青岛二中数学2011年中考数学二轮复习--几何综合题(附答案)
- 格式:doc
- 大小:443.00 KB
- 文档页数:11
分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。
二轮复习--分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.Ⅱ、典型例题剖析【例1】(南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=. 点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】(武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
2011年山东省青岛市中考数学试题一、选择题(本大题共8小题,每小题3分,满分24分)1.-12的倒数是【】A.-12B.12C.-2 D.22.如图,空心圆柱的主视图是【】3.已知⊙O1与⊙O2的直径分别是4cm和6cm,O1O2=5cm,则两圆的位置关系是【】A.外离B.外切C.相交D.内切4.下列汽车标志中,既是轴对称图形又是中心对称图形的是【】5.某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是【】A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字6.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的12,则点A 的对应点的坐标是【】A.(-4,3)B.(4,3)C.(-2,6)D.(-2,3)7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【】A.17cm B.4cm C.15cm D.3cm8.已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x 的取值范围是【】A.x<-1或0<x<3 B.-1<x<0或x>3C.-1<x<0 D.x>3A.B.C.D.图111 二、填空题(本大题共6小题,每小题3分,满分18分)9.已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm ,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是 仪仗队. 10.如图,已知AB 是⊙O 的弦,半径OA =6cm ,∠AOB =120º, 则AB = cm .11.某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .12.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只. 13.如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1= .14.如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以BE 为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第n 个正方形的面积S n = .三、作图题(本题满分12分)15.如图,已知线段a 和h .求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本大题共9小题,满分74分)16.(每小题4分,满分8分)(1)解方程组:⎩⎨⎧4x +3y =5,x -2y =4.(2)化简: b +1 a 2-4 ÷ b 2+ba +2 .17.(6分)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题: (1)将图2补充完整;(2)这8天的日最高气温的中位数是 ºC ; (3)计算这8天的日最高气温的平均数. 温度/ºC图1图2ahA BOABCD EF O 1O 2A EB C F D 18.(6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长? (结果精确到0.1m .参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)20.(8分)某企业为了改善污水处理条件,决定购买A 、B 两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案? (2)哪种购买方案更省钱?21.(8分)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DF A ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.22.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件. (1)写出销售量y 件与销售单价x 元之间的函数关系式;(2)写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?a b 图1 23.(10分)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M -N ,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N .问题解决如图1,把边长为a +b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形面积之和M 与两个矩形面积之和N 的大小.解:由图可知:M =a 2+b 2,N =2ab .∴M -N =a 2+b 2-2ab =(a -b )2.∵a ≠b ,∴(a -b )2>0. ∴M -N >0. ∴M >N . 类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为a +b 2 元/千克和 2aba +b元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M 1、N 1的大小(b >c ).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b >a>c >0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.图4图5 图6 图7bc图3a +bb +3cb +ca -c图224.(12分)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm/s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t s (0<t <5).(1)当t 为何值时,四边形PQCM 是平行四边形?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形PQCM =916S △ABC?若存在,求出 t 的值;若不存在,说明理由;(4)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平 分线上?若存在,求出此时t 的值;若不存在,说明理由.2011年青岛中考数学答案二、填空题 9. 甲10. 11.12012011.5x x-= 12. 1000 13.14.112n - 三、作图题 15. 正确作图; 正确写出结论。
2010年中考数学二轮复习--代数综合题Ⅰ、综合问题精讲:代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法、配方法等.解代数综合题要注意归纳整理教材中的基础知识、基本技能、基本方法,要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.注意知识间的横向联系,从而达到解决问题的目的. Ⅱ、典型例题剖析【例1】(丽水,8分)已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值.解:设方程的另一根为x 1,由韦达定理:2 x 1=-6, ∴ x 1=-3.由韦达定理:-3+2= k +1,∴k=-2.【例2】(嘉峪关,7分)已知关于x 的一元二次方程(k+4)x 2+3x+k 2-3k -4=0的一 个根为0,求k 的值.解:把x=0代入这个方程,得k 2-3k -4=0,解得k 1=l ,k 2=-4.因为k+4≠0.所以k ≠-4,所以k =l 。
点拨:既然我们已经知道方程的一个根了,那么我们就可以将它代入原方程,这样就可以将解关于x 的方程转化为解关于k 的方程.从而求出b 的解.但应注意需满足k+4的系数不能为0,即k ≠-4。
【例3】(自贡,5分)已对方程 2x 2 +3x -l =0.求作一个二次方程,使它的两根分别是已知方程两根的倒数.解:设2 x 2+3x -l =0的两根为x 1、x 2则新方程的两根为1211, x x 得12123212x x x x ⎧+=-⎪⎪⎨⎪=-⎪⎩所以12121211==3 x x x x x x ++所以新方程为y 2-3y -2=0· 点拨:熟记一元二次方程根与系数的关系是非常必要的【例4】(内江,8分)某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y (件)之间的关系如下表:⑴在草稿纸上描点,观察点的颁布,建立y 与x 的恰当函数模型。
几何综合测验【复习要点】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点:⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.⑵ 掌握常规的证题方法和思路.⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等). 【实弹射击】 一、填空题 1、(08)如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °; 2、(07)如图2,AD 是⊙O 的直径,AB ∥CD ,∠AOC=60°,则∠BAD=______度. 3、(08)如图3,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.4、(08佛山市)如图4,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .5、(07广州市)如图5,点D 是AC 的中点,将周长为4㎝的菱形ABCD 沿对角线AC 方向平移AD 长度得到菱形OB ’C ’D ’,则四边形OECF 的周长是 ㎝6、(08茂名市)如图6,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°,则∠OAC 的度数是 .(1) (08梅州市) 如图7,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB的中点D ,测得CD=30米,则AB=______米.图2OCB A A M NB C图1 O B D C A 图3 图4 B CD A POC BA 图6 图5图7OC BA(2) (08梅州市) 如图8, 点 P 到∠AOB 两边的距离相等,若∠POB=30°,则 ∠AOB=_____度. (3) (09广东省) 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_________cm.二、解答题1.(08广东省)如图,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.2、(08广东省)如图,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.3、(08广东省)(本题满分9分)(1)如图a ,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .(1)求∠AEB 的大小;(2)如图b ,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.图8C B OD 图a A B A O D CE 图b图9C OBB 1C C B A 1114、(09广东省) 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;(2)点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ. 5、(09广东省) 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为邻边作第3个平行四边形1211C B B O ……依此类推.(1)求矩形ABCD 的面积;(2)求第1个平行四边形 、第2个平行四边形和第6个平行四边形的面积.6、(09广东省)(1)如图1,圆内接△ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G ,求证:阴影部分四边形OFCG 的面积是△ABC 的面积的31. (2)如图2,若∠DOE 保持120°角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 的面积的31.7、(10广东省)如图,PA 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA=2,OP=4。
考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题纸上认真填写学校名称、班级和姓名。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题纸和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.16 的算术平方根是 A .4± B .8± C .4 D .4- 2. 如果一个角等于72︒,那么它的补角等于A .18︒B .36︒C .72︒D .108︒ 3.若点(,2)M a 与点(3,)N b 关于x 轴对称,则,a b 的值分别是A .3,2-B .3,2-C .3,2--D .3,2 4. 把多项式2288x x -+分解因式,结果正确的是 A .()222x +B .()222x -C .()224x -D .()224x -5. 下列计算正确的是A .44a a a ÷= B .325(2)4a a = C .223355+= D .1025÷=6.从1~9这九个自然数中任取一个,是3的倍数的概率是 A .13 B .32 C .92 D . 94 7.如图是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为A .2πB .3πC .23πD .()123π+8.如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB BC CD DA →→→连续翻转(小正方形起始位置在AB 边上),那么这个小正方形翻转到DA 边的终点位置时,它的方向是DCBAA .B .C .D .二、填空题(本题共16分, 每小题4分)9. 若分式22123x x x -+-的值为零 , 则x = .10.某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 基本了解 不太了解频数 40 120 36 4 频率0.2m0.180.02本次问卷调查抽取的样本容量为_______,表中m 的值为_______11. 已知两圆内切,圆心距2d = ,一个圆的半径3r =,那么另一个圆的半径为 12. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(5)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:011271tan 60( 3.14)()2π--︒+--14.求不等式组32451233x x x -≥-⎧⎪-⎨>-⎪⎩ 的正整数解.15. 已知13x x-=,求代数式2(23)(1)(4)x x x --+-的值. 16. 已知:如图,四边形ABCD 是平行四边形,BE AC ⊥于E ,DF AC ⊥于F .求证:BE DF =.(1) (2) (3)……17. 列方程或方程组解应用题:在“彩虹读书”活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人, 甲班学生读书480本,乙班学生读书 360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45倍.求甲、乙两班各有多少人? 18.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A ,与y 轴的交点为(0,2)C ,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4=.(1)求直线AB 的解析式和反比例函数的解析式;(2).求tan ABO ∠的值.四、解答题(本题共20分,每小题5分)19.已知:如图,矩形ABCD 中, 4AB =,7BC =,点P 是AD 边上一个动点,PE PC ⊥,PE 交AB 于点E ,对应点E 也随之在AB 上运动,连结EC .(1)若PEC ∆是等腰三角形,求PD 的长; (2)当30PEC ∠=︒时,求AP 的长.20. 已知:如图,AB 是O ⊙的直径,10AB =, DC 切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E .BE PDCBA DCBAFEDCBA(1)求证:BC EC =; (2)若4cos 5BEC ∠=, 求DC 的长.21. 为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是 米3,众数是 米3,中位数是 米3;(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每 月的用水量是多少米3? 22.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x (x >0). 依题意,割补前后图形面积相等, 有52=x , 解得5=x .由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.550 500600 650 700 800 750 4 7 9 10 11 O•月总用水量(米3) • ••• • •• •• ••图1请你参考小东同学的做法,解决如下问题:(1) 如图4,是由边长为1的5个小正方形组成,请你通过分割,把它拼成一个正方形(在图4上画出分割线,在图4的右侧画出拼成的正方形简图);(2)如图5,是由边长分别为a 和b 的两个正方形组成,请你通过分割,把它拼成一个正方形(在图5上画出分割线,在图5的右侧画出拼成的正方形简图).五、解答题(本题共22分,第23题8分,第24题7分,第25题7分) 23.已知关于x 的方程2(31)220mx m x m --+-=. (1)求证:无论m 取任何实数时,方程恒有实数根;(2)若m 为整数,且抛物线2(31)22y mx m x m =--+-与x 轴两交点间的距离为2,求抛物线的解析式;(3)若直线y x b =+与(2) 中的抛物线没有交点,求b 的取值范围.24. 已知:如图,ABC ∆内接于O e , AB 为O e 的直径,=52AC BC =点D 是»AC 图3图2图1图3图2图1上一个动点,连结AD 、CD 和BD , BD 与AC 相交于点E , 过点C 作PC CD ⊥于C ,PC 与BD 相交于点P ,连结OP 和AP .(1) 求证:AD BP =; (2)如图1,若1tan 2ACD ∠=, 求证:DC AP P ; (3) 如图2,设AD x = , 四边形APCD 的面积为y ,求y 与x 之间的关系式.25.已知,如图,抛物线24(0)y ax bx a =++≠与y 轴交于点C ,与x 轴交于点A B ,,点A 的坐标为(40)-,,对称轴是1x =-.(1)求该抛物线的解析式; (2)点M 是线段AB 上的动点,过点M 作MN ∥AC ,分别交y 轴、BC 于点P 、N ,连接CM .当CMN △的面积最大时,求点M 的坐标; (3)在(2)的条件下,求CPNABCS S ∆∆的值.图1图2O CD E P ABBAPEDC O。
2011全国中考真题解析120考点汇编两点之间距离,点到直线距离,两平行线的距离一、选择题1.(2011湖北荆州,14,3分)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为13cm.考点:平面展开-最短路径问题.专题:几何图形问题.分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.解答:解:∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.点评:本题主要考查两点之间线段最短,以及如何把立体图形转化成平面图形.2.(2011,台湾省,11,5分)如图为某大楼一、二楼水平地面间的楼梯台阶位置图,共20阶水平台阶,每台阶的高度均为a公尺,宽度均为b公尺(a≠b).求图中一楼地面与二楼地面的距离为多少公尺?()A、20aB、20bC、×20D、×20考点:平行线之间的距离。
专题:计算题。
分析:根据两并行线间的距离即为两并行线间的垂直线段长,即全部台阶的高度总和;解答:解:∵一楼地面与二楼地面的距离=全部台阶的高度总和,∴一楼地面与二楼地面的距离为:a×20=20a(公尺);故选A.点评:本题考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离,注意防止无用条件的干扰.4.(2011浙江衢州,6,3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则P Q的最小值为()A、1B、2C、3D、4考点:角平分线的性质;垂线段最短。
分析:根据题意点Q是射线OM上的一个动点,要求P Q的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作P Q垂直OM,此时的P Q最短,然后根据角平分线上的点到角两边的距离相等可得P A=P Q,利用已知的P A的值即可求出P Q的最小值.解答:解:过点P作P Q⊥OM,垂足为Q,则P Q为最短距离,∵OP平分∠MON,PA⊥ON,P Q⊥OM,∴PA=P Q=2,故选B.点评:此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置.5. (2011广东省茂名,5,3分)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A、3公里B、4公里C、5公里D、6公里考点:角平分线的性质;菱形的性质。
二轮复习--化归思想Ⅰ、专题精讲:数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. Ⅱ、典型例题剖析【例1】(嘉峪关,8 分)如图3-1-1,反比例函数y=-8x 与一次函数y=-x+2的图象交于A 、B 两点. (1)求 A 、B 两点的坐标; (2)求△AOB 的面积.解:⑴解方程组82y x y x ⎧=-⎪⎨⎪=-+⎩ 得121242;24x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 所以A 、B 两点的坐标分别为A (-2,4)B(4,-2(2)因为直线y=-x+2与y 轴交点D 坐标是(0, 2), 所以11222,24422AOD BOD S S ∆∆=⨯⨯==⨯⨯= 所以246AOB S ∆=+=点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标.【例2】(自贡,5分)解方程:22(1)5(1)20x x ---+= 解:令y= x —1,则2 y 2—5 y +2=0. 所以y 1=2或y 2=12 ,即x —1=2或x —1=12.所以x =3或x=32 故原方程的解为x =3或x=32点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了.【例3】(达川模拟,6分)如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD=CE 、AC=DE .所以BE=BC+CE=8. 因为 AC ⊥BD ,所以BD ⊥DE .因为 AB=CD , 所以AC =BD .所以GD=DE . 在Rt △BDE 中,BD 2+DE 2=BE 2所以BD BE=4 2 ,即AC=4 2 . 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.【例4】(新泰模拟,5分)已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状.解:因为222a b c ab ac bc ++=++, 所以222222222a b c ab ac bc ++=++, 即:222()()()0a b b c a c -+-+-= 所以a=b ,a=c , b=c 所以△ABC 为等边三角形.点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题.【例5】(临沂,10分)△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
山东省青岛市2011年中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分)1、(2011•青岛)﹣的倒数是()A、﹣B、C、﹣2D、22、(2011•青岛)如图,空心圆柱的主视图是()A、B、C、D、3、(2011•青岛)已知⊙O1与⊙O2的直径分别是4cm和6cm,O1O2=5cm,则两圆的位置关系是()A、外离B、外切C、相交D、内切4、(2006•娄底)下列汽车标志中既是轴对称又是中心对称图形的是()A、B、C、D、5、(2011•青岛)某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是()A、精确到百分位,有3个有效数字B、精确到个位,有6个有效数字C、精确到千位,有6个有效数字D、精确到千位,有3个有效数字6、(2011•青岛)如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A、(﹣4,3)B、(4,3)C、(﹣2,6)D、(﹣2,3)7、(2011•青岛)如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A、cmB、4cmC、cmD、cm8、(2011•青岛)已知一次函数y1=kx+b与反比例函数y2=在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A、x<﹣1或0<x<3B、﹣1<x<0或x>3C、﹣1<x<0D、x>3二、填空题(本大题共6小题,每小题3分,满分18分)9、(2011•青岛)已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是_________仪仗队.10、(2011•青岛)如图,已知AB是⊙O的弦,半径OA=6cm,∠AOB=120°,则AB=_________cm.11、(2011•青岛)某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x个零件,则根据题意可列方程为_________.12、(2011•青岛)生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为_________只.13、(2011•青岛)如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=_________.14、(2011•青岛)如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积S n=_________.三、作图题(本题满分12分)15、(2011•青岛)如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本大题共9小题,满分74分)16、(2011•青岛)(1)解方程组:;(2)化简:÷.17、(2011•青岛)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的中位数是_________°C;(3)计算这8天的日最高气温的平均数.18、(2011•青岛)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.19、(2011•青岛)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40°减至35°.已知原楼梯AB 长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,sin35°≈0.57,tan35°≈0.70)20、(2011•青岛)某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?A型B型价格(万元/台)8 6月处理污水量(吨/月)200 18021、(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.22、(2011•青岛)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?23、(2011•青岛)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.问题解决如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.解:由图可知:M=a2+b2,N=2ab.∴M﹣N=a2+b2﹣2ab=(a﹣b)2.∵a≠b,∴(a﹣b)2>0.∴M﹣N>0.∴M>N.类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.24、(2011•青岛)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为ts(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.答案与评分标准一、选择题(本大题共8小题,每小题3分,满分24分)1、(2011•青岛)﹣的倒数是()A、﹣B、C、﹣2D、2考点:倒数。
2010年中考数学复习--几何综合题Ⅰ、综合问题精讲:几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.解几何综合题,还应注意以下几点:⑴注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.⑵掌握常规的证题方法和思路.⑶运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等).Ⅱ、典型例题剖析【例1】(南充,10分)⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.(1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长.解:(1)证明:连接OD,AD. AC是直径,∴AD⊥BC.⊿ABC中,AB=AC,∴∠B=∠C,∠BAD=∠DAC.又∠BED是圆内接四边形ACDE的外角,∴∠C=∠BED.故∠B=∠BED,即DE=DB.点F是BE的中点,DF⊥AB且OA和OD是半径,即∠DAC=∠BAD=∠ODA.故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x .又 BD =CD =21BC =6, 根据BE AB BD BC ⋅=⋅,2(214)612x x ⋅+=⨯. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2.点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。
证明:因为∠ABD=∠ACD,∠BDE=∠CDE而∠BDE=∠ABD+∠BAD,∠CDE=∠ACD+∠CAD 所以 ∠BAD=∠CAD,而∠ADB=180°-∠BDE ∠ADC=180°-∠CDE,所以∠ADB =∠ADC 在△ADB 和△ADC 中,∠BAD=∠CAD AD =AD∠ADB =∠ADC所以 △ADB≌△ADC 所以 BD =CD 。
(注:用“AAS”证三角形全等,同样给分)ABCDE点拨:要想证明BD=CD ,应首先观察它们所在的图形之间有什么联系,经观察可得它们所在的三角形有可能全等.所以应从证明两个三角形全等的角度得出,当然此题还可以采用“AAS ”来证明.【例3】(内江,10分)如图⊙O 半径为2,弦BD =32,A 为弧BD 的中点,E 为弦AC 的中点,且在BD 上。
求:四边形ABCD 的面积。
解:连结OA 、OB ,OA 交BD 于F 。
⎭⎬⎫===⊥⇒2 3,BD A OB FD BF BD OF 的中点为弧1AF 1OF =⇒=⇒ A BD 1S B D A F 2∆⇒=⋅=ADE CDE ABE CBE AE CE S S ,S S ∆∆∆∆=⇒==322S S ABD ABCD==⇒∆四边形【例4】(博兴模拟,10分)国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造.莲花村六组有四个村庄A 、B 、CD 正好位于一个正方形的四个顶点.现计划在四个村庄联合架一条线路,他们设计了四种架设方案,如图2-4-4中的实线部分.请你帮助计算一下,哪种架设方案最省电线.解:不妨设正方形的边长为1,显然图2-4-4⑴、⑵中的线路总长相等都是3.图2-4-4⑶中,利用勾股定理可求得线路总长为2 2 ≈2.828. 图2-4-4(4)中,延长EF 交BC 于H ,由 ∠FBH =30°,BH=12 ,利用勾股定理,可求得121363FH EF FH =∴=-=-所以⑷中线路总长为:4EF+EF=4(11 2.732.3-=+≈显然图2-4-4⑷线路最短,这种方案最省电线.点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股未理讲行计算线路长,然后通过比较,得出结论.【例5】(绍兴)如图矩形ABCD 中,过A ,B 两点的⊙O 切CD 于E ,交BC 于F ,AH⊥BE 于H ,连结EF 。
⑴求证:∠CEF=∠BAH ,⑵若BC =2CE =6,求BF 的长。
⑴证明:∵CE 切⊙O 于E , ∴∠CEF=∠EBC ,∵四边形ABCD 是矩形, ∴∠ABC=90° ∴∠ABE+∠EBC=90°,∵AH 丄BE ,∴∠ABE+∠BAH=90° ∴∠BAH=∠EBC ,∴∠CEF =∠BAH⑵解: ∵CE 切⊙O 于E ∴CE 2=CF ·BC ,BC=2CE=6∴CE 2=CF ·6,所以CF= 32 ∴BF=BC-CF=6-32 =92点拨:熟练掌握切线的性质及切线长定理是解决此题的关键.Ⅲ、综合巩固练习:(100分;90分钟) 一、选择题(每题3分,共21分)1.如图2-4-6所示,是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米, 桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.036π平方米;B .0.81π平方米;C .2π平方米;D 、3.24π平方米2.某学校计划在校园内修建一座周长为12米的花坛,同学们设计出正三角形、正方形和圆三种方案,其中使花坛面积最大的 图案是( ) A .正三角形; B .正方形; C .圆; D .不能确定3.下列说法:①如果两个三角形的周长之比是1:2,那么这两个三角形的面积之比是1:4;②平行四边形是中心对称图形;③经过三点有且只有一个圆;④相等的角是对顶角,其中错误是( )A .4个B .3个C .2个D .1个4.等腰三角形的一个内角为70°,则这个三角形其余的内角可能为( ) A .700,40B .700,550C .700,400或550,55D .无法确定5.如图2-4-7所示,周长为68的矩形被分成了7个全等的矩形,则矩形ABCD 的面积为( )A .98B .196;C .280D .2846.在△ABC 中,若2|sin1|cos )02A B -+-=,则∠C 的度数为( )A .60oB .30 oC .90 oD .45 o7.下列命题中是真命题的个数有( )⑴直角三角形的面积为2,两直角边的比为1。
2,则它的斜边长为10 ;⑵直角三角形的最大边长为 3 ,最短边长为l ,则另一边长为 2 ;(3)在直角三角形中,若两条直角边为n 2-1和2n ,则斜边长为n 2+1;⑸等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个 二、填空题(每题3分,共27分)8.如图2-4-8所示,在Rt △ABC 中,∠C=90°,∠A=60°,AC= 3 cm .将△ABC 绕点B 旋转至△A ′BC ′的位置,且使点A 、B 、C ′三点在一条直线上,则点A 经过的最短路线的长度是_____.9.若正三角形、正方形、正六边形的周长都相等,它们的面积分别记为346,,,S S S 则346,,,S S S 由大到小的排列顺序是:__________.10若菱形的一个内角为60°,边长为4,则它的面积是__________.11 已知数4,6,请再写出一个数,使这三个数中一个数是另外两个数的比例中项,这个数是________(只需填写一个数).12一油桶高 0.8m ,桶内有油,一根木棒长1m ,从桶盖小口(小口靠近上壁)斜插入桶内,一端到桶底内壁,另一端到小口,抽出木棒,量得棒上浸油部分长0.87m ,则桶内油面的高度为__________.13 等腰三角形底边中点与一腰的距离为5cm ,则腰上的高为__________cm .14 在平坦的草地上有 A 、B 、C 三个小球,若已知 A 球和 B 球相距3米,A 球与C 球相距1米,则B 球与C 球可能相距________米.(球的半径可忽略不计,只要求填出一个符合条件的数)15 如果圆的半径为3cm ,那么60°的圆心角所对的弧长为____cm . 16 如图2-4-9所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔAIJ =1,则S正方形ABCD=______.三、解答题(每题13分,52分)17. 已知:如图 2-4-10所示,在 Rt△ABC中,AB=AC,∠A=90°,点D为BA上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.18. 今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度可以忽略不计,请设计三种不同的修路方案,画图并简述步骤.19. 如图 2-4-11所示,已知测速站P到公路l的距离PO为40米,一辆汽车在公路l上行驶,测得此车从点A行驶到点B所用的时间为2秒,并测得∠APO=60○,∠BPO=30○,计算此车从A到B的平均速度为每秒多少米(结果保留四个有效数字)并判断此车是否超过了每秒22米的限制速度.20. 如图2-4-12所示,EF为梯形ABCD的中位线.AH平分∠DA B交EF于M,延长DM交AB于N.求证:AADN是等腰三角形.三人行教育- 11 -。