电磁场与电磁波_冯恩信习题解1a[1]
- 格式:pdf
- 大小:2.56 MB
- 文档页数:26
《金版教程(物理)》2025高考科学复习解决方案第十二章 交变电流 电磁振荡与电磁波 传感器第讲 电磁振荡与电磁波 [教材阅读指导](对应人教版必修第三册、选择性必修第二册相关内容及问题)选择性必修第二册第四章第1节[练习与应用]T 1;T 2。
提示:T 1:T 2:T 4~T 2和3T 4~T 电场能在增大,电场能最大时电流为零,电压最大;0~T 4和T 2~3T4磁场能在增大,磁场能最大时电流最大,电压为零。
选择性必修第二册第四章第1节[练习与应用]T 3。
提示:由f =12πLC解得C =14π2f 2L ,所以C 1C 2=f 22f 21=160525352=91。
选择性必修第二册第四章,阅读“2 电磁场与电磁波”这一节内容,理解麦克斯韦电磁场、电磁波理论,以及电磁波的性质。
选择性必修第二册第四章第3节,阅读“无线电波的发射”“无线电波的接收”这两部分内容,理解调制、调幅、调频、调谐、解调的含义及其在无线电波的发射和接收过程中的顺序。
必修第三册第十三章第4节,阅读图13.4-4,熟悉电磁波谱及其应用。
选择性必修第二册第四章,阅读“4 电磁波谱”这一节内容,熟悉各种电磁波及其应用。
必备知识 梳理与回顾一、电磁振荡1.振荡电流:01大小和02方向都做周期性迅速变化的电流。
2.振荡电路:产生03振荡电流的电路。
由电感线圈L和电容C组成的电路,就是最简单的振荡电路,称为04LC振荡电路。
3.电磁振荡:在LC振荡电路中,电容器不断地充电和放电,电路中的电流i、电容器极板上的电荷量q、电容器里的电场强度E、线圈里的磁感应强度B,都在05周期性地变化着。
这种现象就是电磁振荡。
4.电磁振荡中的能量变化:电容器放电过程,06电场能逐渐转化为07磁场能;电容器充电过程,08磁场能逐渐转化为09电场能。
在电磁振荡的过程中,电场能和磁场能会发生10周期性的转化。
5.电磁振荡的周期和频率周期:T=112πLC;频率:f=1212πLC(其中L指线圈的自感系数即电感,C指电容器的电容)。
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=求:(a) A ; (b); (c); (d); (e)(f)解:(a) ; (b) 14132222222=++=++=z y x A A A A )ˆ2ˆˆ(61ˆz y x BB b -+==( c) ; (d) 7=⋅B A z y xC B ˆ4ˆ7ˆ---=⨯(e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯(f)19)(-=⋅⨯C B A1.2;求:(a) A ; (b) ; (c) ; (d) ; (e) BA+解:(a) ;(b) ;(c) 25π+=A )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ43-=⋅πB A (d)z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ(e)z B A ˆˆ)3(ˆ-++=+ϕπρ1.3; 求:(a) A ; (b); (c); (d); (e)解:(a) ; (b) ; (c) ;254π+=A )ˆˆ(11ˆ2θππ-+=rb22π-=⋅B A(d) ; (e) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ϕπˆ2ˆ3-=+rB A 1.4 ;当时,求。
解:当时,=0, 由此得 5-=α1.5将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。
解:(1)圆柱坐标系由(1.2-7)式,;ϕϕϕρsin ˆcos ˆˆ1-==xF ϕϕϕρcos ˆsin ˆˆ2+==y F(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xFϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF1.6将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。
解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρ)ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕ1.7将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。
电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
一、填空题1、电荷守恒定律的微分形式是,其物理意义是[任何一点电流密度矢量的散度等于该点电荷体密度随时间的减少率];2、麦克斯韦第一方程=⨯∇HDJ t ∂+∂,它的物理意义是[电流与时变电场产生磁场];对于静态场,=⨯∇H[J ]];3、麦克斯韦第二方程E⨯∇B ∂,它表明[时变磁场产生电场];对于静态场,E⨯∇=[0],它表明静态场是[无旋场];4、坡印廷矢量S 是描述时变电磁场中电磁功率传输的一个重要的物理量,S=[E H ⨯],它表示[通过垂直于功率传输方向单位面积]的电磁功率;5、在两种不同物质的分界面上,[电场强度,(或E )]矢量的切向分量总是连续的, [磁感应强度,(或B )]矢量的法向分量总是连续的;6、平面波在非导电媒质中传播时,相速度仅与[媒质参数,(或μ、ε)]有关,但在导电媒质中传播时,相速度还与[频率,(或f ,或ω)],这种现象称为色散;7、两个同频率,同方向传播,极化方向互相垂直的线极化波合成为圆极化波时,它们的振幅[相等],相位差为[2π,(或-2π,或90)];8.均匀平面波在良导体中传播时,电场振幅从表面值E 0下降到E 0/e 时 所传播的距离称为[趋肤深度],它的值与[频率以及媒质参数]有关。
二、选择题1、能激发时变电磁场的源是[c]a.随时间变化的电荷与电流 b 随时间变化的电场与磁场c.同时选a 和b2、在介电常数为ε的均匀媒质中,电荷体密度为ρ的电荷产生的电场为),,(z y x E E =,若E Dε=成立,下面的表达式中正确的是[a]a. ρ=⋅∇Db. 0/ερ=⋅∇Ec. 0=⋅∇D3、已知矢量)()23(3mz y e z y e x e B z y x +--+=,要用矢量B 描述磁感应强度,式中 必须取[c(0=⋅∇B )] a. 2 b. 4 c. 64、导电媒质中,位移电流密度d J 的相位与传导电流密度J的相位[a]a.相差2πb.相同或相反c.相差4π5、某均匀平面波在空气中传播时,波长m 30=λ,当它进入介电常数为04ε=ε的介质中传播时,波长[b] a.仍为3m b.缩短为1.5m c. 增长为6m6、空气的本征阻抗π=η1200,则相对介电常数4=εr ,相对磁导率1=μr ,电导率0=σ的媒质的本征阻抗为[c].a.仍为)(120Ωπb. )(30Ωπc. )(60Ωπ 7、z j y z j x e j e e e E π-π-+=2242,表示的平面波是 [b] a.圆极化波 b.椭圆极化波 c.直线极化波8、区域1(参数为0,,10101===σμμεε)和区域2(参数为0,20,520202===σμμεε)的分界面为0=z 的平面。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中cos cos cos n x y z x y z x y zαβγ=++=++e e e e r e e e故(cos cos cos )()cos cos cos n x y z x y z x y z x y z αβγαβγ⋅=++⋅++=++e r e e e e e e则j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z zj x y z t m e j e j βωβαβγωβαβγωββ⋅-++-++-==∇=∇+∇+∇==e E E E E e E e E e E E E而22j[(cos cos cos )]222{e }x y z t m t t βαβγωω++-∂∂==-∂∂E E E故222222()(0j j t μεβμεωμεω∂∇-=+=+=∂EE E E E E 可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程2220t με∂∇-=∂EE故E 表示沿e n 方向传播的平面波。
7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
解 表征沿+z 方向传播的椭圆极化波的电场可表示为12()j z x x y y E jE e β-=+=+E e e E E式中取121[()()]21[()()]2j zx x y y x y j zx x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
电磁场与电磁波部分课后习题解答CH11.2给定三个矢量A ,B ,C:A =x a+2y a -3z a B= -4y a +z aC =5x a-2z a求:⑴矢量A的单位矢量A a ;⑵矢量A 和B的夹角AB θ; ⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B)·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A=(x a +2y a -3z a )⑵cos ABθ=A ·B /A BAB θ=135.5o⑶A ·B =-11, A ⨯B=-10x a -y a -4z a⑷A ·(B ⨯C )=-42(A ⨯B)·C =-42⑸A ⨯(B ⨯C)=55x a -44y a -11z a(A ⨯B)⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r) =x a(-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +z e z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A沿闭合曲面S 的通量,其中矢量场的表达式为A =x a32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。
1.1 已知z y x B z y x A ˆ2ˆˆ;ˆˆ3ˆ2-+=-+=,求:(a) A 和B 的大小(模); (b) A 和B 的单位矢量;(c)B A⋅;(d)B A⨯;(e)A 和B 之间的夹角;(f) A 在B 上的投影。
解:(a) A 和B 的大小74.314132222222==++=++==z y x A A A A A 45.26211222222==++=++==z y x B B B B B(b) A 和B 的单位矢量z y x z y x A A aˆ267.0ˆ802.0ˆ535.0)ˆˆ3ˆ2(74.31ˆ-+=-+==z y x z y x B B bˆ816.0ˆ408.0ˆ408.0)ˆ2ˆˆ(45.21ˆ-+=-+==(c)A B ⋅7232=++=++=⋅z z y y x x B A B A B A B A(d) B A ⨯z y xzy x B B B A A A z y xB A zyxz y xˆˆ3ˆ5211132ˆˆˆˆˆˆ-+-=--==⨯(e)A 和B 之间的夹角α根据αcos AB B A =⋅得764.0163.97cos ==⋅=AB B A α 019.40=α (f) A 在B 上的投影86.245.27ˆ==⋅=⋅B B A bA1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ⨯C )=0。
证明:设矢量A 、B 和C 所在平面为xy 平面y A x A A y x ˆˆ+=y B xB B y x ˆˆ+=y C xC C y x ˆˆ+=z C B C B y C B C B x C B C B C C C B B B zy xC B x y y x z x x z y z z y zyxz y xˆ)(ˆ)(ˆ)(ˆˆˆ-+-+-==⨯zC B C B x y y x ˆ)(-= 0ˆˆ)(0)(=⋅-⨯=⨯⋅z zC B C B C B A x y y x1.3已知A =ααsin ˆcos ˆy x+、B ββsin ˆcos ˆy x -=和C ββsin ˆcos ˆy x +=,证明这三个矢量都是单位矢量,且三个矢量是共面的。