澳大利亚城市固体废物处理概况
- 格式:doc
- 大小:39.00 KB
- 文档页数:2
国内外城市固体废弃物处理技术分析随着城市化进程的加快,城市固体废弃物也日益增加,给城市环境和生态系统带来了严重的污染和破坏。
对城市固体废弃物的处理和管理显得尤为重要。
目前,国内外对城市固体废弃物处理技术的研究和应用已经取得了一定成果,不同的技术在不同的国家和地区得到了应用,并且不断地进行改进和创新。
本文将对国内外城市固体废弃物处理技术进行详细分析。
1. 城市固体废弃物填埋技术填埋是目前国内处理城市固体废弃物的主要方式之一。
填埋技术的优点是操作简单、成本低、处理效率高,能够有效降低固体废弃物对环境的污染。
但填埋技术也存在一些问题,比如可能导致地下水和土壤污染,产生恶臭气味,占用大量土地资源等。
为了改善填埋技术存在的问题,国内一些城市已经开始尝试使用生物填埋技术,通过微生物的作用将有机废物降解,减少填埋过程中产生的污染物,提高填埋效率。
焚烧技术是一种能够将固体废弃物转化为能源的高效处理技术。
通过高温燃烧,固体废弃物中的有机物质可以被分解,生成热能和部分可再生资源。
国内一些大城市已经开始建立垃圾焚烧发电厂,将固体废弃物处理成燃料,同时产生电能。
这种技术能够减少固体废弃物对环境的危害,同时也能够减少对传统能源的依赖,具有较好的经济效益。
资源化利用是当前国内处理城市固体废弃物的重要方向之一。
通过技术手段,将固体废弃物中的可再生资源进行分类、回收和再利用,减少对自然资源的消耗,降低固体废弃物对环境的影响。
目前,国内一些城市已经建立了完善的废品回收系统,对可回收资源进行分类收集和处理,提高了固体废弃物的再利用率,同时也减少了城市固体废弃物对环境的污染。
欧洲国家在城市固体废弃物处理方面处于比较领先地位,主要采用填埋和焚烧技术。
与国内不同的是,欧洲国家对填埋技术的要求更加严格,通常会在填埋场进行废气和废水处理,以减少对环境的影响。
欧洲国家还在发展焚烧技术的大力发展废热利用技术,将焚烧产生的热能转化为电能供给城市建设和生活使用。
国外固体废弃物处理与再资源化的现状及技术动向郭 一令 刘 振华 王 铮 王 鹏(青岛建筑工程学院 环境与市政工程学院 电话:(0532)5071262 山东 青岛 266033)摘要从五十年代到七十年代欧美日等国的经济迅速发展,这种经济的发展以一种高原材料消耗、高能源投入、高经济增长以及高环境破坏的模式发展的。
其直接后果是产生了大量的城市垃圾和产业废弃物,对环境造成了严重的污染。
这期间人们逐渐认识到固体废弃物处理的重要性。
在七十年代到八十年代中期,石油危机以及资源日趋短缺,人们认识到以往的经济发展模式,对于人类尤其像日本这样资源匮乏的国家来说无疑是一种自我毁灭的模式,由此开始考虑其经济由传统的消耗资源的粗放型向资源节约的知识密集型方向发展。
同时,政府积极地鼓励和引导对固体废弃物的充分回收与再资源化,减轻对环境的压力。
将环境保护融入经济发展,实施循环社会发展战略,实现环境与经济发展“双赢”方面的许多做法已经非常成熟,取得了十分宝贵的经验。
我国的经济正处于初级阶段的高速发展期,在许多方面和欧美日五六十年代的情况有相似之处,固体废弃物的产量也正快速增加,逐渐发展成为社会问题,因此国外的固体废弃物处理与再资源化方面的经验,值得我们借鉴。
本文介绍了国外主要发达国家的固体废弃物处理和再资源化的现状情况,以及这方面的技术研究新动向。
一 固体废弃物的产生情况1. 一般废弃物根据日本废弃物处理法,一般废弃物是指产业废弃物以外的废弃物,包括不伴随事业活动所产生的家庭废弃物、伴随事业活动所排除的废弃物。
在六十年代,日本经济高度发展,生活物资和产业物资大量生产,人民生活水平也大大提高,人们的消费方式和消费观念也紧跟时代潮流。
同时也伴随着城市生活垃圾和产业废弃物的急剧增加,日本每人每天垃圾排除量为700~800g,全日本每天垃圾产生量达到9万吨。
1973年以来,由于在世界范围内发生了“能源危机”,为度过这一难关,日本国实行了“节约资源和能源”的政策,经济由高速增长向低速增长转变,垃圾的增加量有所减缓。
世界各国对城市垃圾的处理方式不尽相同在当今世界,随着城市化进程的加速,城市垃圾的产生量与日俱增。
如何有效地处理这些垃圾,已经成为全球各国面临的共同挑战。
由于各国的国情、经济发展水平、技术能力以及环保意识等方面存在差异,因此在城市垃圾处理方式上也各有不同。
首先来看看美国。
美国作为世界上最大的经济体之一,其城市垃圾产生量巨大。
在垃圾处理方面,美国采取了多种方式相结合的策略。
填埋是美国较为常见的垃圾处理方式之一。
他们会选择合适的地点,建设符合环保标准的填埋场。
这些填埋场通常会采取一系列措施来防止垃圾渗滤液对地下水和土壤造成污染。
同时,美国也大力发展垃圾焚烧发电技术。
通过先进的焚烧设备,将垃圾转化为电能,实现资源的回收利用。
此外,美国还注重垃圾分类和回收。
在一些地区,居民需要按照规定将垃圾分为可回收物、有害垃圾和其他垃圾等不同类别,以便进行有效的回收和处理。
欧洲国家在城市垃圾处理方面也有着独特的做法。
以德国为例,德国以其严格的垃圾分类制度而闻名。
居民需要将垃圾分为纸张、塑料、玻璃、金属、生物垃圾等多个类别,并在规定的时间将不同类别的垃圾投放到相应的垃圾桶中。
德国还建立了完善的垃圾回收体系,通过回收和再加工,将大量的垃圾转化为有用的资源。
瑞典则在垃圾处理上追求“零填埋”的目标。
他们通过先进的技术,将大部分垃圾进行焚烧发电和供热,同时对焚烧后的残渣进行有效处理和利用。
此外,欧洲国家还普遍重视垃圾处理的环保标准,对垃圾处理过程中的污染物排放进行严格控制。
日本是一个资源相对匮乏的国家,因此在城市垃圾处理上非常注重资源的回收和再利用。
日本实行了严格的垃圾分类制度,居民需要将垃圾细分到数十种类别。
比如,一个饮料瓶要分为瓶盖、瓶身和标签分别投放。
日本还通过各种宣传教育活动,提高居民的环保意识,使垃圾分类成为居民的自觉行为。
此外,日本在垃圾焚烧技术方面也处于领先地位,能够高效地将垃圾转化为能源,同时减少对环境的影响。
再把目光转向发展中国家。
国内外城市固体废弃物处理技术分析随着城市化进程的加速和人口的持续增长,城市固体废弃物问题越来越严重。
固体废弃物的大量产生对城市环境和居民生活造成了严重影响,因此如何有效处理城市固体废弃物成为一个迫切需要解决的问题。
为此,国内外各地都在探索和应用不同的固体废弃物处理技术,以期达到减少废弃物体积、资源化利用和环境保护的目的。
本文将对国内外城市固体废弃物处理技术进行分析和比较。
国外发达国家在固体废弃物处理技术方面拥有较为成熟的经验和技术。
欧洲国家在固体废弃物处理领域处于世界领先地位。
他们采用的主要技术包括废物分类回收、焚烧发电和填埋处理。
废物分类回收技术主要通过对固体废弃物进行逐一分类并再生利用,使得废物得到最大限度的减少和再利用,达到资源化利用的目的。
而焚烧发电技术则是将固体废弃物燃烧产生的热能转化为电能,用于城市的供热和供电。
填埋处理技术则是将无法再生利用的固体废弃物填埋于地下,以减少固体废弃物对环境的污染。
这些技术的主要优点在于减少了固体废弃物的存储空间、降低了固体废弃物的对环境的污染,并实现了资源的最大化利用。
国内对固体废弃物处理技术的研究和应用也在不断加强。
中国作为世界上人口最多的国家之一,固体废弃物处理问题一直是一个亟待解决的难题。
对此,中国也在不断探索和应用各种固体废弃物处理技术。
目前,中国主要采用的固体废弃物处理技术包括传统的焚烧处理、填埋处理和新兴的生物处理技术。
生物处理技术是近年来国内外都在积极探索和应用的一种新型处理技术。
这种技术主要是通过生物菌群的作用将固体废弃物分解为有机肥料和甲烷等可再利用的物质,从而达到减少固体废弃物量、资源化利用和减少对环境的污染的目的。
对于国内外城市固体废弃物处理技术的分析,我们可以看到不同国家和地区在固体废弃物处理技术上都有各自的特点和优势。
欧洲国家主要采用的废物分类回收和焚烧发电技术,使得固体废弃物得到了最大限度的减少和再利用,同时也实现了资源的最大化利用。
澳洲垃圾塑料处理方案1. 澳洲塑料垃圾问题的背景塑料污染已成为全球环境问题的一项重要挑战,特别是海洋塑料垃圾对海洋生态系统的危害。
作为一个发达国家,澳洲面临着庞大的垃圾塑料处理问题。
据统计,每年澳洲约产生300万吨塑料垃圾,其中一部分最终被输入到澳洲的海域,对海洋环境造成严重的污染。
2. 澳洲塑料垃圾处理的现状目前,澳洲的塑料垃圾处理主要包括回收再利用、焚烧和填埋等方式。
然而,这些处理方式存在着各自的问题。
回收再利用在澳洲的塑料垃圾处理中起到了一定的作用,但由于回收系统和设施不完善,很多塑料垃圾最终被送入填埋场或者焚烧处理。
填埋和焚烧不仅存在环境污染的问题,而且也浪费了塑料垃圾的再利用价值。
3. 澳洲垃圾塑料处理方案的探索为了解决澳洲的垃圾塑料问题,政府和企业开始探索和实施一些创新的处理方案。
3.1 增加回收再利用的力度澳洲政府鼓励并支持回收再利用的发展,努力提高塑料垃圾的回收率。
政府提供一定的经济激励措施,鼓励企业和个人参与塑料垃圾回收再利用的活动。
此外,政府还投资于建设回收设施和完善回收系统,提高塑料垃圾处理的能力和效率。
3.2 推广可降解塑料的使用可降解塑料是一种可以在自然环境中分解的塑料材料。
澳洲政府和企业在推广可降解塑料的使用上加大了力度。
通过宣传和教育活动,提高民众对可降解塑料的认识和理解,鼓励消费者选择可降解塑料制品。
此外,政府还制定了相应的政策措施,鼓励企业使用可降解塑料进行产品包装和生产。
3.3 拓展塑料垃圾的资源化利用澳洲正在积极推动塑料垃圾的资源化利用。
政府和企业合作,开展技术研发和推广,将塑料垃圾转化为可再生能源或高附加值化学品。
这些技术包括塑料垃圾的气化、热解和液化等转化方式,通过转化过程中的化学反应将塑料垃圾转化为清洁能源或化学原料。
4. 澳洲垃圾塑料处理方案的效果和挑战截至目前,澳洲的垃圾塑料处理方案取得了一定的成效,但还存在一些挑战。
首先,澳洲的垃圾塑料处理方案需要更多的投资和支持。
澳洲垃圾分类实施方案澳洲作为一个发达国家,一直以来都在致力于环保工作。
垃圾分类作为环保的重要一环,在澳洲也逐渐得到了重视和实施。
澳洲的垃圾分类实施方案旨在减少垃圾对环境的污染,提高资源的再利用率,促进可持续发展。
下面将介绍澳洲垃圾分类实施方案的具体内容及其影响。
首先,澳洲的垃圾分类实施方案主要包括可回收物、有害垃圾和其他垃圾三大类别。
可回收物包括纸张、玻璃、金属和塑料等可再生资源,有害垃圾包括电池、荧光灯管、油漆桶等对环境有害的垃圾,其他垃圾则是指无法回收利用的一般垃圾。
澳洲政府通过制定相关法律法规,规定居民必须按照这三大类别进行垃圾分类投放,以便后续的处理和再利用。
其次,澳洲政府通过媒体、宣传册等多种途径,向居民宣传垃圾分类的重要性和方法。
政府还在社区设立了垃圾分类回收站,方便居民投放不同类型的垃圾。
此外,政府还鼓励居民购买可降解、可再生的产品,减少一次性塑料制品的使用,从源头上减少垃圾的产生。
再者,澳洲政府对垃圾分类实施方案进行了长期的跟踪和评估。
通过对垃圾处理站的监测和数据分析,政府可以了解不同类型垃圾的产生量和处理情况,及时调整和完善垃圾分类政策。
同时,政府还鼓励企业和科研机构加大对垃圾分类处理技术的研发和投入,提高垃圾再利用率和资源回收率。
最后,澳洲的垃圾分类实施方案取得了显著的成效。
垃圾分类不仅减少了对环境的污染,提高了资源的再利用率,还促进了居民环保意识的提高。
同时,垃圾分类产业也为澳洲的经济发展带来了新的动力,创造了就业机会,推动了可持续发展的进程。
总之,澳洲的垃圾分类实施方案是一项全方位、长期性的工程,它需要政府、企业和居民的共同努力。
只有通过大家的齐心协力,才能更好地保护环境,实现资源的可持续利用,让澳洲的蓝天、碧水、绿地更加美丽。
希望澳洲的垃圾分类实施方案能够为其他国家的环保工作提供借鉴和启示,共同建设一个更加美好的地球家园。
澳洲废品回收和垃圾处理I'm going to tell about recycling and how we deal with our rubbish here in Australia.For many of the products we use,we are able to recycle. This is the recycling symbol and this symbol is on many of the products we use. We recycle plastic. We recycle cardboard. We recycle tin and in our home we have two bins…… one side for recycling,like plastic and here,we put all the recycling things in this side and we put rubbish in this side. This is not for recycling.The general wastes are the recycling goes into the two bins that are on the footpath beside the road. The yellow bin,the bin with the yellow lid is the recycling bin and the bin on the other side with the black lid is for general rubbish. The bins are emptied the general rubbish is emptied every week,every Thursday.So that's what happens with the rubbish here in Australia. I think it's a very good idea to have recycling,because it's very good for the environment.今天我将说说废品回收,和在澳大利亚如何处理垃圾的。
国内外城市固体废弃物处理技术分析1. 引言1.1 研究背景城市固体废弃物处理技术是当前环境保护领域中的热点问题。
随着城市化进程的加快和人口的快速增长,城市固体废弃物产生量急剧增加,给城市环境和人民生活带来了严重影响。
传统的城市固体废弃物处理方式往往存在诸多问题,如占地面积大、环境污染严重、资源浪费等。
开展城市固体废弃物处理技术研究具有十分重要的意义。
目前,国内外对城市固体废弃物处理技术已经取得了不少进展,涌现出了各种创新技术和解决方案。
这些新技术不仅可以有效处理城市固体废弃物,还可以实现资源的有效回收利用,减少对环境的污染,提高资源利用效率。
对国内外城市固体废弃物处理技术进行全面深入的分析和研究,对于推动城市废弃物处理领域的发展,提高城市环境质量,保护人类生存环境具有十分重要的意义。
1.2 研究目的研究目的:本文旨在对国内外城市固体废弃物处理技术进行深入分析,探讨不同地区在处理固体废弃物方面的优势和不足之处。
通过比较分析,找出目前存在的问题和瓶颈,并提出相应的解决方案和改进措施。
本文旨在总结和归纳各种处理技术的特点和应用范围,为城市固体废弃物管理部门提供参考和借鉴,促进我国城市固体废弃物处理技术水平的提升和跨国技术交流合作,推动城市固体废弃物处理领域的技术创新和发展。
通过本文研究,希望能够为推动城市固体废弃物处理技术的进步和提高城市环境质量做出贡献。
1.3 研究意义,格式等。
感谢配合。
城市固体废弃物处理技术的研究具有重要的意义。
随着城市化进程的加快和人口的增长,城市固体废弃物的数量不断增加,处理和处理这些废弃物已成为当务之急。
通过深入研究和分析国内外城市固体废弃物处理技术,可以为我国城市固体废弃物处理提供宝贵的参考和借鉴,推动我国城市固体废弃物处理技术的发展和提升。
城市固体废弃物的处理不仅关乎环境卫生和城市形象,还直接影响人民群众的生活质量。
通过研究不同国家和地区的固体废弃物处理技术,可以找到更加高效、环保的处理方式,提高废弃物的资源化利用率,减少对环境的污染,改善人民生活环境。
澳大利亚环保措施引言澳大利亚作为一个发达国家,一直以来都非常注重环境保护。
由于其特殊的地理位置和自然环境的丰富,澳大利亚政府和民众一直致力于制定和实施各种环保政策和措施,以保护珍稀物种、保护自然资源和减少碳排放。
本文将介绍澳大利亚的环保措施,并探讨其对环境和社会的影响。
1. 自然保护区和国家公园澳大利亚拥有丰富的自然资源和物种,为了保护这些宝贵的资源,该国建立了许多自然保护区和国家公园。
其中最著名的包括大堡礁、干石峡谷国家公园、高山国家公园等。
这些保护区和公园提供了一个安全的栖息地,保护了无数的植物和动物物种,并促进了生态系统的平衡。
2. 水资源管理澳大利亚是一个干旱的国家,因此水资源管理对于其环保措施至关重要。
澳大利亚政府实施了一系列严格的水资源管理政策,包括水资源分配、水质管理和水效率措施等。
此外,该国还进行了大规模的水资源储备工程,如莫里森湖和达威河坝等,以确保水源的充足和合理利用。
3. 清洁能源发展澳大利亚将清洁能源发展视为减少碳排放和应对气候变化的重要措施。
该国在可再生能源开发方面取得了显著进展,特别是太阳能和风能。
政府通过提供税收减免和激励措施鼓励人们使用清洁能源,并制定了多项政策以促进可再生能源的发展。
这些举措不仅有助于减少碳排放,还有助于改善空气质量和降低能源成本。
4. 废物管理和回收澳大利亚政府和民众非常重视废物管理和回收,以减少对环境的负面影响。
澳大利亚实施了一系列废物管理政策和法规,促进废物分类和回收利用。
该国的大部分城市都设有垃圾分类和回收设施,并提供相关教育和宣传活动,提高民众的环保意识和参与度。
5. 自然资源保护澳大利亚拥有丰富的自然资源,包括煤炭、天然气、铁矿石等。
为了保护这些资源并减少矿产开采对环境的影响,澳大利亚政府采取了一系列措施。
其中包括限制矿产开采的规模和范围,加强环境评估和监管,并推动可持续采矿的发展。
这些措施有助于保护自然资源和生态系统,同时也促进了可持续发展。
澳洲环保工程施工现状调查一、环保工程的定义和意义环保工程是指为了保护环境、减少环境污染和促进可持续发展而进行的工程项目。
环保工程包括但不限于水污染治理、大气污染治理、土壤修复、固体废物处置等多个方面。
环保工程的意义在于保护自然环境、维护人类健康和社会稳定,是社会可持续发展的重要基础。
二、澳洲环保工程施工现状1. 水污染治理澳洲拥有丰富的淡水资源,但由于工业和农业活动的增加,水污染问题日益严重。
为了解决水污染问题,澳洲政府加大了对水污染治理工程的投入。
目前,澳洲各地开展了一系列水污染治理工程,包括建设污水处理厂、修建雨水收集设施、推广水资源回收利用等。
这些工程的施工水平高、工艺先进、效果显著,为改善澳洲水环境起到了积极作用。
2. 大气污染治理随着澳洲工业的快速发展,大气污染问题日益突出,城市空气质量受到严重威胁。
为了改善大气环境质量,澳洲政府实施了一系列大气污染治理工程。
目前,澳洲各地的工厂和企业都在积极引进环保技术,进行大气污染治理工程的施工。
通过减少工业排放、推广清洁能源和加强监测管理,大气污染治理工程在一定程度上改善了澳洲的空气质量。
3. 土壤修复澳洲的矿业和农业活动对土壤环境造成了一定程度的影响,土壤污染问题日益凸显。
为了保护土壤资源,澳洲政府在进行土壤修复工程方面进行了大量的工作。
澳洲土壤修复工程主要包括土壤污染调查、土壤修复技术研究和土壤保护政策制定等方面。
目前,澳洲各地已经开展了一系列土壤修复工程项目,通过采用生物修复、化学修复和物理修复等多种方法,有效地修复了受污染的土壤环境。
4. 固体废物处理随着澳洲城市化进程的加快,固体废物处理成为了一项重要的环保工程。
澳洲政府对固体废物处理工程进行了大力支持,加大了对固体废物处理设施建设和技术改造的投入。
目前,澳洲各地的城市已经建设了一批现代化的固体废物处理设施,包括垃圾填埋场、生物处理厂、焚烧设备等。
这些设施的建设和改造工程大大提高了固体废物处理的效率和环保水平。
我在澳洲施行的垃圾分类经验哇哦,垃圾分类,听起来好有意义!作为一个有远见的市民,我一直认为垃圾分类是每个人都应该积极参与的环保行动之一。
在我有幸到澳洲旅行的时候,深受当地人对环保的重视所感染,也亲身体验到了澳洲人民在垃圾分类方面的用心与成效。
下面就让我来分享一下我在澳洲施行的垃圾分类经验吧!1.精准分类,从入门到精通澳洲的垃圾分类政策可谓相当严格细致。
每个家庭都配备了不同颜色和标识的垃圾桶,分为一般垃圾、可回收物品、有机垃圾和其他特殊垃圾等。
通过这些清晰的标识,我很快就上手了垃圾分类的技巧。
一开始可能会觉得有些麻烦,但习惯之后,就会觉得这种分类方式既方便又高效。
2.精选购物,减少浪费在澳洲,我也学到了精选购物的重要性。
尽量选择少包装或无包装的商品,避免不必要的塑料袋和包装盒会大大减少垃圾的产生。
购买耐用品而非一次性用品也是减少垃圾的好方法。
有时候,环保其实就是这么简单,只需改变一点点的消费习惯就能为地球多贡献一份力量。
3.循环利用,再生垃圾有价值在澳洲,垃圾并不只是垃圾,而是资源的再生利用。
回收中心设有专门的分类设施,将可回收物品进行二次处理和再利用。
这种循环往复的环保理念深深地触动了我。
废旧物品并不是毫无价值,只要经过合理的处理,就可为环境和社会创造更多的可能。
4.社区参与,共同呵护家园最让我感动的是澳洲人民的环保意识和行动力。
社区组织经常开展垃圾清理活动,号召居民一起参与,共同守护清洁的环境。
这种共同呵护家园的精神深深感染了我,也让我明白环保不仅是一种责任,更是一种情感共鸣,需要每个人的努力和参与。
所以,垃圾分类不只是一种环保举措,更是一种生活态度和社会责任。
通过在澳洲的亲身体验,我深刻体会到垃圾分类的重要性和实用性。
做一个有意识的环保者,从垃圾分类开始,让我们共同为地球的绿色未来努力奋斗吧!垃圾分类,我们一起行动!。
澳大利亚垃圾处理的现状以及对我国垃圾处理的战略思考李国学;李连芳
【期刊名称】《决策咨询》
【年(卷),期】2003(014)004
【摘要】@@ 一、澳大利亚垃圾处理的现状rn城市垃圾处理,已日益成为世界范围内一个普遍关注的问题,是一项长期而艰巨的任务和庞大的综合系统工程.垃圾处理不但会对城市及周边环境造成巨大污染,危害人类的生命健康.目前国际上的垃圾处理问题已不仅停留在如何控制和销毁的阶段,而是积极采取有力措施,进行最大限度的回收和综合利用,以创建具有良好经济生态效益的"垃圾产业".达到即净化城市生态环境的目的,又提高资源的综合利用效益,保持人与自然的和谐共处,促进人类社会的可持续发展.
【总页数】4页(P78-81)
【作者】李国学;李连芳
【作者单位】北京市政府专家顾问团环境卫生组;中国农业大学资源和环境学院【正文语种】中文
【中图分类】X7
【相关文献】
1.2003年我国垃圾处理厂普查结果及垃圾处理现状分析 [J], 曹丽云
2.循环发展下的城市生活垃圾处理研究——以广西N城市生活垃圾处理现状为例[J], 韦永生
3.中小城镇垃圾处理的现状及新型垃圾处理技术研究 [J], 褚向怡
4.国外垃圾处理先进经验概述以及对我国的启示 [J], 贾炳章
5.基于垃圾处理现状的一种多功能垃圾处理器的研究 [J], 张晶; 聂晶晶
因版权原因,仅展示原文概要,查看原文内容请购买。
澳大利亚堪培拉地区的废物管理策略—“2010年无废物”蒋小玉
【期刊名称】《中国环保产业》
【年(卷),期】2000(000)005
【摘要】介绍澳大利亚首府堪培拉地区政府提出的废物管理策略-“2010年无废物”目标,其基本内容、实现目标的措施及近几年的主要工作。
【总页数】2页(P42-43)
【作者】蒋小玉
【作者单位】中国环境保护产业协会,北京100835
【正文语种】中文
【中图分类】X508.611
【相关文献】
1.浅论危险废物和医疗废物处置项目环评工作中应注意的问题--以阿克苏地区危险废物处理项目为例 [J], 付尔登;李健;焦键
2.放射性废物管理的进展、存在问题和管理策略--国际放射性废物技术委员会第三次会议介绍 [J],
3.澳大利亚放弃在内陆建造核废物处置库的计划并提议在太平洋岛屿上寻找解决核废物问题的办法 [J], 伍浩松
4.铀尾矿无害化处理和利用及无废物铀工艺流程试验简报(Ⅱ)某矿无废物流程浸出试验 [J], 王金堂;朱禹钧;常志功;向钦芳;薛建新;张大圣
5."无废城市"建设试点引领固体废物产业发展新机遇专访中国环境保护产业协会固体废物处理利用委员会秘书长李金惠 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
ResearchWater Pollution Control—ArticleUnderstanding the Removal and Fate of Selected Drugs of Abuse inSludge and Biosolids from Australian Wastewater TreatmentOperationsMeena K.Yadav a ,Cobus Gerber b ,Christopher P.Saint a ,c ,e ,Ben Van den Akker a ,d ,Michael D.Short e ,⇑aNatural and Built Environments Research Centre,School of Natural and Built Environments,University of South Australia,Mawson Lakes,SA 5095,Australia bSchool of Pharmacy and Medical Science,University of South Australia,North Terrace,SA 5000,Australia cDivision of Information Technology,Engineering and the Environment,University of South Australia,Mawson Lakes,SA 5095,Australia dAustralian Water Quality Center,Adelaide,SA 5000,Australia eFuture Industries Institute,University of South Australia,Mawson Lakes,SA 5095,Australiaa r t i c l e i n f o Article history:Received 22August 2018Revised 26December 2018Accepted 6March 2019Available online 10July 2019Keywords:Anaerobic digestion BiosolidsContaminationMethamphetamine Sorptiona b s t r a c tIllicit and pharmaceutical drugs are considered to be emerging contaminants of concern,and much research effort has gone into assessing their occurrence in wastewater.However,little information exists on their presence in treated sludge or biosolids.In this study,we examined sludge and biosolids from a large metropolitan wastewater treatment plant (WWTP)in Australia to determine the occurrence of five drugs of abuse,including benzoylecgonine as indicator of cocaine consumption,methamphetamine and 3,4-methylenedioxy methamphetamine (MDMA)as representative illicit stimulants,and codeine and morphine as pharmaceuticals with potential environmental risk.The samples were solid-phase extracted and analyzed by liquid chromatography–tandem mass spectrometry (LC–MS/MS).Benzoylecgonine and MDMA were present in raw sludge but were notably degraded during solids treatment processes,and were not detected in the dewatered sludge (after treatment)or in biosolids.Methamphetamine,codeine,and morphine were detected in all biosolids samples at mean concentrations of 20–50l g Ákg À1.The pres-ence of these three drugs in biosolids shows that these compounds are relatively stable in the solids and in soil,and can persist in biosolids for at least several years.A simple environmental risk assessment based on estimated risk quotients (RQs)for these compounds indicated that the potential environmental risks associated with the land application of biosolids are very low at typical Australian biosolids appli-cation rates.Ó2019THE AUTHORS.Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.This is an open access article under the CC BY-NC-ND license(/licenses/by-nc-nd/4.0/).1.IntroductionIllicit drugs are considered to be emerging contaminants of con-cern due to their toxic effects on aquatic biota and ecosystems.Their presence has been reported in various environmental sources including surface water [1–4],drinking water [5–9],groundwater [10–12],aquatic biota (fish or other)[13–15],and sewage sludge [16–20];however,little information is available regarding their possible presence in biosolids [21,22].Here,the term biosolids refers to the treated sludge product of sewage treatment at wastewater treatment plants (WWTPs)[23].Increasing global rates of secondary-level wastewater treat-ment using activated-sludge-type processes have led to increased volumes of sludge and biosolids production.Recent global bioso-lids production rate estimates are on the order of 2.5Â107–6.0Â107t of dry solids per year [24],with much of this being applied to soil [25].According to the Australian and New Zealand Biosolids Partnership (ANZBP)[26]report,about 3.3Â105t of dry biosolids were generated in Australia in 2017,of which 75%was applied in agriculture—a comparatively high amount in comparison with agricultural application in the United States and European Union (about 45%)[25].Since biosolids are rich in nutri-ents,their land application as fertilizer is an attractive option for sustainable soil nutrient management and carbon sequestration [27,28].In addition to agricultural nutrients and other soil-improving constituents,biosolids contain numerous contaminants of concern—in particular,persistent organic pollutants that include pharmaceuticals [11,21,29],pesticides,polychlorinated biphenyls (PCBs)or polycyclic aromatic hydrocarbons (PAHs)[30–33],and⇑Corresponding author.E-mail address:Michael.Short@.au (M.D.Short).(potentially)residual amounts of illicit drugs.There is evidence that some drugs of abuse may be toxic to aquatic biota,but there are limited studies on their potential effect on terrestrial biota.For example,Parolini et al.[34]examined the oxidative status of the zebra mussel after exposure to a mixture of drugs of abuse (cocainics,amphetamines,and morphine)and reported a signifi-cant increase in antioxidant activities posing a potential threat to mussel health.Hydrophobic compounds having high (>4)to moderate (2.5–4)octanol–water partition coefficient log K OW values have relatively high adsorption potential and are therefore more likely to accumu-late in solids and sludge fractions [35,36].Conversely,compounds with lower log K OW value (<2.5)have relatively low sorption poten-tial and may be more likely to remain in the aqueous phase [35].Compounds that are not eliminated effectively during wastewater solids treatment processes may be transported into the environ-ment through biosolids-reuse programs,where they may enter the food chain through uptake by plants and crops.For example,past research has revealed the uptake of certain antibiotics by crops (e.g.,cabbage,lettuce,and spinach)grown in biosolids-enriched soil [37–39].Therefore,it is important to characterize and understand the levels of other pharmaceutical contaminants in biosolids,including drugs of abuse.Several reports have been published detailing the presence of drugs of abuse in aqueous wastewater environments [40–42];however,to date,limited international data is available on their presence in biosolids and almost none has been published for Aus-tralia.For example,methamphetamine was detected in sludge (2l g Ákg À1)from the Australian WWTP by Govindarasu [43],while Jones-Lepp and Stevens [21]reported comparable metham-phetamine levels (4l g Ákg À1)in biosolids from the United States.Several studies have reported the presence of codeine in biosolids from the United States (not detected–328l g Ákg À1)[23,44,45]and Canada (2.9–110l g Ákg À1)[46–48].The limited data availability for biosolids is most likely a result of the emerging nature of wastewater epidemiology as a research field and also a reflection of the fact that much of this research has focused on raw sewage analyses to estimate population drug-consumption rates [40],rather than on understanding drug removal/partitioning during WWTP processing.Accordingly,the aim of this study was to investigate the pres-ence of several drugs of abuse in Australian sludge/biosolids.Methamphetamine and 3,4-methylenedioxy methamphetamine (MDMA)were chosen as examples of illicit stimulants,codeine and morphine were included as pharmaceuticals with potential environmental risk,and benzoylecgonine was chosen as an indicator (i.e.,metabolite)of cocaine consumption (see Fig.1forstructure).The compounds targeted in this study were chosen based on previous work in Australia,which had indicated relatively high concentrations of these drugs in wastewater (influent and effluent)and reported that some of these compounds have the potential to pose an environmental risk [40,49].Thus,the objec-tives of this research were:①to develop a method to determine the occurrence of specific drugs of abuse in biosolids,and ②to investigate the levels of these drugs at different stages during sludge/biosolids processing.2.Material and methods 2.1.Chemicals and reagentsThe reference standards and deuterated internal standards of each drug were purchased from Cerilliant (Cerilliant Corp.,USA).Methanol,formic acid,dichloromethane,and isopropanol were acquired from Merck (Merck Pty.Ltd.,Australia),while acetic acid was obtained from Spectrum Ò(Spectrum Chemical Mfg.Corp.,USA)and ammonia from Optigen (Optigen Ingredients,Australia).Ultra-pure water was obtained from arium Òpro VF water purifica-tion unit (Sartorius Stedim Biotech GmbH,Germany).Solid-phase extraction (SPE)cartridges (UCTTM XRDAH;500mg per 6mL)were purchased from PM Separations (Australia).2.2.Study site and sample collectionThe sludge samples were collected from a treatment plant located in Australia (Fig.2provides the sampling locations).The treatment plant serves about 7Â105people and receives an aver-age sewage flow of 150ML Ád À1.The plant operates with a conven-tional activated-sludge reactor process comprising anaerobic,aerobic,and anoxic zones in series.The primary sludge is gravity thickened and waste-activated sludge (WAS)is thickened by dis-solved air flotation,after which the combined sludge undergoes mesophilic anaerobic digestion with a solids retention time of 18d.Part of the digested sludge volume further undergoes mechanical dewatering by centrifuge,while the majority is dewa-tered in sludge lagoons.Sludge lagoons are filled over a period of 1.5–3years;the lagooned solids are then dried and stockpiled for a further minimum period of three years (i.e.,the sampled three-year-old stockpiled biosolids in this study have their origins in wastewater entering the WWTP during the 2012–2014period).The Grade A quality biosolids product is then used in broadacre agriculture as a soil supplement.Samples were initially collected (three replicates)after anaero-bic digestion for method development (extraction and analytical).Later,three more samples (45samples in total:five treatment stages Âthree-time points Âthree replicates)were collected for analyses between Dec 2016and Jun 2017.The samples were col-lected at different WWTP stages including primary sludge,mixed digested sludge,centrifuge-dewatered biosolids,lagoon-stabilized sludge,and biosolids from the three-year-old stockpiles.Primary sludge was collected as a 24h composite and the remaining were grab samples.All samples were stored at À20°C prior to sample preparation and analysis.2.3.Sample preparation and extractionAll samples were freeze-dried (Lyph-Lock 6,Labconco Corp.,USA)followed by homogenization.First,two solution mixtures were tested for the extraction of the targeted drugs:①8mL of a solution mixture of methanol and 0.1mol ÁL À1acetic acid (1:1v/v)after Monsalvo [50];and ②20mL of 50mmol ÁL À1formic acid and methanol (80:20v/v),based on the methods of Kaleta etal.Fig.1.Structures of targeted compounds including molecular weight (g Ámol À1),obtained from the PubChem Compound Database.M.K.Yadav et al./Engineering 5(2019)872–879873[20].Fig.3illustrates the detailed extraction procedures.In sum-mary,1g of freeze-dried sample was weighed and spiked with a 200l L mixture of the deuterated internal standards of each drug.The sludge sample with the added solution mixtures was ultrasoni-cated for 15min,followed by rotary mixing for 1h.After mixing,the sample was centrifuged at 3500r Ámin À1(2851g )for 10min (Allegra X-12R Beckman Coulter Australia Pty.Ltd.,Australia).The supernatant was then collected into a glass bottle,and the extraction was repeated three times and combined.Following that,one sample was directly evaporated to dryness under nitrogen at 40°C and another sample was extracted using a SPE protocol previously published for wastewater samples [51].ForthisFig.2.Schematic diagram highlighting the sludge treatment processes at the selected WWTP and sampling points.S1:primary sludge;S2:mixed digested sludge;S3:centrifuge-dewatered biosolids;S4:sludge lagoons;S5:biosolids three-year-oldstockpiles.Fig.3.Extraction protocols for sludge/biosolids samples.874M.K.Yadav et al./Engineering 5(2019)872–879purpose,thefiltered supernatant was loaded onto mixed-mode SPE cartridges pre-conditioned with methanol(6mL)and sodium acetate buffer(6mL).The SPE cartridges were washed with sodium acetate buffer(6mL),0.1molÁLÀ1acetic acid(2mL),and methanol (6mL).Elution of the analytes was achieved with a mixture of4% ammonia and96%dichloromethane/isopropanol(80:20)and the samples were evaporated to dryness.Both dried samples(after direct evaporation and the SPE method)were reconstituted with 20l L of0.1%formic acid in methanol and180l L of0.1%formic acid in Milli-Q water prior to analysis by liquid chromatography–tandem mass spectrometry(LC–MS/MS).Thefinal extraction solu-tion was selected based on the accuracy and recovery of the sam-ples spiked with known concentrations of the drugs(Table1). 2.4.Chromatography analysisThe analytical instrumentation consisted of a Shimadzu(Shi-madzu Corp.,Japan)high-performance liquid chromatograph (HPLC;LC-20AD),autosampler(SIL-20A/HT),pump system(LC-20AD),and degasser(DGU-20A),coupled to an API3000triple quadrupole mass spectrometer(Applied Biosystems,Canada) equipped with an electrospray ionization(ESI)source.Chromatographic separation was achieved using a Phenomen-ex TM(Phenomenex Inc.,USA)LunaÒpentafluorophenyl(PFP)col-umn(100mmÂ4.6mm,3l m)coupled to a PFP guard column (4mmÂ2.0mm,5l m),at a totalflow rate of0.6mLÁminÀ1,based on a previously published method used for wastewater samples with slight modification[40].The mobile phase consisted of Sol-vent A(5%methanol+0.1%formic acid)and Solvent B(95%metha-nol+0.1%formic acid).The sample injection volume was10l L. The gradient started with30%B with an immediate linear increase to100%B until4min,followed by a4min isocratic period and then a linear decrease to30%over0.1min.The gradient was then main-tained at that level until the end of the runtime(10min).Mass spectra were measured in positive ionization mode via multiple reaction monitoring.The compound-specific parameters are sum-marized in Table1.2.5.Method validationExtraction recoveries of the selected compounds were deter-mined for each extraction solution through samples spiked with the standard concentrations,which ranged from20–1700l gÁkgÀ1 (see Table1for the concentration range).Recoveries were assessed by comparing the measured concentrations achieved versus the spiked concentrations.The drug concentrations were calculated by the ratio of analyte/internal standard through isotope dilution. Deuterium-labeled standards of each analyte served as internal standards to account for analyte loss during the extraction process.The limit of quantification(LOQ)and limit of detection(LOD)were respectively determined as ten times and three times the signal-to-noise ratio for each compound.Linearity was established by ana-lyzing the standards at different concentrations and the LOQ was chosen as the lowest measurable concentration thatfitted the standard curve within±15%.2.6.Statistical analysisStatistical analyses were conducted using PrismÒ7.03(Graph-Pad Software Inc.,USA).The Shapiro–Wilk normality test was per-formed,followed by a two-tailed t-test to compare the recoveries obtained with extraction solutions1and2(n=15).Similarly,the differences between the concentrations of the drugs before and after sludge treatment for the various treatment processes were assessed by t-test.3.Results and discussion3.1.Extraction recoveries and data quality assuranceThe performance of both extraction solutions followed by SPE or direct injection methods was determined for absolute recovery by comparing the concentration measured with the spiked concen-trations in the samples,as shown in Table1.The recovery of all the compounds with Solution1(methanol+0.1molÁLÀ1acetic acid) and Solution2(formic acid+methanol)after SPE ranged from 93%–116%and61%–186%,respectively,as summarized in Fig.4. The variation in recovery could be related to matrix interference, which caused suppression(codeine/morphine)or amplification (MDMA/methamphetamine)of detection.Direct injection of the extracts gave a poor signal response,making SPE necessary.How-ever,there was a significant difference in the recoveries obtained for all compounds with Solution1compared with Solution2,both followed by SPE extraction(t28=2.11,p=0.044).Based on our results,a pretreatment followed by SPE extraction is a recom-mended method for the extraction of targeted compounds in wastewater solids matrices.Similarly,Kaleta et al.[20]applied SPE extraction for the analysis of amphetamine in sludge samples due to the complex consistency of sludge.Thus,Solution1in com-bination with SPE extraction was used throughout the present study.3.2.Analysis of selected compounds in sludge and biosolids samplesThe extraction method outlined above was applied in order to determine the concentration of drugs in wastewater solids samples from different WWTP stages.The results obtained for each sample (mean±SEM)are summarized in Fig.5.The most ubiquitousTable1Compound-specific mass spectrometric parameters used for the analysis of target compounds and the corresponding limit of detection(LOD)and limit of quantification(LOQ).Targeted drugs/internal standards Retention time(min)Precursor ion(m/z)Product ion(m/z)Declusteringpotential(V)Collisionenergy(V)Standard concentrationrange(l gÁkgÀ1)LOD(l gÁkgÀ1)LOQ(l gÁkgÀ1)Morphine 3.882861655065400–850 3.29.6 Morphine-d3 3.892891655065Codeine 6.623002155035800–1700 1.6 5.0 Codeine-d3 6.633032155035MDMA7.90194163351840–850.7 2.2 MDMA-d57.921991653518METH7.47150119203580–17019.358.4 METH-d57.481551212035BE9.85290168502520–430.4 1.2 BE-d39.862931715025Other MS/MS parameters:Nebulizer gas:12pounds/square inch gauge(psig);curtain gas:10psig;ion spray voltage:5000V.M.K.Yadav et al./Engineering5(2019)872–879875compounds were methamphetamine,codeine,and morphine,which were found in all sludge and biosolids samples.In contrast,benzoylecgonine and MDMA were present at the initial WWTP stages (primary sludge and digester samples)but were not detected in the treated biosolids,confirming either their complete removal by the sludge treatment processes or their biodegradation.The concentrations of the targeted compounds ranged from 1to 78l g Ákg À1in primary sludge,with the highest concentration being reached for methamphetamine (Fig.5).Morphine concentration was significantly higher in anaerobically digested sludge than in primary sludge (t 6=2.598,p =0.0408).This increase ($four-fold)might be due to the glucuronide process—in which morphine-6-glucuronide,a major metabolite of morphine,is converted back to free morphine [40,52–54]—or to the conversion of codeine into morphine [55]during the treatment process.Another possibility is that morphine might be adsorbed and accumulated during the activated-sludge process,and then added to the digesters via the thickened WAS.Prior work at this site demonstrated that mor-phine was effectively removed from the incoming wastewater by this plant,following activated-sludge treatment (for a raw wastewater morphine concentration of about 900l g ÁL À1,with >90%removal)[40].Assuming a primary-to-WAS ratio of 4:1,the observed four-fold increase in morphine levels between the primary treatment and WAS is feasible.Benzoylecgonine and MDMA were not detected in the treated sludge (centrifuged or lagoon dewatered).These compounds may have undergone degradation based on their shorter half-life values or lesser affinity for solids partitioning.For example,the half-life of MDMA is much lower (15–59d)than that of methamphetamine (131–502d)[56,57].Langford et al.[58]have described benzoylec-gonine as a polar compound with a very low affinity for solids due to a small log K OW of 2.15;this should result in a greater proportion of the compound being present in the aqueous phase and rela-tively less being present in the solids fraction.Another possibility regarding MDMA non-detection may be MDMA metabolism,which favors the degradation of MDMA to hydroxylated ampheta-mines.These compounds (i.e.,hydroxylated amphetamines)may still be bioactive in the treated biosolids,with unknown toxicity.However,there was no significant difference in the metham-phetamine mean concentrations in the centrifuged or lagoon-dewatered sludge (mean ±SEM;(61.6±1.3)or (54.2±1.1)l g Ákg À1,respectively).The results for benzoylecgonine and MDMA in the present study are comparable to those of a recent Slovakian study [22],in which benzoylecgonine was below the LOQ and MDMA was present at very low levels,on average,in digested sludge (<5l g Ákg À1).The methamphetamine concentrations recorded in this study are comparatively higher than those previ-ously reported in sludge samples from an Australian WWTP (2l g Ákg À1)[43],but remain within the range reported by Mastroianni et al.[17](i.e.,6.7–111l g Ákg À1)in sludge samples.It should be noted that in 2013,when the study by Mastroianni et al.was published,methamphetamine was being used—and therefore detected—at far lower levels than at present,which probably resulted in lower levels being present in solids as well at that time.For example,the methamphetamine concentration detected in influent wastewater in Spain was 50ng ÁL À1in 2011[59],whereas it was about 3000ng ÁL À1in Australian wastewater in 2016[40].The results indicate that methamphetamine is a stable compound that undergoes minimal degradation under mesophilic anaerobic digestion conditions.The other two compounds detected in the dewatered centrifuge/lagoon-treated sludge were codeine and morphine,whose mean concentrations ranged in 10.6–15.4and 39.6–139.4l g Ákg À1,respectively.Here,the meandewateredFig. 4.Recoveries obtained for the extraction (n =3)of target drugs with two solution mixtures (Solution 1and Solution 2)followed by SPE or direct injection.BE:benzoylecgonine;METH:methamphetamine.Fig.5.Concentrations (mean ±SEM)of targeted compounds (l g Ákg À1of dry weight)found in primary sludge,anaerobically digested sludge,treated sludge dewatered by centrifuge/lagoon,and biosolids from stockpiles.876M.K.Yadav et al./Engineering 5(2019)872–879sludge values for codeine were almost double the levels (6.3l gÁkgÀ1)reported by Gago-Ferrero et al.[60]in sludge col-lected from WWTPs in Greece,where sludge is treated by aerobic digestion prior to dewatering.However,the digested and dewa-tered sludge codeine concentrations found in the present study were similar to those of Ivanováet al.[22],who reported median codeine levels of16l gÁkgÀ1in primarily anaerobically digested (some aerobic)and centrifuge-dewatered sludge from several Slovakian WWTPs.The difference in the levels between our data and those of Gago-Ferrero et al.[60]and,to a lesser extent,Ivanováet al.[22]might be due to the use of anaerobic digestion for sludge treatment in this study,as it may be less effective than aerobic digestion for codeine degradation or removal.For example,the literature reports that aerobic digestion is better at trace organics removal than anaerobic digestion[61,62].Furthermore,given that the numbers are still within the same order of magnitude(<two-fold difference),these differences could also feasibly relate to sam-pling variability,or to differences in analytical measurement or recovery.The morphine mean concentration($40l gÁkgÀ1)was the same in both treated sludges in this study(centrifuged or lagoon dewatered),and was comparatively higher than the range reported by Mastroianni et al.[17](2.2–19.1l gÁkgÀ1)in treated sludge from15Spanish WWTPs with predominantly activated-sludge operations.The sludge treatment processes in their study were comparable to those used in the current investigation,and included anaerobic digestion followed by centrifuge dewatering. Overall,there was no significant difference in the concentrations of drugs(methamphetamine,codeine,and morphine)in the bioso-lids generated after dewatering by centrifugation or lagoon.Of thefive targeted drugs,methamphetamine,codeine,and morphine were detected in all biosolids samples(Fig.5).In general, methamphetamine concentration(52.2l gÁkgÀ1)was approxi-mately twice the mean concentration of codeine and morphine ($23l gÁkgÀ1).A likely reason for the higher concentration of methamphetamine in biosolids is its higher influent mass loads [40,49,63].Methamphetamine has been shown to be relatively stable in the environment[57,64],which may also explain its prevalence and persistence in the stabilized biosolids examined here.The codeine levels were within the same range as that reported by Langdon[65],but were slightly higher than the con-centrations found by Sabourin et al.[48](up to14.6l gÁkgÀ1)in Canadian biosolids.To the best of our knowledge,this is thefirst study providing information on the presence of illicit and pharmaceutical drugs in Australian biosolids.In order to try to understand the potential environmental risk associated with these compounds in biosolids in the context of Australian land application practice,we con-ducted a hazard assessment using risk quotient(RQ).The RQ was calculated as a ratio of the measured concentrations in the bioso-lids from our study to the predicted no-effect concentration(PNEC) in water from the literature[66,67],since no equivalent PNEC soil values were available.Based on their RQ values,the compounds were categorized as being of high(RQ!1),moderate(RQ=0.1–1),or low(RQ<0.1)risk to the environment[68,69].This analysis resulted in RQ values of<0.1(low environmental risk)for all com-pounds except codeine(RQ=0.4;moderate risk).We should stress that since these RQ values were calculated using measured concen-trations in100%biosolids,this result substantially overestimates the risk in the context of Australian agricultural biosolids reuse, in which biosolids are typically applied at low rates of10tÁhmÀ2, or1kgÁmÀ2by dry mass[70].Assuming that biosolids are incorpo-rated into the top10cm of the soil,a further100-fold dilution occurs of biosolids-associated compounds in the environment, which reduces the above RQ values for all substances to well below the low-risk threshold value.Other jurisdictions should reassess this risk determination in line with the local context(i.e.,biosolids drug concentrations and biosolids application rates/practices)in order to properly assess local environmental risk.We should also reiterate that the PNEC values used to calculate the RQ relate to water environments,so the above RQs are only estimates for soil.4.ConclusionsThis study surveyed sludge and biosolids from a large Australian WWTP in order to understand the occurrence and fate of methamphetamine,MDMA,codeine,morphine,and the cocaine metabolite benzoylecgonine during wastewater solids treatment. Benzoylecgonine and MDMA were readily removed during sludge treatment and were not detected in biosolids following long-term stabilization treatment.Methamphetamine,codeine,and morphine were always detected at low levels(l gÁkgÀ1)in treated sludge(centrifuged and lagoon-dewatered)and biosolids.In this study,the average concentration of methamphetamine in waste-water solids was higher than the levels reported internationally; this may be a reflection of the fact that methamphetamine is the main stimulant of choice for Australians,leading to relatively higher levels in the wastewater and consequently in the solids fraction.This study also found that the solids treatment processes used at the surveyed WWTP(i.e.,anaerobic digestion,agitated air drying,lagoon stabilization,and stockpiling)do very little to remove methamphetamine,morphine,and codeine,even after exposure to long-term(multiple year)solids stabilization pro-cesses.A simple environmental risk assessment showed that for allfive drugs,the risks associated with the land application of bio-solids are likely to be very low at typical Australian biosolids land application rates.Little is known on their long-term persistence and accumulation in the environment,however,and the use of bio-solids for agriculture may benefit from more research to establish a better risk profile for these compounds in the environment and to assess their potential to enter the food chain.For such research,a long-term monitoring study would be required that should include a sampling of biosolids-amended soils before and after application at various rates,along with monitoring of the crops grown in order to assess plant uptake potential.AcknowledgementsThis research was supported by an Australian Government Research Training Program(RTP)Scholarship.Michael Short acknowledges thefinancial support of the Cooperative Research Center for Low Carbon Living Ltd.(RP2017and RP2008)whose activities are supported by the Cooperative Research Centers pro-gram,an Australian Government initiative.The authors gratefully acknowledge the South Australian Health Network for itsfinancial support.The authors thank staff at the Australian Water Quality Centre and the managing water authority for their assistance dur-ing the sampling.Compliance with ethics guidelinesMeena K.Yadav,Cobus Gerber,Christopher P.Saint,Ben Van den Akker,and Michael D.Short declare that they have no conflict of interest orfinancial conflicts to disclose.References[1]Baker DR,Kasprzyk-Hordern B.Critical evaluation of methodology commonlyused in sample collection,storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography-mass spectrometry.J Chromatogr A2011;1218(44):8036–59.M.K.Yadav et al./Engineering5(2019)872–879877。
澳大利亚城市固体废物处理概况澳大利亚城市固体废物处理概况一、澳大利亚垃圾处理概况澳大利亚面积760万平方公里,人口1960万,全国共分为6个州:新南威尔示州、维多利亚州、昆示兰州、南澳大利亚州、西澳大利亚州、塔斯马尼亚州。
1、堪培拉堪培拉是澳大利亚的首都,全国政治中心,人口31万。
建于1911年,整个城市的一草一木由美国城市建筑设计大师格里芬根据自己的蓝图设计建造,规划完整,市容富现代化色彩,处处皆美景,是一个美丽的都市。
堪培拉市垃圾实行源头分类,政府为每户居民提供两种类型垃圾容器:可回收物桶(240升,黄颜色盖)和其它废物桶(120升,绿颜色盖)。
倾倒垃圾的时间城市各个区域各不相同,但保证一个原则就是可回收垃圾每两周倾倒一次,其它垃圾每周倾倒一次。
堪培拉年产垃圾620000吨(全部固体废物,包括建筑渣土等),其中400000吨被回收或再利用,而另外220000吨则被运到填埋场处理。
堪培拉只有一个垃圾综合处理厂,处理全市生活垃圾及建筑渣土。
该垃圾综合处理厂距离市中心大约15公里,占地面积14公顷。
其特点如下:①经营模式为政府提供场地,企业建设运营堪培拉市政府提供处理场地,企业和政府签定合同,按照合同建设并运营该厂。
②多种处理方式的集成该处理厂包括生活垃圾堆肥、生活垃圾填埋、建筑渣土的综合利用,还包括大件垃圾的处理、金属及电池的回收等,各种方式互相结合,井然有序。
③有可回收物交易市场在处理厂外西侧建有可回收物交易市场,运营者将市民更新换代的生活用品廉价回收,然后再卖给那些需求者。
这样使倾倒垃圾的市民可以很方便地处理掉废弃的有用垃圾,同时又有经济效益。
④收费政策堪培拉市垃圾收费标准由政府制定,其中运往回收中心的垃圾(可回收垃圾)不收费,例如纯净的绿色垃圾、电池、油漆等;只有进行填埋处理的垃圾才收费。
垃圾运到填埋场后,按标准交费后处理;工厂运营者按月将收入交到政府;政府按照合同向运营者拨付运营费及管理费(约120万澳币/年)。
在澳洲,你不得不注意的垃圾分类知识。
生活在澳洲时间久一些的人们都知道,扔错垃圾可能面临上百澳币的罚款。
在对于垃圾分类如此严格的澳洲,懂得如何分类就成了不可或缺的常识了。
然而,很多垃圾分类的规则连澳洲本地人也经常搞错。
在澳洲垃圾到底该怎么扔?01垃圾回收常识虽然澳洲人对垃圾分类很在意,但是由于每个地方议会对本地垃圾分类的具体规定都不一样,因此很多时候澳洲本地人自己也分不清一件东西到底该放进哪个垃圾桶。
The Age发布了一篇文章,告诉我们所有澳洲人(包括在澳华人),在垃圾分类这件事情上,经常犯同一个错误:把软质塑料扔进路边的可回收垃圾桶。
全澳超过180个地方议会,都表示这一条是澳洲人最常犯的错误。
因为由于技术限制,很多现用的回收机器没有办法处理软质塑料。
软质塑料非常常见,我们日常接触到的各种食品塑料包装袋,都属于此类。
比如吐司包装袋、饼干外包装袋、意面和大米的包装袋、冷冻食品包装袋、糖果零食包装袋、麦片包装袋、卷纸外面的一层塑料膜,以及塑料购物袋等等。
一旦这些软质塑料和其他可回收垃圾一起进入回收机器,有可能造成:机器阻塞,甚至损坏;降低处理后回收材料的价值,增加回收成本。
小编悄悄跟你说,还有一个最简单的鉴别方法,看塑料包装能不能被团成一个球。
如果可以,就属于软质塑料,千万不要扔进可回收垃圾桶啦。
澳洲有一个专门回收软质塑料的项目,叫做REDcycle。
大部分Woolworths和Coles超市门口都有REDcycle回收箱,大家只需要把这些软质塑料包装收集好,在下次去超市的时候一起丢进回收箱就可以了。
REDcycle组织会把这些软质塑料初步处理后交给维州的一家专业公司,由他们把这些回收材料制作成各种各样的产品,比如健身器材、户外家具、护柱和标志牌等。
所以回收的同时,也是支持可持续发展啦。
02垃圾分类回收的有关规定认识垃圾桶小编拿维州的规定举例子。
维州的垃圾处理实行三色分类制度-红色,黄色和绿色。
红色盖子--用来放不可回收的生活垃圾。
澳大利亚城市固体废物处理概况
澳大利亚城市固体废物处理概况
一、澳大利亚垃圾处理概况
澳大利亚面积760万平方公里,人口1960万,全国共分为6个州:新南威尔示州、维多利亚州、昆示兰州、南澳大利亚州、西澳大利亚州、塔斯马尼亚州。
1、堪培拉
堪培拉是澳大利亚的首都,全国政治中心,人口31万。
建于1911年,整个城市的一草一木由美国城市建筑设计大师格里芬根据自己的蓝图设计建造,规划完整,市容富现代化色彩,处处皆美景,是一个美丽的都市。
堪培拉市垃圾实行源头分类,政府为每户居民提供两种类型垃圾容器:可回收物桶(240升,黄颜色盖)和其它废物桶(120升,绿颜色盖)。
倾倒垃圾的时间城市各个区域各不相同,但保证一个原则就是可回收垃圾每两周倾倒一次,其它垃圾每周倾倒一次。
堪培拉年产垃圾620000吨(全部固体废物,包括建筑渣土等),其中400000吨被回收或再利用,而另外220000吨则被运到填埋场处理。
堪培拉只有一个垃圾综合处理厂,处理全市生活垃圾及建筑渣土。
该垃圾综合处理厂距离市中心大约15公里,占地面积14公顷。
其特点如下:
①经营模式为政府提供场地,企业建设运营
堪培拉市政府提供处理场地,企业和政府签定合同,按照合同建设并运营该厂。
②多种处理方式的集成
该处理厂包括生活垃圾堆肥、生活垃圾填埋、建筑渣土的综合利用,还包括大件垃圾的处理、金属及电池的回收等,各种方式互相结合,井然有序。
③有可回收物交易市场
在处理厂外西侧建有可回收物交易市场,运营者将市民更新换代的生活用品廉价回收,然后再卖给那些需求者。
这样使倾倒垃圾的市民可以很方便地处理掉废弃的有用垃圾,同时又有经济效益。
④收费政策
堪培拉市垃圾收费标准由政府制定,其中运往回收中心的垃圾(可回收垃圾)不收费,例如纯净的绿色垃圾、电池、油漆等;只有进行填埋处理的垃圾才收费。
垃圾运到填埋场后,按标准交费后处理;工厂运营者按月将收入交到政府;政府按照合同向运营者拨付运营费及管理费(约120万澳币/年)。
2、悉尼
悉尼是澳大利亚第一大城市,人口380万,2002年10月被评为最适合人类居住的10大城市之一(渥太华、珀斯、维也纳、多伦多、日内瓦、苏黎士、布里斯班、阿德莱德、墨尔本)。
2000年成功举办了第27届夏季奥运会。
奥运会主会场和奥运村的垃圾被分成三类:饮料瓶、纸和食物、不可回收垃圾,特别之处是体育场内的分类容器为金属制造(管理者说是为了防火),这里的垃圾分类标识明显,并带有固定支架。
在体育场附近还建有一座垃圾处理厂,主要处理奥运场馆及奥运村产生
的垃圾。
另外体育场的座椅全部由回收材料制作,场区内的灯光均依靠太阳能供电。
悉尼Clurllora废物管理中心包括处理垃圾分类后的可回收物的分选厂和处理其它垃圾的转运站。
可回收物经分选车间内设备分选后分门别类地储存、再利用;而其它垃圾经过压缩后被大型转运车运输到填埋场处理。
该厂占地2.75公顷,分选厂处理能力为2000吨/周,转运站处理能力达5000吨/日。
工厂目前有员工100人,分三班运做(8:00——16:00,16:00——24:00,24:00——8:00)。
垃圾转运站和我市大屯转运站的工作原理相同,但分选厂采用美国进口设备,分选工艺采用机械和人工相结合的方式,按照材料和颜色将其中的塑料、纸张、玻璃、金属等分离出来。
其中磁选、风选、物理分选(粒径)、化学分选(颜色)都有所利用。
另外在处理厂的大门口醒目的位置上耸立着垃圾处理收费标准牌,具体收费标准如下:
3、墨尔本
墨尔本是澳大利亚第二大城市,位于维多利亚州,人口350万,城市有400多个公园,风景优美。
同时城市典雅大方,保留着许多欧美建筑风格的建筑,城市内的有轨电车富有返普归真的特色。
墨尔本的建筑垃圾处理厂的工艺技术先进,相关产品销路畅通。
他们将源头运来的建筑垃圾按照砖、石头、混凝土等分别存储、分别处理、分别再利用。
在整个工艺过程中,渣土要经过两次破碎、两次筛分,达到最终粒径要求。
产品或者直接销售,或深加工后销售。