新人教版八年级上第15章《整式的乘除与因式分解》单元测试题
- 格式:doc
- 大小:46.50 KB
- 文档页数:4
人教版数学八年级上册第15章整式的乘法与因式分解单元测试题一、选择题(每小题3分,共30分) 1.(2018·河南)下列运算正确的是CA .(-x 2)3=-x 5B .x 2+x 3=x 5C .x 3·x 4=x 7D .2x 3-x 3=1 2.(2018·南京)计算a 3·(a 3)2的结果是B A .a 8 B .a 9 C .a 11 D .a 18 3.下列计算错误的是CA .(5-2)0=1B .28x 4y 2÷7x 3=4xy 2C .(4xy 2-6x 2y +2xy)÷2xy =2y -3xD .(a -5)(a +3)=a 2-2a -15 4.(毕节中考)下列因式分解正确的是BA .a 4b -6a 3b +9a 2b =a 2b(a 2-6a +9)B .x 2-x +14=(x -12)2C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y)(4x -y)5.(2018·河北)若2n +2n +2n +2n =2,则n =A A .-1 B .-2 C .0 D .146.计算:(a -b +3)(a +b -3)=C A .a 2+b 2-9 B .a 2-b 2-6b -9C .a 2-b 2+6b -9D .a 2+b 2-2ab +6a +6b +97.(宁夏中考)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是DA .(a -b)2=a 2-2ab +b 2B .a(a -b)=a 2-abC .(a -b)2=a 2-b 2D .a 2-b 2=(a +b)(a -b)8.若m =2200,n =2550,则m ,n 的大小关系是B A .m>n B .m<n C .m =n D .无法确定9.多项式77x 2-13x -30可分解成(7x +a)(bx +c),其中a ,b ,c 均为整数,则a +b +c 的值为CA .0B .10C .12D .2210.(黔东南州中考)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b)n 的展开式的各项系数,此三角形称为“杨辉三角”.A .2017B .2016C .191D .190 二、填空题(每小题3分,共15分)11.(2018·上海)计算:(a +1)2-a 2=2a +1.12.(2018·沈阳)因式分解:3x 3-12x =3x(x +2)(x -2). 13.已知a m =3,a n =2,则a 2m-3n=98. 14.(内江中考)若实数x 满足x 2-2x -1=0,则2x 3-7x 2+4x -2017=-2020.15.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;…….按此规律,第n 个等式为(n +1)2-1=n(n +2).三、解答题(共75分) 16.(8分)计算:(1)(2018·济宁)(y +2)(y -2)-(y -1)(y +5); (2)(-2a 2b 3)÷(-6ab 2)·(-4a 2b). 解:-4y +1 解:-43a 3b 217.(9分)用乘法公式计算: (1)982; (2)899×901+1. 解:9604 解:81000018.(9分)分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n. 解:2a(3a +1)(3a -1) 解:(ab -3)2 解:(m -n)(m +n +2)19.(9分)先化简,再求值:(1)(随州中考)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12;解:原式=4-2ab ,当ab =-12时,原式=5(2)[(x +2y)(x -2y)-(x +4y)2]÷4y ,其中x =-5,y =2. 解:原式=-2x -5y ,当x =-5,y =2时,原式=020.(9分)如图,某市有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解:绿化面积为(3a +b)(2a +b)-(a +b)2=(5a 2+3ab)平方米,当a =3,b =2时,5a 2+3ab =63,即绿化面积为63平方米21.(10分)已知m 2=n +2,n 2=m +2(m ≠n),求m 3-2mn +n 3的值.解:m 3-2mn +n 3=m(n +2)-2mn +n(m +2)=2(m +n),m 2-n 2=(n +2)-(m +2)=n -m ,∴(m +n)(m -n)=n -m ,∵m ≠n ,∴m +n =-1,∴m 3-2mn +n 3=2(m +n)=2×(-1)=-222.(10分)(2018·大连)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是a +b =50.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m ×n ,…,56×4,57×3,58×2,59×1.猜想mn 的最大值为900,并用你学过的知识加以证明.解:(2)【类比】由题意,可得m +n =60,将n =60-m 代入mn ,得mn =-m 2+60m =-(m -30)2+900,∴m =30时,mn 的最大值为900.故答案为90023.(11分)(2018·自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(E v lcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N(a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作:x =log a N.比如指数式24=16可以转化为4=log 216,对数式2=log 525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a (M ·N)=log a M +log a N(a >0,a ≠1,M >0,N >0);理由如下:设log a M =m ,log a N =n ,则M =a m ,N =a n∴M ·N =a m ·a n =a m +n ,由对数的定义得m +n =log a (M ·N)又∵m +n =log a M +log a N ∴log a (M ·N)=log a M +log a N 解决以下问题:(1)将指数43=64转化为对数式3=log 464;(2)证明log a MN=log a M -log a N ;(a >0,a ≠1,M >0,N >0)(3)拓展运用:计算log 32+log 36-log 34=1. 解:(1)由题意可得,指数式43=64写成对数式为:3=log 464,故答案为:3=log 464 (2)设log a M =m ,log a N =n ,则M =a m,N =a n,∴M N =a m a n =a m -n ,由对数的定义得m -n =log a M N,又∵m -n =log a M -log a N ,∴log a MN=log a M -log a N(a >0,a ≠1,M >0,N >0) (3)log 32+log36-log34=log3(2×6÷4)=log33=1,故答案为:1人教版数学八年级上册第14章整式的乘法与因式分解单元测试题一、选择题(本大题共10小题,每小题4分,满分40分)1.下列运算正确的是A.a3·a3=a9B.a3+a3=a6C.a3·a3=a6D.a2·a3=a62.y m+2可以改写成A.2y mB.y m·y2C.(y m)2D.y m+y23.若(x-1)0=1,则A.x≥1B.x≤1C.x≠1D.x≠04.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2abD.(a+b)(a-b)=a2-b25.下列因式分解正确的是A.12a2b-8ac+4a=4a(3ab-2c)B.-4x2+1=(1+2x)(1-2x)C.4b2+4b-1=(2b-1)2D.a2+ab+b2=(a+b)26.下列式子可以运用平方差公式运算的有①(a+b)(-b+a);②(-a+b)(a-b);③(a+b)(-a-b);④(a-b)(-a-b).A.1个B.2个C.3个D.4个7.(15x2y-10xy2)÷(-5xy)的结果是A.-3x+2yB.3x-2yC.-3x+2D.-3x-28.将下列多项式分解因式,结果中不含因式x-1的是A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+19.已知a+b=5,ab=3,则a2+b2等于A.25B.22C.19D.1310.如果x2+x+1=0,那么x2016+x2015+x2014+…+x3+x2+x的值为A.3B.2C.1D.0二、填空题(本大题共4小题,每小题5分,满分20分)11.多项式9x2+1加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是6x(答案不唯一).(填上一个你认为正确的即可)12.已知x2+2x+4=5,则4x2+8x-3=1.13.若关于x的二次三项式x2+ax+是完全平方式,则a的值是±1.14.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列.如图,观察下面的杨辉三角:11 112 1133 11464 115101051(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…按照前面的规律,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.三、解答题(本大题共5小题,满分60分)15.(10分)计算:(x-2)(x+6)-(6x4-4x3-2x2)÷(-2x2).解:原式=x2+4x-12-(-3x2+2x+1)=x2+4x-12+3x2-2x-1=4x2+2x-13.16.(12分)观察下列各式:(x2-1)÷(x-1)=x+1;(x3-1)÷(x-1)=x2+x+1;(x4-1)÷(x-1)=x3+x2+x+1;(x5-1)÷(x-1)=x4+x3+x2+x+1;(1)猜想:(x7-1)÷(x-1)=x6+x5+x4+x3+x2+x+1;(27-1)÷(2-1)=26+25+24+23+22+2+1.(2)根据(1)猜想的结论,计算:1+2+22+23+24+25+26+27.解:(2)原式=(28-1)÷(2-1)=28-1=255.17.(12分)仔细阅读下面的例题:【例题】已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n,∴解得n=-7,m=-21.∴另一个因式为(x-7),m的值为-21.仿照以上方法解答问题:已知二次三项式3x2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.解:设另一个因式为(x+n),得3x2+5x-m=(3x-1)(x+n),则3x2+5x-m=3x2+(3n-1)x-n,∴解得n=2,m=2.∴另一个因式为(x+2),m的值为2.18.(12分)若x满足(9-x)(x-4)=4,求(4-x)2+(x-9)2的值.解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17.请仿照上面的方法求解问题:(1)若x满足(5-x)(x-2)=2,求(5-x)2+(x-2)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF,DF为边作正方形,求阴影部分的面积.解:(1)设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,∴(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5.(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)·(x-3)=48,∴(x-1)-(x-3)=2,∴阴影部分的面积=FM2-DF2=(x-1)2-(x-3)2.设(x-1)=a,(x-3)=b,则(x-1)(x-3)=ab=48,a-b=(x-1)-(x-3)=2,∴a=8,b=6,a+b=14,∴(x-1)2-(x-3)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.19.(14分)发现任意五个连续整数的平方和是5的倍数.【验证】(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个数为n,写出它们的平方和,并说明是5的倍数.【延伸】(3)任意三个连续整数的平方和被3除的余数是几呢?请写出理由.解:(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)设五个连续整数的中间一个数为n,则其余的4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又∵n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数.(3)设三个连续整数的中间一个数为n,则其余的2个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.人教版数学八年级上册第16章整式的乘法与因式分解单元测试题 一、选择题(每小题3分,共30分)1.下列式子变形是因式分解的是( D ) A .x 2-2x -3=x (x -2)-3 B .x 2-2x -3=(x -1)2-4 C .(x +1)(x -3)=x 2-2x -3 D .x 2-2x -3=(x +1)(x -3) 2.[2018·盐城]下列运算正确的是( C ) A .a 2+a 2=a 4 B .a 3÷a =a 3 C .a 2·a 3=a 5 D .(a 2)4=a 6 3.分解因式a 2b -b 的正确结果是( A ) A .b (a +1)(a -1) B .a (b +1)(b -1) C .b (a +1)(a +1) D .b (a -1)2 4.[2017·江永校级期中]若a -b =8,a 2-b 2=72,则a +b 的值为( A ) A .9 B .-9 C .27 D .-27 【解析】 ∵a -b =8,a 2-b 2=(a +b )(a -b )=72, ∴a +b =9.5.已知4x 2+4mx +36能用完全平方公式因式分解,则m 的值为( D ) A .2 B .±2 C .-6 D .±6 【解析】 抓住完全平方公式的特点,可知4x 2+4mx +36=(2x ±6)2=4x 2±24x +36,∴4m =±24,∴m =±6. 6.[2018春·宿松期末]已知(m +n )2=11,mn =2,则(m -n )2的值为( C ) A .7 B .5 C .3 D .1 【解析】 ∵(m +n )2=11,mn =2, ∴m 2+n 2+2mn =11,∴m 2+n 2=11-2mn =11-4=7, ∴(m -n )2=m 2+n 2-2mn =7-4=3. 7.[2017·萧山区期中]已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( D )A .-1B .1C .-2D .2 【解析】 (x -a )(x 2+2x -1) =x 3+(2-a )x 2-(2a +1)x +a ,∵乘积中不含x 2项,∴2-a =0,解得a =2.8.运用完全平方公式计算89.82的最佳选择是( C ) A .(89+0.8)2 B .(80+9.8)2 C .(90-0.2)2 D .(100-10.2)2 9.[2017·北京模拟]已知:a =2 018x +2 018,b =2 018x +2 019,c =2 018x +2 020,则a 2+b 2+c 2-ab -ac -bc 的值是( D )A .0B .1C .2D .3 【解析】 ∵a =2 018x +2 018,b =2 018x +2 019, c =2 018x +2 020,∴a -b =-1,b -c =-1,a -c =-2,则原式=12(2a 2+2b 2+2c 2-2ab -2bc -2ac )=12 [(a -b )2+(b -c )2+(a -c )2] =12×(1+1+4)=3. 10.[2017·睢宁期中](2+1)×(22+1)×(24+1)(28+1)×(216+1)的计算结果的个位数字是( B )A .8B .5C .4D .2【解析】 原式=(2-1)×(2+1)×(22+1)×(24+1)×…×(216+1) =(22-1)×(22+1)×(24+1)×…×(216+1) =(24-1)×(24+1)×…×(216+1)=232-1, ∵21=2,22=4,23=8,24=16,25=32,… ∴其结果个位数以2,4,8,6循环, ∵32÷4=8,∴232的个位数字为6, ∴原式的个位数字为6-1=5.二、填空题(每小题3分,共18分)11.因式分解:(1)[2018·沈阳]3x3-12x=__3x(x+2)(x-2)__;(2)[2018·宜宾]2a3b-4a2b2+2ab3=__2ab(a-b)2__.12.[2018·宁夏]已知m+n=12,m-n=2,则m2-n2=__24__.13.[2018·岳阳改编]已知a2+2a-1=0,则3a2+6a+2的值为__5__.【解析】由题意得a2+2a=1,原式=3(a2+2a)+2=3+2=5. 14.[2018·苏州]若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为__12__.【解析】(a+1)2-(b-1)2=(a+b)(a-b+2)=4×3=12.15.[2018春·慈溪期末]如图1,从边长为(a+5)的正方形纸片中剪去一个边长为5的正方形,剩余部分沿虚线剪开再拼成一个长方形(不重叠无缝隙),则拼成的长方形的另一边长是__a+10__.图1【解析】拼成的长方形的面积=(a+5)2-52=(a+5+5)(a+5-5)=a(a+10),∵拼成的长方形一边长为a,∴另一边长是a+10.16.将关于x的一元二次方程x2+px+q=0变形为x2=-px-q,就可将x2表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知x2-x-1=0,可用“降次法”求得x4-3x+2 019的值是__2__021__.【解析】∵x2-x-1=0,∴x2=x+1,∴x4-3x+2 019=(x+1)2-3x+2 019=x2+2x+1-3x+2 019=x2-x+2 020=x+1-x+2 020=2 021.三、解答题(共52分)17.(4分)化简:(1)[2017·舟山](m+2)(m-2)-m3×3m;(2)[6x2(xy+y2)-3x(x2y-xy2)]÷3x2y.解:(1)原式=m2-4-m2=-4;(2)原式=(6x3y+6x2y2-3x3y+3x2y2)÷3x2y=(3x3y+9x2y2)÷3x2y=3x3y÷3x2y+9x2y2÷3x2y=x+3y.18.(6分)因式分解:(1)8x2y-8xy+2y;(2)18x2-32y2.解:(1)原式=2y(4x2-4x+1)=2y(2x-1)2;(2)原式=2(9x2-16y2)=2(3x+4y)(3x-4y).19.(6分)[2018春·槐荫区期末]先化简,再求值:[(xy+2)(xy-2)-2x2y2+4]÷xy,其中x =10,y =-125.解: 原式=(x 2y 2-4-2x 2y 2+4)÷xy=-x 2y 2÷xy =-xy ,当x =10,y =-125时,原式=-xy =-10×⎝ ⎛⎭⎪⎫-125=25. 20.(8分)小颖家开了甲、乙两个超市,两个超市在3月份的销售额均为a 万元,在4月份和5月份这两个月中,甲超市的销售额平均每月增长x %,而乙超市的销售额平均每月减少x %.(1)5月份甲超市的销售额比乙超市多多少?(2)如果a =150,x =2,那么5月份甲超市的销售额比乙超市多多少万元? 解:(1)5答:5月份甲超市的销售额比乙超市多4ax %;(2)当a =150,x =2时,代入(1)中的化简式得4ax %=12(万元).答:5月份甲超市的销售额比乙超市多12万元.21.(8分)[2017·巴南区期中]材料阅读:若一个整数能表示成a 2+b 2(a ,b 是正整数)的形式,则称这个数为“完美数”. 例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b )2+b 2(a ,b 是正整数),所以a 2+2ab +2b 2也是“完美数”.(1)请你写出一个大于20小于30 的“完美数”,并判断53是否为“完美数”;(2)试判断(x 2+9y 2)(4y 2+x 2)(x ,y 是正整数)是否为“完美数”,并说明理由.解: (1)25=42+32;∵53=49+4=72+22,∴53是“完美数”;(2)(x 2+9y 2)(4y 2+x 2)是“完美数”.理由:∵(x 2+9y 2)(4y 2+x 2)=4x 2y 2+36y 4+x 4+9x 2y 2=13x 2y 2+36y 4+x 4=(6y 2+x 2)2+(xy )2,∴(x 2+9y 2)(4y 2+x 2)是“完美数”.22.(10分)[2017·张家港校级期中]对于任意有理数a ,b ,c ,d ,我们规定符号(a ,b )(c ,d )=ad -bc .例如:(1,3)(2,4)=1×4-2×3=-2.(1)(-2,,5)的值为__-22__;(2)求(3a +1,a -a +2,a -3)的值,其中a 2-4a +1=0.解: (1)(-2,,5)=-2×5-3×4=-10-12=-22;(2)(3a +1,a -a +2,a -3)=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1,∵a2-4a+1=0,∴a2-4a=-1,∴(3a+1,a-2)(a+2,a-3)=2×(-1)+1=-1.23.(10分)[2018春·鄞州区期末]教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式的最大值,最小值等.例如:因式分解x2+2x-3.原式=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);例如:求代数式2x2+4x-6的最小值.2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,∴当x=-1时,2x2+4x-6有最小值,最小值是-8.根据阅读材料,用配方法解决下列问题:(1)因式分解:m2-4m-5=__(m+1)(m-5)__;(2)当a,b为何值时,多项式a2+b2-4a+6b+18有最小值?求出这个最小值;(3)当a,b为何值时,多项式a2-2ab+2b2-2a-4b+27有最小值?求出这个最小值.解:(1)m2-4m-5=m2-4m+4-9=(m-2)2-9=(m-2+3)(m-2-3)=(m+1)(m-5);(2)∵a2+b2-4a+6b+18=(a-2)2+(b+3)2+5,∴当a=2,b=-3时,多项式a2+b2-4a+6b+18有最小值5;(3)原式=a2-2a(b+1)+(b+1)2+(b-3)2+17=(a-b-1)2+(b-3)2+17,∴当a=4,b=3时,多项式a2-2ab+2b2-2a-4b+27有最小值17.。
初中数学试卷桑水出品第十五章《整式的乘除与因式分解》单元测试一、选择题:(每小题3分,满分33)1.下列算式中结果等于的是()A.B.C.D.2.下列运算中错误的是()A.B.C.D.3.下列因式分解错误的是( )A .B .C .D .4.下列式子中是完全平方式的是()A .B .C .D .5.任意给定一个非零数,按下列程序计算,最后输出的结果是()A.B.C.+1 D.-1 6.把多项式2-8x+8分解因式,结果正确的是()A . B.2 C.2D.27.下列各式,不能用平方差公式化简的是()A .B .C .D .8.当x=3,y=1时,代数式(x+y )(x-y )+的值是( )A .6B .8C .9D .129.若+M=,则M 的值为 ( )A.xy B. 0 C.2xy D.3xy 10.如图,长方形的面积有四种表示方法:(1)(m+n)(a+b) (2)m(a+b)+n(a+b) (3)a(m+n)+b(m+n)(4)ma+mb+na+nb其中正确的表达式有( )A.(1)(4) B.(1)(2)C.(1)(3)(4) D.(1)(2)(3)(4) 11.a 、b 、c 是三角形的三条边长,则代数式,a 2-2ab- c 2+b2的值:A 、 大于零B 、小于零C 、等于零D 、与零的大小无关二、填空题:(每小题3分,满分30分) 11.代数式是一个完全平方式,则k的值是( )12.若=1,则x的取值范围是 .13.若的展开式中,不含有项,则-1的值为 .14.+ =.15.在等式÷()=,则括号里的整式为.16.若(x+m)(x+n)=-7x+mn,则-m-n的值为17若,则.=.18.分解因式:= _____________.19若a>0且=2,=3,则的值为___20.边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙)根据两个图形中阴影部分的面积相等,可以验证的公式是.21、代数式是一个完全平方式,则k的值是()三、解答题:(本题共7个题,满分5722(满分7)已知:=3,=2,求的值.23(满分7)观察下列各式:3×5=15,15=-15×7=35,35=-1…………………………………11×13=143,143=-1…………………………………你会发现什么规律?请将你猜想到的规律,用只含一个字母n的式子表示出来.24(满分8分)先化简,再求值:÷b-(a+b)(a-b),其中,b=-1.25(满分8分)因式分解:(1)3-27(2)26(满分8分)已知a+b=10,ab=24.,求:(1)+;(2)的值.27(满分10分)按图中所示的两种防水剂分割正方形,你能分别得出什么结论?28(满分9分)在三个整式+2xy ,+2xy,中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.。
第15章 整式的乘除与因式分解 综合测评题一、耐心选一选,你会开心(每题3分,共30分)1、下列各式:x 2·x 4,(x 2)4,x 4+x 4,(-x 4)2,与x 8相等的有( )A 、1个B 、2个C 、3个D 、 4个2、计算200420032002)1(5.132-⨯⨯⎪⎭⎫ ⎝⎛的结果为( ) A 、32 B 、-32 C 、23 D 、-23 3、若n 为正整数,且a 2n =7,(3a 3n )2-4(a 2)2n 的值为( ) A 、837 B 、2891 C 、3283D 、1225 4、下列各式:①2a 3(3a 2-2ab 2),②-(2a 3)2(b 2-3a ),③3a (2a 4-a 2b 4),④-a 4(4b 2-6a )中相等的两个是( )A 、①与②B 、②与③C 、③与④D 、④与①5、下列各式可以用平方差公式计算的是( )A 、(x +y )(x -y )B 、(2x -3y )(3x +2y )C 、(-x -y )(x +y )D 、(-a 21+b )(a 21-b ) 6、下列计算结果正确的是( )A 、(x +2)(x -4)=x 2-8B 、(3xy -1)(3xy +1)=3x 2y 2-1C 、(-3x +y )(3x +y )=9x 2-y 2D 、-(x -4)(x +4)=16-x 2 7、如果a =2000x +2001,b =2000x +2002,c =2000x +2003,那么a 2+b 2+c 2-ab -bc -ac 的值为( )A 、0B 、1C 、2D 、38、已知x 2+y 2-2x -6y =-10,则x 2005y 2的值为( )A 、91B 、9C 、1D 、999、若x 2-ax -1可以分解为(x -2)(x +b ),则a +b 的值为( )A 、-1B 、1C 、-2D 、210、若a 、b 、c 为一个三角形的三边,则代数式(a -c )2-b 2的值为( )A 、一定为正数B 、一定为负数C 、可能为正数,也可能为负数D 、可能为零二、精心填一填,你会轻松(每题4分,共32分)11、若a +3b -2=0,则3a ·27b = .12、已知x n =5,y n =3,则(xy )2n = .13、已知(x 2+nx +3)(x 2-3x +m )的展开式中不含x 2和x 3项,则m = ,n = .14、(-a -b )(a -b )=-[( )(a -b )]=-[( )2-( )2]= .15、若|a -n |+(b -m )2=0,则a 2m -b 2n = .16、若(m +n )2-6(m +n )+9=0,则m +n = .17、观察下列各式:(x -1)(x +1)=x 2-1.(x -1)(x 2+x +1)=x 3-1.(x -1)(x 3+x 2+x +1)=x 4-1.依据上面的各式的规律可得:(x -1)(x n +x n -1+……+x +1)= .18、(1-)611)(511)(411)(311)(2122222----……(1-)1011)(9122-= .. 三、细心做一做,你会成功(共60分)19、分解因式:(1)8(a -b )2-12(b -a ).(2)(a +2b )2-a 2-2ab .(3)-2(m -n )2+32(4)x (x -5)2+x (x -5)(x +5)20、计算:(1)20062005200520032005220052323-+-⨯-(2)212122+-+323222+-+……+100991009922+-21、先化简,再求值已知x(x-1)-(x2-y)=-2,求222yx-xy的值.22、如图,边长为a的正方形内有一个边长为b的小正方形.(1)请计算图1中阴影部分的面积;(2)小明把阴影部分拼成了一个长方形,如图2,这个长方形的长和宽分别是多少?面积又是多少?23、观察下列各式,你会发现什么规律?3×5=15,而15=42-1.5×7=35,而35=62-1.……11×13=143,而143=122-1.请你将猜想到的规律用只含有一个字母的式子表示出来,并直接写出99×101的结果?24、已知△ABC三边长分别为a、b、c,且a、b、c满足等式3(a2+b2+c2)=(a+b+c)2,试判断△ABC的形状.25、阅读材料,回答下列问题:我们知道对于二次三项式222x ax a ++这样的完全平方式,可以用公式将它分解成2()x a +的形式,但是,对于二次三项式2223x ax a +-就不能直接用完全平方公式,可以采用如下方法:2222222323x ax a x ax a a a +-=++--=22()(2)x a a +-=(3)()x a x a +-.(1)像上面这样把二次三项式分解因式的数学方法是__________________.(2)这种方法的关键是______________________________.(3)用上述方法把2815a a -+分解因式.26、如图,2009个正方形由小到大套在一起,从外向里相间画上阴影,最外面一层画阴影,最里面一层画阴影,最外面的正方形的边长为2009cm ,向里依次为2008cm ,2007cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?参考答案:一、1.B 2.C 3.B 4.D 5.A 6.D 7.D 8.B 9.A 10.B二、11.3a +3b =32=9 12.225 13.m =6,n =314.依次填:a +b ,a 、b ,b 2-a 2 15.mn (n -m ) 16.2或4 17.x n +1-1 18.2011 三、19、解:(1)8(a -b )2-12(b -a )=4(a -b )[2(a -b )+3]=4(a -b )(2a -2b +3).(2)(a +2b )2-a 2-2ab =(a +2b )2-a (a +2b )=(a +2b )[(a +2b )-a ]=2b (a +2b ).(3)-2(m -n )2+32=-2[(m -n )2-16]=-2(m -n +4)(m -n -4).(4)x (x -5)2+x (x -5)(x +5)= x (x -5)[(x -5)+(x +5)]=2x 2(x -5). 20、解:(1) ()20062003)12005(2006)12005(20032006200620052003200320052006)12005(20052003220052005222222=--=-⨯-⨯=-+--. (2)212122+-+323222+-+…+100991009922+- =()+++-+++-32)32)(32(21)21)(21…+10099)10099)(10099(++- =(1-2)+(2-3)+……+(99-100)=1-100=-99.21、解:222y x +-xy =2)(22222y x xy y x -=-+,将x (x -1)-(x 2-y )=-2去括号整理得:y -x =-2,即x -y =2,将其代入2)(2y x -得该式等于2.即当x (x -1)-(x 2-y )=-2时,222y x +-xy 的值为2. 22、(1)由图中的数据可得:图中阴影部分的面积为:a 2-b 2.(2)由图可得:该长方形的长为:a +b ,又因其面积为a 2-b 2.且a 2-b 2=(a +b )(a -b ),由此可得:该矩形的宽为:a -b .23、观察所给的等式不难发现:上面各式的左边的两个数为连续奇数,而等号的右边的第一个数的底恰好比左边的第一个数大1,由此得出上面各式的规律为:n (n +2)=(n +1)2-1.24、解:因3(a 2+b 2+c 2)=(a +b +c )2展开后可变为:2(a 2+b 2+c 2)=2(ab +bc +ac ), 即2(a 2+b 2+c 2)-2(ab +bc +ac )=0,所以该式进一步可变为:(a -b )2+(b -c )2+(a -c )2=0,由此可得:a =b =c ,所以该三角形为等边三角形.25、(1)配方法;(2)凑成完全平方式;(3)2815a a -+=28161a a -+-=22(4)1a --=(3)(5)a a --26、每一块阴影的面积可以表示成相邻正方形的面积的差.而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.于是222222(20092008)(20072006)(32)1S =-+-++-+L 阴影220092008200720063212019045()cm =+++++++=L 答:所有阴影部分的面积和是2019045cm 2.【点评】由题意列出的算式得运用结合律组合运算,其中组合后适时选用平方差公式简化运算是求解的关键.。
第十五章 整式的乘除与因式分解单元自测题(满分: 100 分时间: 60 分钟)一、选择题: ( 每题小 3 分,共 24 分 )1. 以下说法: ① 2x 2- 3x+1=0 是多项式; ②单项式- 3π xy 2 的系数是- 3;③ 0 是单项式;④ 2x5是单项式.此中正确的选项是()3A. ①②③B.②③C.③D. ②③④ 2. 以下各式:① (a - 2b)(3a+b)=3a 2-5ab - 2b 2;② (2x+1)(2x - 1)=4x 2- x - 1; ③( x - y )( x + y ) =x 2-y 2;④ (x+2)(3x+6)=3x 2+6x+12,此中正确的有 ( )A.4 个B.3 个C.2 个D.1 个3. 已知 a + b=4 , x + y=10 ,则 a 2 +2ab+b 2- x -y 的值是 ( )A.6B.14C. -6D.4 4. 已知 x 2- 12x+32 能够分解为 (x + a)(x + b),则 a + b的值是( )A. -12B.12C.18D.- 185. 已知- 3xy 2m+3n 与 5x 2n -3y 8 的和是单项式,则 m 、 n 的值分别是 ()A. m=2 , n=1B. m=1 , n=1C. m=1 , n=3D. m=1 , n=26. 已知 4n - m=4,则 (m -4n) 2- 3(m -4n) - 10 的值是 ( )A. -6B.6C.18D. - 387. 若 a 2+(m - 3)a+4 是一个完整平方式,则 m 的值应是 ( )A.1 或 5B.1C.7 或-1D. - 18. 如图,在边长为 a 的正方形中挖掉一个边长为 b 的小正 aab方形 (a > b) ,把余下的部分剪拼成一个矩形。
经过计算这两个 图形的面积考证了一个等式,这个等式是 ( )A.(a+2b)(a - b)=a 2+ab - 2b 2;B.(a+b) 2=a 2+2ab+b 2; bC.a 2- b 2=(a+b)(a -b) ;D.(a - b) 2=a 2- 2ab - b 2. b二、填空题: ( 每题 3 分,共24 分)9. 在整式- 2xy 、- a+3b 、 2x3 、 0、 x 2+6x+7?、 2mn 、 ab 3a 2 、 x 中, ?单项式63 2有;多项式有。
《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。
A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。
第15章 整式的乘除与因式分解 测试卷注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.若32144mnx y x y x ÷=,则m 、n 满足条件的取值为 ( ). A .m =6,n =1 B .m =5,n =1 C .m =5,n =0 D .m =6,n =0 2.下列各式可以用平方差公式的是( ).A .(4)(4)a c a c -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D . 11()()22x y x y --+ 3.下列各式中是完全平方公式的是( ).A .224a x + B .2244x ax a +-- C .2444x x ++ D . 2412x x ++-4.在(1)623[()]a a -⋅-;(2)34)(a a -⋅;(3)2332)()(a a ⋅-;(4)43()a --中,计算结果为12a -的有( ).A .(1)和(3)B .(1)和(2)C .(2)和(3)D .(3)和(4)5.为了应用平方差公式计算()()a b c a b c -++-,必须先适当变形,下列各变形中,正确的是( ).A .()()a c b a c b +--+⎡⎤⎡⎤⎣⎦⎣⎦B .()()a b c a b c -++-⎡⎤⎡⎤⎣⎦⎣⎦C .()()b c a b c a +--+⎡⎤⎡⎤⎣⎦⎣⎦D .()()a b c a b c --+-⎡⎤⎡⎤⎣⎦⎣⎦ 6.下列多项式相乘的结果为1242--x x 的是( ).A .)4)(3(-+x xB .)6)(2(-+x xC .)4)(3(+-x xD .)2)(6(-+x x 7.计算24(1)(1)(1)(1)x x x x -++-+的结果是( ).A .0B .2C .-2D .-5 8. 下列多项式中,含有因式)1(+y 的多项式是( ). A .2232x xy y --B .22)1()1(--+y yC .)1()1(22--+y yD .1)1(2)1(2++++y y9.如图:(如图①)在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( ).图 ① 图 ② A . a 2-b 2 =(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .(a +2b )(a -b )= a 2+ab -2b 210.观察下列等式:170=,771=,4972=,34373=,240174=,…,由此可判断1007的个位数字是( ).A .3B .7C .1D .9二、填空题(本题共4小题,每小题5分,满分20分)11.不等式22(21)(21)x x --+≤2(3)x -的解集是_______________.12.已知2ma =,16nb =,则382m n+=____________.13.已知)3)(8(22q x x px x +-++的展开式中不含2x 项和3x 项,则q p +的值=______.14.如图,从直径是2x y +的圆中挖去一个直径为x 的圆和两个直径为y 的圆,则剩余部分的面积是_______________. 三、(本题共2小题,每小题8分,满分16分) 15.化简:(1)82()()mn mn ÷ (2) )9()15()3(24322y x xy y x -⋅-÷16.用乘法公式计算:(1)49.850.2⨯; (2)2298.四、(本题共2小题,每小题8分,共16分)17.已知x 是有理数,y 是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:2()(2)x y y x y -+-.18.利用简便方法计算:222111(1)(1)(1)234--- (22)11(1)(1)910--五、(本大题共2小题,每小题10分,满分20分) 19.因式分解:(1)x x x 2718323+- (2)()222164x x -+20.先化简,再求值:22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦;其中3,2a b 4==-3.13-,, 121.223,,, 1.50-,六、(本题满分12分)21.一个正方形的一边增加3cm ,另一边减少3cm ,所得到的长方形与这个正方形的每一边减少1cm 所得到的正方形的面积相等,求原来正方形的面积. 七、(本题满分12分)22.如图,图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形。
(第15章《整式的乘除与因式分解》 练习时间60分钟)班级__________ 姓名_____ ____ 学号___ ___ 成绩一、精心选一选6小题(每小题4分,共24分)1.下列计算中正确的是 ( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=- 2. ()()22a ax x a x ++-的计算结果是 ( )A .3232a ax x -+B .33a x -C .3232a x a x -+D .322322a a ax x -++ 3.下列计算中,正确的个数有 ( ) ①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷- A .1个 B .2个 C .3个 D .4个4.是完全平方式的是 ( )A 、412+-x x B 、21x + C 1++xy x D 、122-+x x 5.下列分解因式正确的是 ( )A x 3-x=x(x 2-1)B m 2+m-6=(m+3)(m-2)C (a+4)(a-4)=a 2-16D x 2+y 2=(x+y)(x-y)6.若3x =15,3y =5,则3x -y 等于 ( )A 、5B 、15C 、3D 、10二、细心填一填6小题(每小题4分,共24分)7.计算( 2a −1)( 5a+2)的结果为__________8.=-2)3(y x ______________,9.=-0)4(π ;()()=-÷-35a a10.分解因式:162-a =________________.11.若。
=,则b b b 0122=+- 12.已知31=+a a ,则221aa +的值是 。
三、用心做一做:(52分)13.计算题(每小题5分,共15分)(1) )2)(2(2-+-x x x (2) [(x+y )2-(x -y )2]÷(2xy)(3)简便方法计算 1198992++14.把下列各式因式分解:(每小题4分,共20分)(1)3123x x - (2)a a a 1812223-+-(3)2294b a - (4)4x 2-4x+1(5)m x2+2mx+m15.先化简,再求值. (6分)+-+-aaa其中aa=-(2-).2)(33()(3)216.一个正方形的边长增加3cm,它的面积就增加39cm2,这个正方形的边长是多少?(5分)17(本题6分)对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由。
人教版数学八年级上学期《整式的乘法与因式分解》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a42.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y23.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-154.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 86.计算:(a-b+3)(a+b-3)=()A. a2+b2-9B. a2-b2-6b-9C. a2-b2+6b-9D. a2+b2-2ab+6a+6b+97.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()学_科_网...学_科_网...A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b28.若m=2200,n=2550,则m,n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定9.多项式77x2-13x-30可分解成(7x+a)(bx+c),其中a,b,c均为整数,求a+b+c之值为何?()A. 0B. 10C. 12D. 2210.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;……请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66二、填空题(每小题3分,共24分)11.计算:(-5a4)·(-8ab2)=______.12.分解因式:ab4-4ab3+4ab2=_______.13.若(2x+1)0=(3x-6)0,则x的取值范围是_______.14.已知|x-y+2|+(x+y-2)2=0,则x2-y2的值为_____.15.已知a m=3,a n=2,则a2m-3n=_____.16.若一个正方形的面积为a2+a+,则此正方形的周长为______.17.已知△ABC的三边长为整数a,b,c,且满足a2+b2-6a-4b+13=0,则c为_____.18.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为______.三、解答题(共66分)19.计算:(1) y(2x-y)+(x+y)2;(2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘法公式计算:(1)982;(2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.25.已知a,b,c为△ABC的三条边的长,试判断代数式a2-2ac+c2-b2的值的符号,并说明理由.26.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选:D.2.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y2【答案】D【解析】【分析】根据积的乘方的运算法则即可解答.【详解】根据积的乘方的运算法则可得:(-x3y)2= x6y2.故选D.【点睛】本题主要考查了积的乘方的运算法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.3.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-15【答案】C【解析】【分析】根据零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则依次计算各项,即可解答.【详解】选项A,根据零指数幂的性质可得(-2)0=1,选项A正确;选项B,根据单项式除以单项式的运算法则可得28x4y2÷7x3=4xy2,选项B正确;选项C,根据多项式除以单项式的运算法则可得(4xy2-6x2y+2xy)÷2xy=2y-3x+1,选项C错误;选项D,根据多项式乘以多项式的运算法则可得(a-5)(a+3)=a2-2a-15,选项D正确.故选C.【点睛】本题考查了零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则,熟记法则是解题的关键.4.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】B【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B考点:因式分解-运用公式法;因式分解-提公因式法.5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 8【答案】B【解析】试题分析:把等式右边根据平方差公式去括号后即可得到结果。
第十五章 整式的乘除与因式分解测试题
一、 选择题(每小题4分,共24分)
1、些列计算中正确的是( ) A a 2+b 3=2a 5 B a 4÷a=a 4 C a 2·a 4=a 8 D (-a 2)3=-a 6
2、(x-a )(x 2+ax+a 2)的计算结果是( ) A x 3+2ax 2-a 3 B x 3-a 3
C x 3+2ax-a 3
D x 2+2ax 2+2a 2-a 3
3、下面是某同学在一次检测中的计算摘录: ①3x 3·(-2x 2)=-6x 5 ②4a 3b ÷(-2a 2b)=-2a ③(a 3)2=a 5 ④(-a)3÷(-a)=-a 2 其中正确的个数有( )
A 1个
B 2个
C 3个
D 4个
4、若x 2是一个正整数的平方,则比x 大1 的整数的平方是( )
A x 2+1
B x+1
C x 2+2x+1
D x 2-2x+1 5、下列分解因式正确的是( )
A x 3-x=x(x 2-1)
B m 2+m-6=(m+3)(m-2)
C (a+4)(a-4)=a 2-16
D x 2+y 2=(x+y)(x-y)
6、如图,矩形花园ABCD 中,AB=a ,AD=b ,花园中建有一条矩形的小路LMPQ 及一条平行四边形道路 RSTK.若LM=RS=c ,则花园中可绿化部分的面积为( )。
A 、 bc-ab+ac+b 2
B 、a 2
+ab +bc-ac C 、
222-ab
二、 填空题(每小题4分,共28分)
T
K
M L C
B
A
7、(1)当x≠时,(x-4)0等于。
2)2002×(1.5)2003÷(-1)2004= (2)(
3
8、分解因式:a2-1+b2-2ab= .
9、要给n个长、宽、高分别为x,y,z的箱子打包,其打包的方式如图所示,则打包带的总长至少要
10、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值为
.
11、下表为杨辉三角系数的一部分,作用是指导读者按照规律写出形如(a+b)n(n为正整数)的展开式的系数,请仔细观察下表中的规律,填出(a+b)4展开式中所缺的系数。
(a+b)=a+b (a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
则(a+b)4=a4+ a3b+ a2b2+ ab3+b4
1
1 1
1 2 1
1 3 3 1
......
12、某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽。
发芽规律见下表(设第一年前的新芽数为a),照这样下去,第8年老芽数与总芽数的比值为(精确到0.001).
13、若x2+4x+a=(x+2)2-1成立,则满足上式a的值为
.
三、解答题:
14、(12分)
计算: [x(x2y2-xy)-y(x2-x3y)]÷x2y
15、(18分)已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3
16、(18分)
某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下的销售方案,将价格提高到原来的2.5倍,再做3次降价处理:第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.3次降价处理结果如下表:
(1)“跳楼价”占原价的百分比是多少?
(2)该商品按新销售方案销售,相比原价售完,哪种方案更盈利?。