焦炉煤气制LNG项目方案简介
- 格式:ppt
- 大小:522.50 KB
- 文档页数:12
焦炉煤气制LNG简介一、中科院理化所技术通信地址:北京海淀区中关村北一条2号邮政编码:100190 产业策划部:010-********/82543606/82543608/825436091 问题提出近年来, 我国对焦化行业实施“准入”制度,焦炉煤气的综合利用成为炼焦企业生存与发展的关键。
一些大型的炼焦企业建设了焦炉煤气制甲醇项目,并取得了良好的经济效益,为大型炼焦企业综合利用焦炉煤气找到了新方法。
但中小焦化企业生产规模相对较小,焦炉煤气产量少,成本优势不明显,多家企业联合又困难,影响了焦化企业对焦炉煤气的综合利用。
2 焦炉煤气生产LNG的技术特点为了解决中小企业焦炉煤气综合利用的问题,中科院理化技术研究所改变利用思路,将有效成分甲烷和氢气作为两种资源综合利用,开发出了焦炉煤气低温液化生产LNG联产氢气技术(已申请专利),新技术具有以下特点:1) 可以省去甲烷转化工序,大大节省投资成本。
2) 由于新工艺拥有**的循环制冷系统,操作弹性非常大,适应性强,运行稳定。
3) 产生的氢气可以利用氢气锅炉为全厂提供动力和热力,这方面的技术已经非常成熟。
有经济实力的企业还可以配套合成氨等装置,相对投资少,效益更高。
并随着氢气利用技术的日益发展可以生产液氢产品等。
4) 产品市场好。
预计未来15年中国天然气需求将呈爆炸式增长,到2010年,中国天然气需求量将达到1000×109 m3,产量约800×109 m3,缺口将达到200×109 m3 ;到2020年天然气需求量将超过2000×109 m3 ,而产量仅有1000 ×109 m3, 50%将依赖进口。
5) 整套方案中工艺流程短,操作简单。
处理量1 ×106 m3 /d的生产装置,只需要40~50操作工,非常适合中小型焦化企业对焦炉煤气的综合利用。
3 焦炉煤气生产LNG联产氢气工艺路线液化天然气是天然气经过预处理,脱除重质烃、硫化物、二氧化碳、水等杂质后,在常压下深冷到-162℃液化制成,液化天然气是天然气以液态的形式存在,其体积仅为气态时的1/625。
焦炉煤气提纯制H2联产LNG技术摘要:近年来,循环、低碳和环保已成为中国经济的一个趋势。
目前焦炉煤气的使用主要是作为燃料、能源、化学材料和还原气体,已成为研究领域。
阐述了焦化行业气体在焦炉煤气行业的应用现状。
H2联产LNG焦炉煤气提纯制包括其原则和程序,对生产的影响以及各种工艺流程的分析。
关键词:焦炉煤气;天然气;氢气;深冷;提氢氢气和天然气是清洁能源。
氢和氢能源的发展越来越快,液化气成为世界贸易中增长最快的能源之一。
焦化行业富余气体在制氢和液化气方面的使用,不仅可以解决传统能源短缺问题,提高能源多元化,提高空气质量。
通过H2联产LNG还生产了市场上急需的增值产品,以提高公司的经济效益。
项目还促进煤炭和能源行业的技术进步和工业发展。
因此,同时从焦炉煤气资源不仅符合国家节能环保准则,而且企业获得经济效益。
一、焦炉煤气制氢装置介绍及特点有很多获取氢气的方法,优化应用于经济的氢技术可以使企业在生产苯加氢,按时实现生产目标,最终达到预期的氢效果。
因此,焦炉煤气制氢中使用是重要和必要的。
掌握工艺应用合理化解决方案,可以成功解决常见的技术问题,充分发挥制氢的优势。
1.介绍。
焦炉煤气制氢装置的引入首先通过热吸附净化装置进行。
20世纪60年代,随着美国工业化进程的加快,该装置转变成了压吸附四床法,即所谓的变压吸附。
随着进一步发展和不断拓宽,导致这种技术得到更广泛应用的其他事项广泛应用于冶金工业和高温环境。
它使用不同的气体来隔离具有不同吸收效果的气体。
当同一混合气体分离时,根据压力变化影响大气吸收的规律进行分离。
2.特点。
焦炉煤气制氢特点是吸收、温度变化和变压吸附相结合,从而提高了吸附过程中空气净化装置的效率,同时吸收效果良好,提高了氢的纯度,自动化功能显而易见。
考虑到低温燃烧和安装介质爆炸的危险,有必要使用计算机控制阀并相应调整参数。
易于使用的计算机使能够有效地控制合格产品的生产。
该设备的主要特点是功耗低。
制氢解吸气体效率较高,设备的应用总体上可以控制,同时提高效率。
焦炉煤气制液化天然气LNG可行性研究报告书doc
首先,从技术角度来看,焦炉煤气制液化天然气是可行的。
焦炉煤气主要成分为一氧化碳、氢气、甲烷等,和天然气的成分相似。
液化天然气是将天然气通过低温冷凝转化为液态,降低体积,便于储存和运输。
焦炉煤气制液化天然气的关键技术是将焦炉煤气中的杂质去除,提高甲烷的含量,并通过冷凝技术将其转化为液态。
其次,从经济角度来看,焦炉煤气制液化天然气也是可行的。
LNG作为清洁能源的需求不断增加,市场潜力巨大。
并且,焦炉煤气作为一种副产品,通过其制取LNG可以增加收入,提高资源利用效率。
此外,LNG在运输过程中能够有效降低体积和重量,减少对运输设备的要求,进一步降低成本。
从环境角度来看,焦炉煤气制液化天然气也具有可行性。
一方面,LNG作为清洁能源,燃烧时产生的二氧化碳和氮氧化物等排放物较少,对大气环境的污染较低。
另一方面,通过对焦炉煤气进行处理,能够减少其中的有毒有害物质的排放,对环境的影响较小。
总结起来,焦炉煤气制液化天然气具有技术可行性、经济可行性和环境可行性。
在实际应用中,需要充分考虑技术成熟度、市场需求、运输和储存等问题,合理规划和设计符合实际情况的生产线,以提高焦炉煤气的资源利用效率,促进清洁能源的发展。
50000 Nm3/h焦炉煤气制LNG工程方案1 工程概况1.1 原料气供给量及组成焦炉煤气供给量为50000Nm3/h,压力为0.02MPa,温度为40度,组成如下:焦炉煤气组成表1.2 设计内容本项目新建循环水站、冷水站、配电室、控制室、消防水站、动力站(仪表空气和制氮装置)等辅助设备。
本项目不考虑办公楼、食堂等福利设备。
本项目不考虑锅炉房,蒸汽、脱盐水外购。
2生产规模和产品方案2.1 生产规模和产品方案根据原料气组成,组合甲方要求,确定本项目生产规模和产品方案。
本项目年生产约1.57亿Nm3液化天然气(简称LNG)(19635N m3/h)和0.63亿Nm3氢气(7882Nm3/h),年处理4亿Nm3焦炉煤气(50000Nm3/h)。
LNG甲烷含量大于98% vol,产品质量符合《车用压缩天然气》要求;氢气纯度大于99.9% vol。
2.2 生产班制和年运行时间装置为连续运行,年操作时间为8000 h。
工作班制为四班三运转。
3 工艺技术方案比选根据焦炉煤气组成、杂质含量,结合产品方案,遵循工艺技术先进性、可靠性、安全性、经济型等原则,确定本装置的工艺技术方案。
焦炉煤气是焦炭生产过程的副产物,其主要成分为H2、CH4、CO、CO2、N2等,其杂质有焦油、萘、苯、硫化氢、有机硫等。
焦炉煤气中H2、CO和O2在一定条件下可以合成甲烷,但焦炉煤气中的杂质对甲烷合成催化剂有很大的影响,故本项目要先对焦炉煤气进行净化处理,以满足甲烷合成的需要。
焦炉煤气甲烷合成后,氢还有约30%的富裕量,故本项目提纯氢气,以提高项目附加值。
本项目生产工艺装置包括原料气储存、压缩工段、脱硫工段、合成工段、提氢工段、合成工段、液化工段、LNG储罐及装车站。
工艺技术方案比选如下:3.1原料气储存气柜在燃气工程中主要起调峰作用,在化工生产中有稳压、缓冲、调压、混合作用,同时还可以起到事故、检修时的储备。
储气柜分高压储气柜和低压储气柜,低压储气柜又分为湿式气柜和干式气柜。
焦炉煤气制LNG工业化应用上海华西化工科技有限公司余浩纪志愿摘要:介绍了一种流程短、能耗低、投资小的焦炉煤气甲烷化制LNG工业化工艺,并与其它甲烷化工艺进行对比。
该技术具有自主产权,国内采用该技术的LNG工厂已顺利投产。
关键词:焦炉煤气;甲烷化反应;工业化1、前言中国的独立焦化企业每年副产焦炉煤气约900亿m3,除了回炉加热自用、工业用燃料、发电及放散等之外,先前对焦炉煤气的综合利用主要是制作工业原料甲醇。
但国内甲醇产能过剩,而且焦炉煤气制甲醇技术复杂,投资较大。
近些年焦炉煤气制天然气(管输天然气、压缩天然气CNG、液化天然气LNG)备受关注,该技术能量利用效率高,工艺流程简单,市场前景看好,正逐渐成为焦炉煤气综合利用的具有较强竞争力的新领域之一。
近年来,国内多家设计和研究单位加大了焦炉煤气甲烷化制天然气技术的工业化、商业化,目前已有多地处于规划、拟建或在建阶段,也有工厂投产运行。
2、焦炉煤气甲烷化制LNG工业化应用及工艺路线上海华西化工科技有限公司(以下简称上海华西)开发并总承包的日处理量为20.4万Nm3焦炉煤气和3.6万 Nm3高炉煤气的低温甲烷化制LNG工业化装置,2012年下半年在曲靖市麒麟气体能源有限公司成功投运。
装置从焦炉煤气预处理、脱硫、甲烷化到干燥的全流程由上海华西自主设计,液化部分采用国内MRC混合制冷技术。
该项目焦炉煤气制LNG工艺流程示意图如图1所示:如图 1 所示,装置主要分为压缩、预处理、脱硫、甲烷化、干燥、液化等几个单元。
1)压缩单元压力为~10KPa.G焦炉煤气和高炉煤气经压缩机加压到0.2~0.6MPa.G后送入预处理单元,除去萘、焦油、苯等杂质后返回压缩机加压至1.6~3.0MPa.G后送至后续脱硫单元。
图1. 焦炉煤气制LNG工艺流程示意图2)预处理单元装置采用的预处理工艺流程简短,催化剂寿命长、性能高。
有效脱除了焦炉煤气中的苯、萘、氨、焦油等常见复杂杂质,保护后续脱硫、甲烷化催化剂和冷箱。
焦炉煤气制液化天然气(LNG)项目工艺流程一、焦炉气预处理从焦化厂来的焦炉气含有多种杂质组份,特别是苯和蔡的含量较高,约为3000 mg / Nm;和300mg / Nm,该组份将对下游的净化分离工序造成危害,需要进行脱除。
采用吸附法脱除苯、蔡和焦油。
即在较低压力和温度下用吸附剂吸附苯、蔡和焦油等重质组份,之后在高温、低压下解吸再生,构成吸附剂的吸附与再生循环,达到连续分离气体的目的。
这样,可以保护后续的催化剂,又避免了蔡在升压后结晶堵塞管道和冷却器等设备。
二、氢气提纯当前工业上比较广泛应用的氢气分离技术有变压吸附和膜分离两种。
由于变压吸附技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,因此,进入70年代后,这项技术被广泛应用于石油化工、冶金、轻工及环保等领域。
变压吸附分离过程操作简单,自动化程度高,设备不需要特殊材料等优点。
吸附分离技术最广泛的应用是工业气体的分离提纯,氢气在吸附剂上的吸附能力远远低于CH2,N2,CO和CO2等常见的其他组分,所以变压吸附技术被广泛应用于氢气的提纯和回收领域。
为了使得产品氢气具有较高的纯度,选用变压吸附技术进行氢气的提纯。
三、甲烷化反应甲烷化反应是指气体CO和CO2在催化剂作用下,与氢气发生反应,生成甲烷的强放热化学反应。
甲烷化反应属于催化加氢反应。
其反应方程为:通常工业生成中的甲烷化反应有两种:一种是用于合成氨及制氢装置中,在催化剂作用下将合成气中少量碳氧化物(一般CO + CO2<0. 7 %)与氢反应生成水和惰性的甲烷,以削除碳氧化物对后续工序催化剂的影响。
用于上述甲烷化反应的催化剂和工艺主要是用于脱除合成气中残留的少量碳氧化物(CO和CO2),自1902年发明了用于催化甲烷化反应的镍基催化剂以来,化肥生产中用于甲烷化的催化剂和工艺绝大多数围绕这类催化剂进行研究。
另一种是人工合成天然气工艺中的甲烷化,其原料气中的碳氧化物((CO + CO2)浓度较高。