
极大值点(如x=a)附近的点的函数值都比该点的函数值小,该点的函数值叫做极大值;极小值点(如x=b)附近的点的函数值都比该点的函数值大,该点的函数值叫做极小值。
极大值点、极小值点统称为极值点;极大值和极小值统称为极值(extreme value).注意:极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质,而不是函数在整个定义域内的性质。
*导数值为0是该点取得极值点的必要不充分条件.一般地,求函数y=f(x)的极值的方法是:解方程f'(x)=0,当f’(x0)=0时:(1)如果在x0附近的左侧f’(x0)>0,右侧f’(x0)〈0,那么f’(x0)是极大值;(2) 如果在x 0附近的左侧f ’(x 0)〈0,右侧f ’(x 0)>0,那么f ’(x 0)是极小值。
一般地,求函数y=f (x)在[a ,b ]的最大值与最小值的步骤: (1) 求函数y=f(x)在(a,b )内的极值;(2) 将函数y=f(x)的各极值与端点处的函数值f (a ),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
0 a 高中数学选修 2-2 知识点第一章 导数及其应用一.导数概念的引入 1. 导 数 的 物 理 意 义 : 瞬 时 速 率 。
一 般 的 , 函 数 y = f (x ) 在x = x 0 处 的 瞬 时 变 化 率 是lim ∆x →0 f (x 0 + ∆x ) - f (x 0 ) , ∆x我们称它为函数 y = f (x ) 在 x = x 0 处的导数,记作 f '(x 0 ) 或 y ' |x = x,即 f '(x ) = lim f (x 0 + ∆x ) - f (x 0 )0 ∆x →0 ∆x2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点 P n 趋近于 P 时,直线 PT 与曲线相切。
容易知道,割线 PP 的斜率是k =f (x n ) - f (x 0 ) ,当点 P 趋近于 P 时,函数 y = f (x ) 在 x = x 处的导 n - x 0数就是切线PT 的斜率 k ,即 k = lim f (x n ) - f (x 0 ) = f '(x ) ∆x →0 x n - x 0 3. 导函数:当 x 变化时, f '(x ) 便是 x 的一个函数,我们称它为 f (x ) 的导函数. y = f (x ) 的导函数有时也记作 y ' ,即 f '(x ) = lim∆x →0 f (x + ∆x ) - f (x ) ∆x二.导数的计算1) 基本初等函数的导数公式: 1 若 f (x ) = c (c 为常数),则 f '(x ) = 0 ;2 若 f (x ) = x α ,则 f '(x ) = α x α -1 ;3 若 f (x ) = sin x ,则 f '(x ) = cos x4 若 f (x ) = cos x ,则 f '(x ) = -sin x ;5 若 f (x ) = a x ,则 f '(x ) = a xln a6 若 f (x ) = e x ,则 f '(x ) = e x7 若 f (x ) = log x,则 f '(x ) = 1x ln a 8 若 f (x ) = ln x ,则 f '(x ) = 1x 2) 导数的运算法则1. [ f (x ) ± g (x )]' = f '(x ) ± g '(x )x nn n 02. [ f (x) •g(x)]'=f '(x) •g(x) +f (x) •g'(x)3. [ f (x)]'= f '(x) •g(x) -f (x) •g'(x) g(x) [g(x)]23)复合函数求导y =f (u) 和u =g(x) ,称则y 可以表示成为x 的函数,即y =f (g(x)) 为一个复合函数y'=f '(g(x)) •g'(x)三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a, b) 内,如果f '(x) > 0 ,那么函数y =f (x) 在这个区间单调递增;如果f '(x) < 0 ,那么函数y =f (x) 在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数y =f (x) 的极值的方法是:(1)如果在x0 附近的左侧f '(x) > 0 ,右侧f '(x) < 0 ,那么f (x0 ) 是极大值;(2)如果在x0 附近的左侧f '(x) < 0 ,右侧f '(x) > 0 ,那么f (x0 ) 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数y =f (x) 在[a, b] 上的最大值与最小值的步骤(1)求函数y =f (x) 在(a, b) 内的极值;(2)将函数y =f (x) 的各极值与端点处的函数值f (a) ,f (b) 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章推理与证明1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。
归纳推理的一般步骤:•通过观察个别情况发现某些相同的性质;•从已知的相同性质中推出一个明确表述的一般命题(猜想);•证明(视题目要求,可有可无).2、类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:•找出两类对象之间可以确切表述的相似特征;•用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;•检验猜想。
3、合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.4、演绎推理从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括⑴大前提-- 已知的一般原理;⑵小前提-- 所研究的特殊情况;⑶结论---据一般原理,对特殊情况做出的判断.5、直接证明与间接证明⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法.反证法法证明一个命题的一般步骤:(1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止;(3)(归谬)断言假设不成立;(4)(结论)肯定原命题的结论成立.6、数学归纳法数学归纳法是证明关于正整数n 的命题的一种方法.用数学归纳法证明命题的步骤;(1)(归纳奠基)证明当n 取第一个值n0 (n0 ∈N ) 时命题成立;*(2)(归纳递推)假设n=k(k≥n0 ,k∈N)时命题成立,推证当n=k+1时命题也成立.*只要完成了这两个步骤,就可以断定命题对从n0 开始的所有正整数n 都成立.第三章数系的扩充与复数的引入一:复数的概念(1)复数:形如a +bi(a ∈R,b ∈R) 的数叫做复数,a 和b 分别叫它的实部和虚部.(2)分类:复数a +bi(a ∈R,b ∈R) 中,当b = 0 ,就是实数; b ≠ 0 ,叫做虚数;当a = 0,b ≠ 0 时,叫做纯虚数.(3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.2 ⎝ ⎭(4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5) 复平面:建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴除去原点的部分叫做虚轴。
(6) 两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。
2. 相关公式⑴ a + bi = c + di ⇔ a = b ,且c = d⑵ a + bi = 0 ⇔ a = b = 0⑶ z = a + bi = ⑷ z = a - biz ,z 指两复数实部相同,虚部互为相反数(互为共轭复数).3. 复数运算⑴复数加减法: (a + bi )± (c + di ) = (a ± c )+ (b ± d )i ;⑵复数的乘法: (a + bi )(c + di ) = (ac - bd ) + (bc + ad )i ;⑶复数的除法: a + bi = (a + bi )(c - di ) c + di (c + di )(c - d i )= (ac + bd ) + (bc - ad )i = ac + bd + bc - ad ic 2 +d 2 c 2 + d 2 c 2 + d 2(类似于无理数除法的分母有理化→虚数除法的分母实数化)4. 常见的运算规律(1) z = z ;(2)z + z = 2a , z - z = 2bi ;(3)z ⋅ z = z 2 = z 2 = a 2 + b 2 ;(4)z = z ;(5)z = z ⇔ z ∈ R(6)i 4n +1 = i ,i 4n +2 = -1,i 4n +3 = -i ,i 4n +4 =1;2 21+ i 1- i ⎛ 1± i ⎫ (7) (1± i )= ±i ;(8) 1- i = i , 1+ i = -i , ⎪ = ±i (9) 设ω = -1+ 2 3i 是 1 的立方虚根,则1+ ω + ω2 = 0 , ω3n +1 = ω,ω3n +2 = ω ,ω3n +3 = 1 a 2 + b 2。