多路输出开关电源的设计及应用原则
- 格式:doc
- 大小:106.50 KB
- 文档页数:8
电机控制用多输出开关电源设计本文介绍了一种基于专用芯片UC3842的开关稳压电源。
在电机调速控制器中,该电源提供功率开关元件基极(栅极)驱动电压和控制电路工作电压。
开关电源性能的好坏直接影响到电机调速控制器的工作可靠性。
该电源是为30 kW开关磁阻电机控制器设计的,也适用于采用功率MOSFET或IGBT作为开关元件的中小功率感应电机调速控制器。
1主回路方案1.1电源电路此电源是为30 kW开关磁阻电机控制器设计的,此电机功率变换器的主电路为不对称半桥电路[1]。
采用反激变换器结构[2],具有结构简单、损耗小的优点,但输出电压纹波较大,通常用在150 W以下的电源中。
具体电路如图1所示。
此电源为单芯片集成稳压电源,PWM芯片采用UC3842。
UC3842是一种高性能的固定频率电流型控制器,是专为脱线式直流变换电路设计的,其内部结构如图2所示他集成了振荡器、有温度补偿的高增益误差放大器、电流检测比较器、图腾柱输出电路、输入和基准欠电压锁定电路及PWM锁存器电路。
可以实现逐个脉冲的电流限制,输出电流可达1 A,可直接驱动MOSFET。
1.2工作原理此电源电路工作原理为:220 V三相的交流输入电压先经三相不控整流,再经支撑电容平滑,为电源电路提供550 V直流工作电压。
当三相逆变器接通电源时,R5和C2吸收电路启动时的冲击电流。
从逆变器主电路来的直流母线电压经电阻R6降压后,给UC3842提供约16V的起动电压。
进入正常工作后,二次绕组W3经D3,C16提供UC3842的工作电压。
另一绕组W2的高频电压经D2,C13整流滤波,再经7.5kΩ电阻R12,R13和2kΩ电位器RP1分压,获得输出电压信号。
此信号经可调稳压管TL431产生偏差信号,再经光电隔离加到UC3842的误差放大器放大,控制VMOS管的开通与截止,实现稳压的目的。
电源的过流保护由1.8Ω电阻R19检测到VMOS管的过流信号,电流超过域值时封锁UC3842输出信号,实现单周期过流保护。
多路开关电源设计摘要电源是保证电气电子设备正常、可靠、稳定工作不可缺少的组成部分,开关电源以高效、轻便、节能等特点成为了电源研究的热点。
电源正在向着小型化、智能化、高效化等方面发展。
电源已经成为人们生活中不可缺少的东西。
一个完整的开关电源由输入电压、开关变换器、变压器、输出电路和控制电路组成,它的目的是将交流输入通过该电路转化为可以满足电子设备的直流输出。
在深入分析开关电源工作原理和特点的基础上,设计出可以满足指标要求的一款单端反激式八路输出开关电源。
可以为小型的电力子设备供电,八路直流输出分别为+5V/2A、+12V/0.2A、+15V/0.5A、+24/0.2A,开关电源的工作频率为66KHZ,电压稳定度为±0.3%。
论文首先分析了国内为开关电源的发展状况,研究了开关电源各主要模块的工作原理和设计方法,介绍了开关电源变换器的拓扑结构,以及调制模式和高频变压器的工作方式。
从而确定系统可行性的整体方案,然后对电路的各部分模块进行详细设计。
该电源以电流型控制芯片TOP246Y和高频变压器为核心,采用EMI滤波电路,1111111位电路,控制外围电路,来实现吧路稳定输出;最后介绍选择、设计和计算了开关电源相关参数,给出整体原理图。
在设计的电路原理图的基础上,通过软件对变压器进行建模和仿真,验证参数的合理性;介绍开关电源PCB布线规则,制作电路并装机,最后对电源进行测试。
测试的输出电压准确度在±3%。
纹波系数小于1%,电源设计指标满足要求,输出电压稳定。
关键字:开关电源,反激式,EMI,TOP246Y,高频变压器,仿真////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////英文翻译、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、第1章绪论1.1开关电源的介绍及其发展趋势电源是所有电力电子设备的动力提供者,它为设备的工作提供合适的电压、电流,从而保障电子设备的安全、高效、稳定工作。
多路输出反激式开关电源设计要点多路输出反激式开关电源设计摘要:以UC3844芯片为控制核心,设计并制作了多路输出反激式开关电源。
完成了多路输出反激式开关电源系统设计,完成具体模块电路详细设计,包括 EMI 滤波电路、前级保护和整流桥电路、缓冲吸收电路、高频变压器、UC3844的启动与驱动电路、电流检测和过流保护电路等。
合理选择、设计和分配了开关电源各电路参数;设计出电路原理图,根据设计规范制作出 PCB,并组装出电源样机,最后对设计的样机进行测试验证。
开关电源样机输出电压稳定性较高,输出电压纹波较小,符合设计规范小于80mV 的要求;样机整体测试结果表明,电源各项指标均符合要求,输出稳定,性能较好。
关键词:开关电源;反激式;UC3844;模块化Design of Multi-output Flyback Switching Power SupplyAbstract: It was designed and produced a set of multiple output fly-back switching power supply, using the chip UC3844 as the control core. The design of the system and specific module circuits was completed. The module circuits include EMI filter circuit, level protection and bridge rectifier circuit, snubber circuit, high frequency transformer, start and drive circuit of UC3844, current sensing and over-current protection circuit. The parameters of switching power supply circuit were chose, designed and distributed reasonably. According to the schematic circuit design and design specifications, we produced the PCB, and assembled the prototype of power supply, also finished the test in the final.The higher stability of the output voltage of the switching power supply prototype, the output voltage ripple is small, meet the design specifications to the requirements of less than 80mV; The prototype of the overall test results show that the power of the indicators are in line with the requirements, output stability, better performance.Keywords: switch power supply;flyback;UC3844;Modular目录1 概述 01.1 课题研究背景与意义 01.2 课题设计内容 02 反激式开关电源系统分析 02.1 反激变换器工作原理分析 02.2 控制电路分析 (2)2.3 系统整体架构 (4)3系统设计 (5)3.1 变压器设计 (5)3.2 控制芯片选择 (11)3.3 控制芯片驱动电路及定时电阻电容计算 (13)3.4 缓冲吸收电路 (17)3.5 前置保护电路 (18)3.6 EMI滤波电路选择与设计 (18)3.7 输入整流滤波电路 (19)3.8 反馈电路设计 (21)3.9电流检测和过流保护电路 (22)3.10 软启动电路 (23)3.11 MOS管瞬态抑制保护电路 (24)4 系统调试 (24)4.1 硬件调试 (24)4.2 空载输出电压波形测量 (25)4.3 纹波测量与分析 (25)5 结束语 (29)参考文献 (30)致谢 (31)附录 (32)附录1 多路输出反激式开关电源原理图 (34)附录2 多路输出反激式开关电源PCB图 (35)附录3 多路输出反激式开关电源系统元器件清单 (36)多路输出反激式开关电源设计1 概述1.1 课题研究背景与意义随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电力电子设备都离不开可靠的电源,其供电一般采用开关电源。
多路输出式单片开关电源的电路设计(单片开关电源技术讲座之三)河北科学大学沙占友庞志锋武卫东(石家庄050054)摘要:单片开关电源是国际上90年代才开始流行的新型开关电源芯片。
本文阐述其多路输出式电路设计方法。
关键词:单片开关电源多路输出电路设计中图法分类号:TN86文献标识码:A文章编号:0219-2713(2000)10-545-04许多家电产品(如电视机、机顶盒解码器、录像机)都需要由多路稳压电源来供电。
在电子仪器、自控装置中也要给各种模拟与数字电路提供多路电源。
利用单片开关电源可实现多路电压输出。
下面通过一个典型实例来详细介绍多路输出式开关电源的优化设计。
1电路设计方案1.1确定多路输出的技术指标假定要设计的开关电源具有三路输出:主输出UO1(5V,2A,10W),辅助输出为UO2(12V,1.2A,14.4W)和UO3(30V,20mA,0.6W)。
总输出功率为25W。
技术指标详见表1。
各路输出的稳压性能对于电路结构和高频变压器的设计至关重要。
通常,主输出的稳定性要高于辅助输出。
现将+5V作为主输出,专门供CMOS,TTL数字电路使用,其负载调整率SI≤±1%,其余两路优于±5%。
1.2确定反馈电路多路输出的反馈电路有四种类型:基本反馈电路;改进型基本反馈电路;配稳压管的光耦反馈电路;配TL431的光耦反馈电路。
以第四种电路的稳压性能为最佳。
利用表2可选定反馈电路。
需要指出,多路输出要比单路输出的SI值高,并且主输出指标优行辅助输出。
表2可供多路输出选择的四种反馈电路(1)基本反馈电路是利用反馈绕组间接获取输出电压的变化信号,因此不需要使用光耦合器。
该方案的电路最为简单,但开关电源的稳定性不高,难于把负载调整率SI降至±5%以下。
若仅为改善轻载时的负载调整率,可在输出端并联一只合适的稳压管,使其稳定电压UZ=U01,此时轻载下的SI<± 5%。
青岛农业大学毕业论文(设计)题目:多路输出开关电源设计姓名:学院:专业:班级:学号:指导教师:年月日毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得青岛农业大学或其他教育机构的学位或证书使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
论文(设计)作者签名:日期:年月日毕业论文(设计)版权使用授权书本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。
本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。
本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为青岛农业大学。
论文(设计)作者签名:日期:年月日指导教师签名:日期:年月日目录摘要 (I)Abstract (II)1 绪论 (1)课题背景及意义 (1)开关电源简介 (1)开关电源的发展历史和发展前景 (2)2 开关电源的工作原理及分类 (4)开关电源的工作原理 (4)开关电源的设计指标 (5)开关电源的调节方式 (5)开关电源分类 (6)3 电路主要元器件选择 (14)单片开关电源芯片的选取 (14)变压器 (17)4 开关电源电路设计 (19)EMI滤波器设计 (19)开关电源的高频变压器设计 (20)保护电路和输入端整流电路设计 (22)反馈电路设计 (24)次级输出滤波电路和稳压电路设计 (26)输出端稳压电路设计 (28)5 总结 (30)全文总结 (30)工作展望 (30)参考文献 (32)致谢 (34)附录 (35)多路输出开关电源设计摘要在深入分析开关电源工作原理和特点的基础上,根据设计指标的要求完成了一款单端反激式两路输出开关电源的设计。
多路输出开关电源的设计及应用原则1 引言对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。
目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。
不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。
2 多路输出电源对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。
仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。
为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。
从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。
从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。
对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32)辅助电路的负载情况。
3)主电路的负载情况。
注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。
多路输出电源对于电源应用者来讲,一般都希望其所选择的新巨电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。
仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。
为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。
从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。
从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。
对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32)辅助电路的负载情况。
3)主电路的负载情况注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。
图1在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。
在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。
为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。
电源变换器多路输出交叉负载调整率测量与计算步骤1)测试仪表及设备连接。
2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。
3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。
4)按式(1)计算第j路的交叉负载调整率SIL。
SIL=×100%(1)式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之差的绝对值;Uj为各路输出电流为额定值时,第j路的输出电压。
多路输出DC/DC模块电源的设计与实现发布时间:2022-03-05T07:08:34.136Z 来源:《探索科学》2021年11月上21期作者:黄涛[导读] 随着近些年电源技术在各领域的不断发展与应用,电源的控制芯片上也被集成了许多模块功能,这不仅使芯片外围电路更加简单的同时也提高了电源的工作效率和可靠性,促进了多路输出开关电源的研究,也使其进入了快速发展的阶段。
本文主要从DC/DC模块电源的选择及应用角度出发,希望能够提供相关借鉴。
中航飞机股份有限公司汉中飞机分公司黄涛陕西汉中 723213摘要:随着近些年电源技术在各领域的不断发展与应用,电源的控制芯片上也被集成了许多模块功能,这不仅使芯片外围电路更加简单的同时也提高了电源的工作效率和可靠性,促进了多路输出开关电源的研究,也使其进入了快速发展的阶段。
本文主要从DC/DC模块电源的选择及应用角度出发,希望能够提供相关借鉴。
关键词:多路输出;DC/DC模块;电源设计;实现引言国内模块电源目前已经形成系列化、标准化和市场化。
产品一般采用厚膜或薄膜混合集成工艺,技术水平已达国际先进水平。
凭借其工作温度范围宽、体积小、重量轻、可靠性高、使用方便等特点,在国防工业高可靠电子系统及民用工业设备自动控制系统中得到广泛的应用。
做好前期的优选工作,在电源设计、系统调试方面可起到事半功倍的效果。
不仅可以提高电子整机系统的设计水平和使用可靠性,而且可以极大地缩短产品的研发周期。
本文着重从模块电源选择、应用的角度,结合近年来军用模块电源使用过程中得到的反馈信息,探讨一下这方面的问题。
1.多路输出开关电源研究现状实现高频转换控制电路的开端,始于美国GH.Roger,他在1955年发明了自激振荡直流变换器,这种变换器有推挽结构和单个变压器;之后美国科学家提出的了关于电源系统的一种重要设想——取消工频变压器串联开关电源,这个设想从根本上解决了电源系统体积大和重量重的问题。
新型多路输出开关电源的设计与研究一、摘要本文介绍了一种新型多路输出开关电源的设计与研究。
随着科技的发展和电子技术的不断创新,对电源的需求也在不断提高,而多路输出开关电源具有高效率、体积小、重量轻等优点,因此具有更广泛的应用前景。
本文设计了一种采用PWM控制的方式,通过对功率MOSFET进行精确的PWM控制来实现多路输出电压稳定的效果,同时提高了系统的整体效率。
在本研究过程中,我们对电路的结构进行了优化,降低了设计的复杂性,并通过实际测试验证了该设计方案的正确性和可行性。
本文章详细阐述了多路输出开关电源的设计思路,工作原理及其在实际应用中的优势。
1.1背景和引言随着科技的飞速发展,电子设备已经渗透到我们生活的各个方面。
这些设备越来越依赖可靠的电源进行供电。
在这种背景下,开关电源作为高效、节能的电源解决方案备受青睐。
传统的开关电源在输出电流、效率、体积和重量等方面仍存在局限性,难以满足现代电子设备对电源的高要求。
我们将设计一款具有多路输出的新型开关电源,以满足市场的需求,并提高电源解决方案的性能。
1.2目的和目标为了达到这些目标,我们采用了创新的电路设计和优化的控制策略。
在电路结构方面,我们采用了高度集成化的设计方案,通过选用高性能的电力电子器件,减小了电源的体积和重量。
采用了高效的电路拓扑和优化布线,降低了电源的内阻和电磁干扰,提高了电源的效率。
在控制策略上,我们采用了智能化的控制方法,根据实际负载的实时变化,自动调整电源的输出电压和电流,以实现对输出电压的精确控制。
我们还采用了多重保护机制,包括过流、过压、短路和温度保护等,确保电源在恶劣环境下的稳定运行和使用寿命。
本文所设计的新型多路输出开关电源具有高效率、小体积、轻重量和高功率密度等优点,可广泛应用于各种电子设备领域。
通过实现多路独立输出和智能化控制,我们将为用户提供更加优质、可靠的电源解决方案。
1.3文章组织本文介绍了一种新型的多路输出开关电源设计。
多路输出开关电源的设计及应用原则多路输出开关电源是一种电力电子设备,它可以从交流电源中提供多个不同电压和电流的直流电输出。
在设计和应用多路输出开关电源时,有几个重要的原则需要考虑。
1. 选定合适的开关电源拓扑结构:多路输出开关电源可以采用多种拓扑结构,例如非隔离型Buck、Boost、Buck-Boost和隔离型Flyback、Forward等。
选择合适的拓扑结构需要考虑输出电压、输出功率和成本等因素。
2. 合理设计输出电压和电流的等级:多路输出开关电源通常需要提供不同电压和电流级别的输出。
在设计时,应根据实际需求合理确定输出电压和电流的等级,并确保满足负载的功率需求。
3. 增加输出电压和电流的调节功能:多路输出开关电源应具备电压和电流的调节功能,以满足不同负载的需求。
可以通过采用可调电压稳压器(例如LM317)或数字控制芯片(例如TL494)来实现。
4. 合理设计电源滤波电路:多路输出开关电源需要具备良好的电源滤波电路,以降低输入和输出端的电磁干扰。
可以采用电容、电感和磁珠等元件来设计滤波电路,并确保滤波效果良好。
5. 保证输出电压和电流的稳定性:输出电压和电流的稳定性是多路输出开关电源设计中的重要指标。
可以采用反馈控制回路和稳压芯片等来保证输出电压和电流的稳定性。
多路输出开关电源的应用范围广泛,常见应用包括:1. 电子设备:多路输出开关电源可以为电子设备提供不同电压和电流的直流电源,例如计算机、通信设备、工业自动化设备等。
2. 医疗设备:多路输出开关电源可以为医疗设备提供稳定、可靠的电源,例如医用仪器、电子监护设备等。
3. 光电设备:多路输出开关电源可以为光电设备提供适合的电压和电流,例如LED照明、激光器、光纤通信设备等。
4. 电源适配器:多路输出开关电源可以用作电源适配器,为各种便携电子设备充电,例如手机、平板电脑、笔记本电脑等。
需要注意的是,在使用多路输出开关电源时,应确保正确安装和连接,避免电气安全问题。
多路输出开关电源的应用注意事项描述如果你需要多路电源给系统供电,多路输出的开关电源是一种有效降低系统电源成本和简化电源结构的方案,使用多路输出电源时,需根据电源和负载的特性做合适的选择或调整,正确使用多路输出的开关电源。
在搭建系统时,不同的功能单元可能需要不同的工作电压(例如继电器需要24V,而MCU需要5V或3.3V),不同的功能单元间也需要电气隔离(例如传感器模块和处理器单元需要隔离)。
你是否会给每个单元单独配一个隔离电源?如果选择一个多路输出的开关电源给系统供电,电路结构会简化,成本会更低。
电子系统中常用到的输出电压有:3.3V、5V、12V、24V、-5V、-12V和-24V等,市面上已有很多这些电压组合的产品,就算没有您也可以定制您需要的产品。
一、多路输出的开关电源特点1.一般只有一路输出电压是稳压的,其他各路的电压是非稳压的。
2.非稳压输出的电压会随自己这一路的负载变化而变化(负载调整率),也会受其他各路负载大小影响(交叉调整率)。
非稳压输出一般规律变化是:自己负载电流增大时,输出电压下降;其他路的负载电流增大时,输出电压升高。
3.电源产品的功率是指整机的额定功率,具体每一路的输出要详细看手册,请在手册标示范围之内使用。
4.电源多路输出之间有的是隔离和非隔离,有的是共地和非共地,要根据实际需求进行选择。
5.多路输出的电源使用时可能需要加假负载以便调整非稳压这一路输出的输出电压。
二、多路输出的开关电源应用注意点1.仔细评估系统每一路需要的电压和功率范围,不仅仅是评估最大功率,还要评估最小功率。
这样你在选用多路输出的开关电源时才能准确评估每路输出电压的波动范围,避免输出过低或过高,导致系统工作不正常。
2.充分评估系统每路的用电情况,拿到电源样品后也一定要上机实际测试验证。
3.每路负载一般不要小于10%Io,如果系统实际最小功率低于10%Io时建议外加假负载。
多路输出开关电源的设计及应用原则多路输出开关电源是一种常见的电源设计,适用于多种应用场景。
本文将介绍多路输出开关电源的设计原则和应用原则。
设计原则:1. 输入电压范围:多路输出开关电源应具有较宽的输入电压范围,以适应不同输入电源的变化。
常见的输入电压范围为100-240VAC或直流电压范围为12-48VDC。
2. 输出电压和电流:多路输出开关电源应提供多个可调节的输出电压和电流通道,以满足不同设备的需求。
每个输出通道应具有稳定且可靠的电压和电流输出。
3. 选用高效率元件:在设计多路输出开关电源时,应选用高效率的元件,如高效率开关模式电源芯片、高频开关管和高效率变压器等,以降低能量损耗并提高电源的效能。
4. 保护功能:多路输出开关电源应具有完善的保护功能,如过流保护、过压保护、过温保护和短路保护等,以保护电源和被供电设备的安全性。
5. 电磁干扰抑制:多路输出开关电源应采取一系列措施,以减少电磁辐射和抑制电磁干扰,以确保电源和被供电设备的正常工作。
应用原则:1. 通信设备:多路输出开关电源适用于通信设备,如路由器、交换机和无线设备等,以为这些设备提供稳定和可靠的电源。
2. 工业自动化设备:多路输出开关电源可用于工业自动化设备,如PLC系统、工业控制器和变频器等,以为这些设备提供稳定的供电。
3. 医疗设备:多路输出开关电源也常用于医疗设备,如医疗仪器、手术器械和检测设备等,以确保这些设备的安全性和稳定性。
4. LED照明:多路输出开关电源常用于LED照明系统,如LED灯带、LED灯具和LED显示屏等,以为这些照明设备提供高效和稳定的电源。
总之,多路输出开关电源是一种常用的电源设计,广泛应用于通信、工业、医疗和照明等领域。
在设计和应用过程中,需要遵循设计原则,并根据不同的应用需求进行选择和配置。
在设计多路输出开关电源时,还需要考虑以下几点:6. 冷却系统设计:多路输出开关电源在工作时会产生一定的热量,因此应设计合适的冷却系统,以确保电源能够在稳定的温度范围内工作。
目录摘要 (I)Abstract..................................................................................................................................... I I 第一章绪论.. (1)1.1设计的背景及意义 (1)1.2 设计的主要内容和技术指标 (3)1.2.1设计的主要内容 (3)1.2.2技术指标 (3)第二章系统的总体结构及方案设计 (5)2.1方案比较 (5)2.2方案设计 (6)2.3 主电路的结构 (7)2.4开关电源的基本工作原理 (7)2.5高频开关电源的结构 (8)第三章主电路设计 (10)3.1. 滤除干扰电路 (10)3.1.1开关电源电磁干扰的产生机理 (10)3.1.2滤除电磁干扰电路设计 (11)3.1.3.电磁脉冲(EMP)电路的设计 (14)3.1.4.电磁兼容(EMC)的设计 (14)3.2.整流、滤波电路 (15)3.3电路拓扑结构选择 (15)3.3.1反激式电路 (16)3.3.2 单激式变压器开关电源的工作原理 (16)3.3.3 正激式变压器开关电源工作原理 (17)3.3.4 双激式变压器开关电源 (18)3.3.5反激式变压器开关电源工作原理 (18)3.3.6反激式电路拓扑稳压过程 (22)3.4输出整流滤波电路 (22)3.4.1稳压输出 (23)3.4.2三段集成稳压器 (23)3.4.3稳压输出电路 (25)3.5变压器参数的计算 (26)第四章控制电路的设计 (30)4.1 PWM技术简介 (30)4.1.1 PWM控制技术概述 (30)4.1.2 PWM控制的基本原理 (30)4.1.3 PWM控制的基本概念 (32)4.2 电流型PWM控制原理及优点 (33)4.2.1 电流型PWM控制原理 (33)4.2.2电流型PWM控制芯片 (34)4.2.3 UC3842的性能特点 (34)4.2.4 UC3842的引脚排列及内部框图 (35)4.3 反馈电路的设计 (38)4.3.1 反馈绕组设计 (38)4.3.2反馈电路设计 (39)4.4 保护电路 (40)4.4.1 过电流保护原理 (40)4.4.2过压保护原理 (41)4.5 场效应管MOSFET (41)4.5.1功率MOSFET驱动电路 (42)4.5.2 MOS管的缓冲保护电路 (43)4.6系统稳定性 (45)4.6.1系统稳压过程 (45)4.6.2 稳定分析 (46)4.6.3 故障分析 (46)第五章系统仿真 (49)5.1仿真软件介绍 (49)5.2系统仿真 (49)第六章设计总结 (55)参考文献 (57)外文翻译 (58)致谢 (82)附录: (83)摘要本文阐述了一种多路输出的反激式开关电源电路的设计及应用。
一款高精度自激式多路输出稳压开关电源的设计摘要:本文提出了一种高精度的自激式多路输出稳压开关电源,较以往多路输出开关电源,所用元件极少,其中自激控制部分仅用11 个常用元件实现,但是其输出电源精度却很高。
而且只需稍做修改,就可将电路中±9 V 转换为±12 V,±15V,其中主回路稍作修改也可改为3 。
3 V/4 A精确输出。
此电源电路简单,但适用范围广。
引言 开关电源是一种利用开关功率器件并通过功率变换技术而制成的直流稳压电源。
它具有体积小、重量轻、效率高、对电网电压及频率的变化适应性强的特点。
开关电源又被称为高效节能电源,内部电路工作在高频开关状态,自身消耗的能量很低,一般电源效率可达80 %以上,比普通线性稳压电源提高一倍。
开关电源的主电路拓扑有很多种,从DC/DC变换输入与输出间有无变压器隔离,开关电源分为有变压器隔离和无变压器隔离,每类又有几种拓扑,即Buck(降压型)、Boost (升压型)、Buck-Boost (升压-降压型)、Cuk(串联式)及Sepic (并联式)等;按激励方式分,有自激式和它激式;按控制种类包括PWF(调频式)、PWM(调宽式)、PAM(调幅式)和RSM(谐振式)4 种;按能量传递方式有连续模式和不连续模式。
用的最多的是调宽式变换器。
调宽式变换器有以下几种:正激式(Forward )、反激式(Feedback )、半桥式(Half Bridge Mode )、全桥式(Full Bridge Mode )及推挽式(Push Draw Mode )等。
若按开关管的开关条件可分为硬开关(Hardswitching)和软开关(Softswitching)两种。
根据对开关电源的各种拓扑和控制方式的技术要求,工程实际的实现难易,电器性能及成本等指标的总结,本文选用有变压器隔离的自激型反激式拓扑来。
多路输出单端反激式开关电源设计
1.确定输出电压和电流要求:首先要确定每个输出端口所需的电压和
电流。
根据实际需求和应用场景确定输出要求。
2.选择开关电源IC:根据多路输出和高效能的要求,选择合适的开
关电源IC。
开关电源IC能够实现高效能和多路输出的设计。
根据输出要
求选择合适的IC。
3.设计适配器电路:根据所选的开关电源IC,设计适配器电路。
适
配器电路是将输入电压转换为适合开关电源IC的电压。
适配器电路通常
包括整流、滤波和调压等部分。
4.设计反激式变换器:反激式变换器是多路输出单端反激式开关电源
的核心部分。
反激式变换器能够将适配器电路输出的电压进行变换和调节,得到不同的输出电压和电流。
根据输出要求设计合适的反激式变换器。
5.设计输出电路:根据每个输出端口的电压和电流要求,设计合适的
输出电路。
输出电路通常包括滤波、调压和过载保护等部分。
6.进行仿真和优化:设计完成后,进行电路仿真和优化。
通过仿真可
以验证电路的正常运行和性能是否满足要求。
根据仿真结果进行优化和调整。
7.制作电路原型并测试:将设计的电路制作成原型,并进行测试。
测
试包括输入电压范围、输出电压和电流精度、效率和稳定性等方面的测试。
总结:。
多路输出开关电源设计预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制多路输出开关电源设计安森美半导体公司的NCP1252是一款电流模式PWM控制器,它使用内部固定的定时器,可以不依赖于辅助电压来检测输出过载。
文章介绍了基于NCP1252芯片的多路输出开关电源设计,分析了开关电源的工作原理,给出了设计步骤。
该开关电源可提供软起动、短路保护、过流保护等功能,并将该电源成功用于某型雷达收发机,验证了分析、设计的有效性。
标签:NCP1252芯片;多路输出;开关电源Abstract:The ON Semiconductor’s NCP1252 is a current-mode PWM controller that uses internally fixed timers to detect output overload without relying on auxiliary voltages. This paper introduces the design of multi-output switching power supply based on NCP1252 chip,analyzes the working principle of switch power supply,and gives the design steps. The switching power supply can provide soft start,short circuit protection,over-current protection and so on. The power supply has been successfully used in a certain type of radar transceiver,which verifies the effectiveness of the analysis and design.Keywords:NCP1252 chip;multiplex output;switching power supply引言电源如同人的心脏,为各种电子设备提供电能,性能优劣直接影响到整个电子系统的稳定性。
摘要开关电源的高频化电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前地小型化,并使开关电源进入更广泛的领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约资源及保护环境方面都具有深远的意义。
为此本论文以反激式高频开关电源为设计方向而展开,对高频变压器的认知及所注意的问题,其中包括磁芯损耗、绕组损耗、温升以及磁芯要求。
高频单端反激式变压器是本文的中心内容,其核心参数设计许多,具体内容正文中有详细介绍。
其次是控制电路的设计,首先我们要对PWM集成控制器原理的有所了解,在此基础上保护两种控制模式分别是电压模式和电路模式。
同时采用UC3842开关电源集成控制器,它是一种高性能的固定频率电流型集成控制器,能很好地应用在隔离式单端开关电源的设计,其最大优点是外接元件少,外电路装配简单等。
开关电源的质量指标应该是以安全性、可靠性为第一原则,所以,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视。
通过相关文献及实现数据的带入进行验证,最终确定出此设计方案是可行的,设计达到最初的效果。
关键词:单端反激式变压器;PWM集成控制器;UC3842集成控制器;多路输出。
PWM small power multi-output switching power supplyAbstractSwitch power source high frequency power supply technology development of innovative technologies, the benefits is to make high frequency switching power supply device with an unprecedented miniaturization, and causes the switching power supply to enter the more widely, especially in the high-tech fields of application, promote the high-tech products of miniaturization, light. In addition the power switch in the development and application in saving resource and protect environment has profound significance.In this paper, the flyback switch power supply for the design direction and spread out, the high frequency transformer of cognitive and attention problems, including the core loss and winding loss, temperature rise, and core requirements. High frequency single end flyback transformer is the central content of the article, the core of many specific parameter design, detailed in the content of the text. Followed by the design of the control circuit, first of all we have to understand the principle of PWM integrated controller, based on the protection of two kinds of control modes are the voltage mode and circuit model. While the use of UC3842 switching power supply integrated controller, it is a kind of high performance fixed frequency current-mode integrated controller, can be well applied in isolation type single end switching power supply design, its biggest advantage is less external components, simple external circuit assembly. Switching power supply quality indicators should be based on safety, reliability as the first principle, so, in the same switch power supply circuit, protection circuit design a variety of interrelated and should pay attention to the problem should cause enough attention.Through the literature and data to verify, eventually determine the design scheme is feasible, the effect of initial design to achieve.Key words: single end flyback transformer; PWM controller; UC3842controller; Multiple output。
多路输出反激式开关电源的设计与实现多路输出反激式开关电源的设计与实现一、引言开关电源是一种高效率、高可靠性、体积小、重量轻的电源设备,被广泛应用于电子产品中。
多路输出反激式开关电源是一种基于反激式开关电源拓扑结构,能够同时提供多个稳定电压输出的电源系统。
本文将针对这种电源系统进行设计与实现。
二、多路输出反激式开关电源原理多路输出反激式开关电源的基本原理是利用开关管进行高频开关,通过变压器传递能量,并通过整流和滤波电路获得稳定的输出电压。
其核心是控制开关管的导通时间,以实现不同输出电压的调节。
三、电路设计与元器件选择1. 输入电路设计:为了保护开关管和输入电源,应采用滤波电感和输入电容进行滤波处理,同时添加过流保护电路。
2. 变压器设计:根据输出电压和电流要求确定变压器的参数,选择合适的线性密度和电感,以获得理想的传输效果。
3. 输出电路设计:对于多路输出反激式开关电源,每个输出通道都要设计独立的整流和滤波电路,以确保稳定的输出电压。
4. 控制电路设计:采用反馈控制电路,通过对反馈信号的处理调节开关管的导通时间,实现多路输出电压的精确控制。
四、PCB板设计PCB板是电路实现的载体,其设计主要包括布局设计、走线设计和连接设计。
在多路输出反激式开关电源中,需要考虑分区布局,分别放置输入输出电路和控制电路,以最大限度地减小干扰。
同时,在走线设计中,应注意分离高频信号和低频信号,减少耦合。
五、电路调试与输出稳定性测试在完成电路设计与制作后,需要进行电路调试,并测试输出稳定性。
调试时可以通过示波器观察各个节点的波形,以确定是否存在异常。
并通过负载变化测试,验证输出电压是否能够保持稳定。
六、改进与优化在实际应用中,根据具体需求可以对多路输出反激式开关电源进行改进和优化。
常见的改进方法包括添加过压、欠压保护功能,提高电源的效率,降低输出纹波等。
七、结论多路输出反激式开关电源作为一种高效、可靠、稳定的电源系统,具有广泛应用前景。
多路输出开关电源的设计及应用开关电源是一种将电能进行转换和调节的电源系统,其主要通过非线性元件(开关管、PWM调制器等)将输入电能快速开关控制,进而获得所需的输出电能。
多路输出开关电源则在此基础上实现了多个输出通道,用以满足不同电路的需求。
多路输出开关电源的设计主要包括如下几个步骤:1. 确定输出电压和电流需求:根据待供电的电路或设备的电压和电流要求,确定每个输出通道的电压和电流参数。
2. 计算输入功率和选择变压器:根据输出电压和电流参数,计算输入功率并选择适当的变压器。
变压器的主要作用是将输入电压转换为合适的中间电压,便于后续的开关和调节控制。
3. 设计开关和调节控制电路:根据每个输出通道的电压和电流要求,设计相应的开关管、PWM调制器等元件的参数和控制电路。
控制电路主要负责对开关管进行开关控制,通过调节开关频率和占空比,实现输出电压和电流的稳定调节。
4. 设计滤波电路和保护电路:设计适当的滤波电路,用以减少开关电源输出的纹波和噪声;设计相应的保护电路,用以保障开关电源和所供电路或设备的安全,如过载保护、短路保护等。
多路输出开关电源的应用非常广泛,常见于工业控制系统、通信设备、计算机设备、医疗设备等领域。
多路输出能够满足不同电压和电流需求的同时,提供稳定的电能供应,保证设备的正常运行。
此外,开关电源具有高效率、小体积、轻量化等优点,可以满足现代电子设备对电源的高要求。
多路输出开关电源是现代电子设备中常用的一种电源系统,它通过将输入电能进行高效率的转换和调节,为多个输出通道提供稳定可靠的电源。
在电子设备设计中应用广泛,特别是在工业、通信、计算机等领域。
多路输出开关电源的设计非常重要,其关键是根据待供电设备的电压和电流需求,设计符合要求的输出通道。
首先,根据电路或设备的电压和电流要求,确定每个输出通道的电压和电流参数。
例如,工业控制系统中可能需要供应多个不同电压的直流电源,而通信设备可能需要同时提供5V和12V的电源。
多路输出开关电源的设计及应用原则王其岗,李莹(华天微电子有限责任公司,甘肃天水741000)摘要:比较了诸多国内外多路输出电源的设计思想,提出并总结了现今多路输出电源的设计原则。
关键词:开关电源;多路输出;设计原则1引言对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。
目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。
不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。
2多路输出电源对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。
仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。
为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。
从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。
从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。
对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32)辅助电路的负载情况。
3)主电路的负载情况。
注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。
图1多路输出开关电源框图图3辅助电路加一个线性稳压调节器在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。
在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。
为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。
21电源变换器多路输出交叉负载调整率测量与计算步骤1)测试仪表及设备连接如图2所示。
2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。
3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。
4)按式(1)计算第j路的交叉负载调整率SIL。
SIL=×100%(1)式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之差的绝对值;Uj为各路输出电流为额定值时,第j路的输出电压。
根据上面的测试及计算方法可以将交叉负载调整率理解为:所有其它输出电路负载跨步变(100%-0%时)对该路输出电压精度影响的百分比。
22多路输出开关电源由图1原理所构成的实际开关电源,主控电路仅反馈主输出电压,其它辅助电路完全放开。
此时假设主、辅电路的功率比为1:1。
从实际测量得主电路交叉负载调整率优于0.2%,而辅电路的交叉负载调整率大于50%。
无论开关电源设计者还是应用者对大于50%的交叉负载调整率都将是不能接受的。
如何降低辅电路交叉负载调整率,最直接的想法就是给辅助电路加一个线性稳压调节器(包括三端稳压器,低压差三端稳压器)如图3所示。
从图3可知,由于引入了线性稳压调节器V,所以在辅路上附加了一部分功率损耗,功率损耗为P=(Vaux′-Vaux1)Iaux,而要使辅电路的交叉负载调整率小,就必须有意识地增大线性调整器的电压差(Vaux′-Vaux1),即就是要有意识增大V aux′,其带来的缺点就是增加了电源的功率损耗,降低了电源的效率。
以图1及图3原理为基础设计和应用电源时,应注意的原则为:1)主电路实际使用的电流最小应为最大满输出电流的30%;2)主电路电压精度应优于0.5%;3)辅电路功率最好小于主电路功率的50%;4)辅电路交叉负载调整率不大于10%。
23改进型多路输出开关电源在很多应用场合中,要求2路输出的功率基本相当,比如±12V/05A,±15V/1A。
我们通过多年的实践,设计了如图4所示的电路,能较好地达到提高交叉负载调整率的目的。
图4电路设计思想的核心有以下2点。
1)将正负2路输出滤波电感L1、L2绕制在同一磁芯上,采用双线并绕的方法,从而保证L1、L2电感量完全相同。
并注意实际接入线路时的相位(差模方法)关系,这种滤波电感的连接方法使2路输出电流的变化量相互感应,在一定程度上较大地改善了2路输出的交叉负载调整率。
2)从图4可以看到,采样比较器Rs1、Rs2不像图1那样接到主电路Vp上,而是直接跨接到正负电源的输出端上,并且逻辑“地”不是电源的输出地,而是以负电压输出端作为采样比较和基准电压的逻辑“地”电位。
这样采样误差将同时反映出正、负2路输出的电压精度变化,对正、负2路同样都存在有反馈作用,能在很大程度上改进2路输出的交叉负载调整率。
以±15V/1A电源为例,采用图4的电路设计,实测得的2路交叉负载调整率优于2%。
图2测试仪表及设备连接图4改进型2路输出电路图53路电源设计方案以图4原理为基础设计和应用电源时,应注意的原则为:1)2路最好为对称输出(功率对称,电压对称),无明显的主、辅电路之分,比如我们常用到的±12V,±15V等都属于此类;2)2路输出电压精度要求都不是太高,1%左右;3)2路输出交叉调整率要求相对较高,2%左右。
下面介绍一种通用性极强的3路电源设计方案,如图5所示。
从图5可以看到,主+5V输出与辅路±Vout(可以是±15V或±12V)输出电路不但反馈相互独立,而且其PWM(脉宽调制器),功率变换和变压器都是相互独立的。
可以将此3路电源看成是由相互独立的1个+5V 电源和1个±Vout电源共同组合而成。
为了进一步减少二者之间的相互干扰和降低各自输出电压纹波的峰-峰值,应当进一步减小各独立电源的输入反射纹波(一般纹波峰-峰值应小于50mV,纹波有效值应小于10mV)和采用同步工作方式。
24高频磁放大器稳压器在多路输出电源中,输出电路经常采用高频磁放大稳压器,它以低成本、高效率、高稳压精度和高可靠性,而在多路输出的稳压电源中得到了广泛应用。
磁放大器能使开关电源得到精确的控制,从而提高了其稳定性。
磁放大器磁芯可以用坡莫合金,铁氧体或非晶,纳米晶(又称超微晶)材料制作。
非晶、纳米晶软磁材料因具有高磁导率,高矩形比和理想的高温稳定性,将其应用于磁放大器中,能提供无与伦比的输出调节精确性,并能取得更高的工作效率,因而倍受青睐。
非晶、纳米晶磁芯除上述特点外还具备以下优点:1)饱和磁导率低;2)矫顽力低;3)复原电流小;4)磁芯损耗少;磁放大输出稳压器没有采用晶闸管或半导体功率开关管等调压器件,而是在整流管输出端串联了一个可饱和扼流圈(如图6所示),所以它的损耗小。
由图6可知,磁放大稳压器的关键是可控饱和电感Lsr和复位电路。
可控饱和电感是由具有矩形B H回线的磁芯及其上的绕组组成,该绕组兼起工作绕组和控制绕组的作用。
复位(RESET)是指磁通到达饱和后的去磁过程,使磁通或磁密回到起始的工作点,称为磁通复位。
由于磁放大稳压器所用的磁芯材料的特点(良好的矩形B H回线及高的磁导率),使得磁芯未饱和时的可控饱和电感对输入脉冲呈现高阻抗,相当于开路,磁芯饱和时可控饱和电感的阻抗接近于0,相当于短路。
目前开关电源工作频率已提到几百kHz以上,磁放大器在开关电源中的广泛应用对软磁材料提出了更高的要求。
在如此高的频率下,坡莫合金由于电阻率太低(约60μΩ·cm)导致涡流损耗太大,造成温升高,效率降低,采用超薄带和极薄带虽能有所改善,但成本将大幅度上升;铁氧体具有很高的电阻率(大于105μΩ·cm),但其Bs过低,居里点也太低。
由于工作环境恶劣,对材料的应力敏感性、热稳定性等都有严格要求,上述材料是很难满足要求的。
图6磁放大输出稳压电路图7辅路带磁放大器的典型应用电路图8完全利用磁放大器的稳压电路非晶合金的出现大大丰富了软磁材料。
其中的钴基非晶合金具有中等的饱和磁感应强度,超微合金具有较高的饱和磁感应强度,它们都具有极低的饱和磁致伸缩系数和磁晶各向异性。
钴基非晶和超微晶在保持高方形比的同时可以具有很低的高频损耗,用于高频磁放大器中,可大大提高电源效率,大幅度减小重量、体积,是理想的高频磁放大器铁芯材料。
3高频磁放大输出稳压器典型应用电路图7所示的多路输出电源,其主路为闭环反馈PWM控制方式,辅路为磁放大式稳压电源。
由于辅路磁放大输入电压波形受控于变压器主、辅绕组比,以及主路的工作状态(主路输出电压的高低和主路负载的高低等),所以辅路的交叉负载调整率仍然不能够达到理想的状态。
图8所示是一种完全利用磁放大器稳压技术设计的多路输出稳压电源。
此电源前级为双变压器自激功率变换电路,后级多路输出均为磁放大器稳压电路。
并且各路之间无关,前后级之间无反馈,无脉宽调制器(PWM)。
此电路的优点如下:1)电路结构简单,使用元器件数量少,除了两只功率管以外,其它元器件均是永久性或半永久性的,可靠性极高,制作也很方便;2)电路中没有隔离反馈放大器,因此调整极其容易,而且一旦调整好后就无须维护,前级变换功率取决于后级总输出功率;3)各路的输出特性相互独立,独自调整稳压,无主、辅路之分,所以,各输出电路的负载调整率的交叉负载调整率都非常理想,小于05%;4)磁放大器在功率开通瞬间,处于“开路”状态,功率管在此刻的导通电流趋近于零,因而,损耗减到了最低限度,这有利于变换器的高频化和高效率;5)由于前级功率变换器为不调宽的纯正方波,以及后级接了磁放大器,这样可以大幅度地降低输出纹波的峰-峰值,普通PWM型电源的输出纹波大约为输出电压标称值的1%左右,而采取带磁放大器的整流电路,纹波的峰-峰值可比较容易地降低到0.1%左右。
上述磁放大型稳压电源的综合电特性都是其它PWM隔离负反馈多路电源所无法比似的。