药用高分子材料第三章高分子材料的物理化学性质
- 格式:ppt
- 大小:1.36 MB
- 文档页数:81
高分子材料的化学和物理性质高分子材料是一类具有特殊性质和应用价值的化学材料,它们通常是由重复单元构成的大分子,有着十分复杂的结构和多种功能。
在现代工业、医学、农业等领域中,广泛应用于各种领域中,是一种非常重要的材料。
高分子材料的化学性质高分子材料的化学性质表现在两个方面:其一是基础化学性质,包括构成元素、原子价、化学键的类型等;其二是高分子分子结构和性质之间的关系。
高分子材料的构成元素主要是碳、氢、氧、氮等元素,其中碳和氢的比例最高,这使得高分子材料具有了很高的稳定性和化学惰性。
而由此所形成的非极性高分子的亲水性较低,故表面本身具有的粘性和换能功较大。
高分子材料的原子(分子)价数,是高分子材料的结构和性质之间的重要关系基础,特别是对于它们的物理性质有着重要影响。
其中,材料的原子价数越大,它与其它原子、离子相互结合能力就越大,其物质的力学稳定性也就更强。
而材料的原子价数越小,由此形成的键能越小,就更容易被热或光线破坏。
高分子材料的化学键类型为共价键和离子键,其中,共价键属于共享电子对,包括单键、双键、三键等,具有稳定的结构和物理性质;离子键属于不同原子间电子转移形成的强化学键,具有高的凝结热和强的结构稳定性,但它们化学稳定性差,较易水解,交联性小,因此会对材料的化学性质产生较大的影响。
高分子材料的分子结构和性质之间的关系,是高分子材料化学性质研究的重点之一。
高分子分子结构的多样性制约了高分子材料的性能与用途,而这一特性又与材料的原子价数和化学键相关。
高分子材料的物理性质高分子材料的物理性质主要包括力学性质、热力学性质、电学性质和光学性质。
高分子材料的力学性质是指这类材料在承受外力时所产生的反应。
它通常表现为弹性、塑性和黏弹性等,而其中最为重要的是强度、韧度和硬度。
高分子材料的热力学性质是指高分子材料物质在热力学条件下的行为。
热力学性质包括热膨胀系数、热导率、比热等,高分子材料的这些性质直接影响着高分子材料的应用。
高分子材料的物理和化学性质高分子材料是一类重要的工程材料,具有众多独特的物理和化学性质,使其在许多领域中得到广泛应用。
本文将从分子结构、热学性质、力学性质、电学性质、光学性质等方面介绍高分子材料的物理和化学性质。
一、分子结构高分子分子量通常在10^3-10^7之间,相比小分子而言,高分子分子量大,分子体积大,交联度高,分子链上的键合弱、回旋自由度多,这些特征决定了高分子材料具有多段构象、异构性、无规共聚物的存在。
对高分子分子结构的理解对于控制其物理和化学性质,设计合理的高分子材料非常重要。
二、热学性质热学性质是高分子材料性质中关键的一部分,它们决定了高分子材料在各种物理和化学环境中的稳定性和可用性。
热学性质包括热膨胀系数、玻璃化转变、热导率、热变形温度等。
其中,热膨胀系数是指材料在温度变化过程中体积或长度的变化率,该性质对于热稳定性和耐温性的评价非常重要。
玻璃化转变指高分子材料在升温过程中的玻璃化转变温度,此时材料呈脆性固态,具有高强度和刚度,但失去了弹性。
三、力学性质高分子材料的力学性质是其在工程领域中的应用最重要的性质之一,包括拉伸强度、弯曲强度、冲击强度、硬度等。
高分子材料的力学性质与材料的分子结构密切相关,如分子量、分子量分布、交联度、分子链的取向等。
其中,拉伸强度是材料在拉伸或压缩下的强度;弯曲强度是材料在受力时抵抗变形的能力;冲击强度是指材料在受冲击载荷下的抗冲击能力;硬度是表征材料耐磨性能的一个参数。
四、电学性质电学性质包括电阻率、介电常数、击穿电压等,与高分子材料在电子器件中的应用和可靠性密切相关。
高分子材料的电学性质受到其分子结构、极性、表面状态等因素的影响。
通过改变材料的化学和物理参数,可以改善其电学性能。
五、光学性质高分子材料的光学性质是其在光电领域中的重要应用性能,包括折射率、透明度、吸收系数等。
高分子材料的光学性质取决于分子的键长、键角、现场分布等因素。
通过控制高分子材料分子结构和表面状态等参数来控制其光学性质,从而开发出新的光电器件。
第三章一、填空1.溶胀是指。
2.市售的药用高分子材料在溶解时应采用适宜的方法,使颗粒,防止。
对易溶于热水的药用高分子材料应先用润湿分散,然后加热使之溶解。
3.在高分子与溶剂的溶度参数相近时,凡属亲电子性溶剂,能和高分子进行而有利于溶解;溶剂与高分子基团之间能生成,也有利于溶解。
4.凝胶是指,高分子溶液转变为凝胶的过程称为。
分子形状愈,溶液温度愈有利于该过程。
5. 根据高分子所表现的力学性质和分子热运动的特征,可将高分子的物理状态分为、、,影响这些状态相互转变的主要因素是。
对小分子量的线形聚合物,无,对交联聚合物,无。
6.玻璃化温度是指,粘流温度是指。
7.药物的释放过程是,可用定律来描述,用公式表示为,式中的负号表示,由该定律可知,是引起扩散的先决条件。
药物通过聚合物薄膜的释放是释放。
药物通过疏水性聚合物骨架的释放量与呈线形关系,符合方程。
8.根据高分子交联键性质的不同,凝胶可分为、。
根据凝胶中含液量的多少又可分为、。
9 水凝胶是,为结构。
水凝胶具有、、的性质。
10 聚合物的渗透性及透气性受聚合物的结构和物理状态影响很大,一般来说,温度升高,渗透性;链的柔性,渗透性提高;结晶度越大,渗透性。
11、环境敏感水凝胶又称为,根据环境变化类型不同,又可划分为、水凝胶、盐敏水凝胶、光敏水凝胶等。
阴离子型水凝胶平衡溶胀度随pH ;阳离子型水凝胶平衡溶胀度随pH 。
12、理想的生物粘附性药物传递系统的粘附性存在3种作用机制:、、链之间产生微弱的化学键。
13、聚合物的溶剂选择主要遵守以下原则:、、。
14、聚丙烯酸含有分子内氢键,其Tg比聚丙烯酸甲酯的Tg 。
15、聚合物A和B能比较好的相容,则共混聚合物的Tg与T g,A和T g,B的关系是。
16、在药物制剂中,药物通过聚合物的扩散模型简要来说有两种类型:一类是,另一类是。
17、在一定温度下,熔融状态的聚合物在一定负荷下,单位时间内经特定毛细管孔挤出的重量称为。
二、选择题A 应先充分溶胀,再适当加热搅拌使其溶解。
药⽤⾼分⼦材料介绍现代药剂学——⾼分⼦材料在药剂中的应⽤介绍⾼分⼦材料作为药物的载体,应具备的条件:适宜的载药能⼒;载药后有适宜的释药能⼒;⽆毒、⽆抗原性并且具有良好的⽣物相溶性。
此外,根据制剂的加⼯成型要求,还应具备适宜的分⼦量和理化性质。
⼀、⾼分⼦材料的基本概论(⼀)⾼分⼦化合物的概念⾼分⼦化合物(macromolecules)简称⾼分⼦。
它⼤致分为有机⾼分⼦化合物(简称有机⾼分⼦)和⽆机⾼分⼦化合物(⽆机⾼分⼦)。
⾼分⼦化合物⼜称为聚合物或⾼聚物,是指分⼦量在104以上的⼀类化合物。
它们是由许多简单的结构单元以共价键重复连接⽽成的分⼦。
(⼆)重复单元——是⾼分⼦链的基本组成单位。
聚⼄烯[—CH2—CH2—]n。
⽅括号表⽰重复连接,指整个分⼦中由许多个这样的重复单元依次相连⽽成,n是重复单元的个数,⼜叫聚合度(Degree of Polymerization)。
它是⼀个平均值,即该聚合物中所含同系分⼦重复单元数的平均值。
测定⽅法或计算⽅法不同,得到的平均值的⼤⼩和含义不同。
聚合物的分⼦量M是重复单元分⼦量M o与聚合度(DP)的乘积:M=Mo×DP 例如,聚氯⼄烯分⼦量为5万~15万,重复单元分⼦量M o=62.5,则平均聚合度DP=800~2400。
也即⼀个聚氯⼄烯分⼦由800~2400个氯⼄烯结构单元组合⽽成的。
重复单元连接成的线型⼤分⼦,类似⼀条长链,因此,有时,将重复单元称为链节(link)。
对于聚⼄烯、聚氯⼄烯这类分⼦,它们的重复单元与合成它们的起始原料的组成相同,仅仅是电⼦结构稍有改变,所以这类⾼分⼦的重复单元就是单体单元,或者说,它是由⼀种单体聚合⽽成的聚合物,称为均聚物。
由两种以上单体共聚⽽成的聚合物叫做共聚物。
这些⾼分⼦的重复单元与单体结构不完全相同。
(三)⾼分⼦化合物的命名1.习惯命名按照习惯,聚合物往往根据来源和制备⽅法来命名。
天然⾼分⼦⼤都有专门的名称。
如,纤维素、淀粉、蛋⽩质,还有甲壳素、阿拉伯胶、海藻酸等。
高分子材料的物理化学特性高分子材料是一类非常常见的材料,广泛应用于各种领域,例如建筑、汽车、电子、医疗、生物等领域。
高分子材料独特的物理化学特性是制造它的原材料和生产工艺的结果,了解这些特性可以帮助我们更好地设计和制造高分子材料产品,提高其性能和可靠性。
一、高分子的分子结构高分子是由大量单体分子通过聚合反应形成的长链分子。
它们通常是由碳、氢、氧、氮等元素组成的大分子,其基本结构包括主链和侧链。
主链是高分子分子结构的基本框架,侧链则可以增强或改变高分子的性质。
例如,聚氨酯聚合物的侧链可以是甲基、乙基、丁基或苯基等,不同侧链对聚氨酯材料的性质有着不同的影响。
二、高分子的力学特性高分子材料的力学特性是指其在外部力下的响应行为,包括弯曲、拉伸、压缩、剪切等方面。
高分子材料的力学特性主要由分子结构、分子量、分子量分布、化学成分、注射成型条件等因素决定。
高分子材料的弹性模量、屈服强度、断裂韧性等力学特性是确定其使用寿命和耐用性的关键因素。
三、高分子的热学特性高分子材料的热学特性是指其在温度变化下的物理行为。
高分子材料的热容量、热导率、线膨胀系数等热学特性对于高分子材料的加工工艺、使用环境和耐热性等都有很大的影响。
例如,聚苯乙烯 (PS) 材料的热导率很低,因此在高温环境下很难进行加工和使用。
四、高分子的光学特性高分子材料的光学特性是指其在光学上的反应和行为,包括折射率、透过率、发光性等。
高分子材料中的原子和分子之间的电子极化、氢键和范德瓦尔斯力等,影响其光学特性。
例如,聚苯醚 (PPO) 材料的折射率很高,它常用于制造反射镜、透镜等光学器件。
五、高分子的电学特性高分子材料的电学特性是指其在电场下的反应行为,包括电阻率、介电常数、电容等方面。
高分子材料的电学特性主要来自于电子从一个分子到另一个分子的传递。
例如,聚乙烯 (PE) 材料的电阻率很低,因此它常用于制造电线和缆线等电子器件。
在现代工业领域中,高分子材料的应用越来越广泛,它们的物理化学特性已经成为人们研究和制造高性能高分子材料的关键。
第一章绪论一、高分子基本概念1、高分子的定义高分子:也常称聚合物,由一种或多种小分子通过共价键连接而成的链状或网状分子。
药用高分子材料:药品生产和加工制造过程中所使用的高分子材料,它是高分子材料的重要组成部分,具有高分子的一切通性,但有自己的特殊性。
超分子聚集体:将单体单元通过可逆和高度取向的非共价相互作用结合而形成的大尺度规则组装体结构。
单体单元:与单体分子的原子种类和各种原子的个数完全相同、仅电子结构有所改变的结构单元。
结构单元:构成高分子主链结构一部分的单个原子或原子团,可包含一个或多个链单元。
2、高聚物的分类与命名高聚物:由重复单元链接而成的高分子化合物。
(1)分类:有机高聚物(包括碳链高聚物和杂链高聚物)、元素有机高聚物、无机高聚物(2)命名1)化学名称:①以单体或假想单体名称为基础,在其前面加“聚”字。
②由两种单体通过缩聚反应合成的高分子:a.“聚”+两单体生成的产物名称:聚对苯二甲酸乙二酯、聚己二酰己二胺b.两单体名称简称加后缀“树脂”:酚醛树脂、脲醛树脂③由两种单体通过链式聚合反应合成的共聚物:两单体名称或简称之间 +“-”+“共聚物”:如,乙烯和乙酸乙烯酯的共聚产物叫“乙烯-乙酸乙烯酯共聚物”2)习惯命名:①聚合物的英文缩写,比如,EVA(乙烯-醋酸乙烯,Ethylene- Vinyl Acetate)的共聚物)。
②“聚”+高分子主链结构中的特征功能团,指的是一类的高分子,而非单种高分子,如:含酰胺键-CONH-,聚酰胺(polyamide);含醚键-O-:聚醚(polyether);含酯键-COO-,聚酯- ,聚砜(polysulfone)。
(polyester);含砜键-SO2③根据功能或用途定名,比如,共聚物型的合成橡胶,从共聚单体中各取一字,后加“橡胶”:丁苯橡胶、丁腈橡胶、乙丙橡胶。
又比如纤维通常聚合物俗称后面加“纶”。
④其它,淀粉、的确良、有机玻璃、玻璃钢。
3)商品名:尼龙、卡波末4)系统命名:先确定重复结构单元,然后,按规定排出重复结构单元中的二级单元顺序,再给重复结构单元命名,最后在重复结构单元名前加“聚”字。
高分子材料的化学与物理性质高分子材料是现代化学工业中非常重要的一类材料。
由于其独特的分子结构和物理性质,高分子材料在各种领域都有广泛的应用。
比如,聚合物材料用于制备塑料、橡胶、纤维等物质,在医疗、电子、航空等领域中也有很多应用。
那么,高分子材料的化学和物理性质是什么?了解这些特性有什么意义?接下来我们深入探讨。
一、高分子材料的化学性质高分子材料的化学性质与其分子结构有关。
高分子材料通常是由重复的单体分子组成的巨大分子,这样的分子结构决定了高分子材料具有独特的化学特性和反应规律。
首先,高分子材料可以进行链延长反应。
链延长是指通过加入新的单体结构,使高分子链继续增长,形成更长的高分子链的反应。
这个过程通常是通过自由基反应、阳离子反应和阴离子反应来实现的。
例如,聚乙烯是由乙烯单体分子通过自由基反应逐渐递增而成的。
其次,高分子材料还可以进行聚合反应。
聚合反应是指仅仅在特定的反应条件下,使单体分子链之间的化学键键合成,以形成高分子链的过程。
聚合反应是一种常见的高分子化学反应,其反应方式受热量、光强、催化剂和其他环境因素的影响,不同的聚合条件可以产生不同的聚合体。
最后,高分子材料还可以进行交联反应。
交联反应是指在高分子材料中引入交联的反应性物质,从而形成高分子材料内部的三维结构。
这种交联化学反应可以通过光固化、热固化和辐射固化等多种方法实现。
交联反应可以使高分子材料具有更高的稳定性和强度,并改善其耐化学性和耐热性等性能。
二、高分子材料的物理性质高分子材料的物理性质影响着材料在各个领域中的应用。
高分子材料常常表现出典型的高分子性质,如高分子链的柔性、分子排列和相互作用等。
首先,高分子材料具有重量轻、强度高和断裂韧性好等性质。
这些性质使高分子材料被广泛应用于轻型结构、柔性设备和耐磨设备等领域。
其次,高分子材料具有良好的电学和热学性能。
例如,聚苯乙烯的介电常数非常低,它的耐热性和耐腐蚀性也很好。
聚乙烯在高温下具有较高的电绝缘性能,因此被广泛应用于电线电缆绝缘层。