贵阳市中考题及答案
- 格式:doc
- 大小:1.63 MB
- 文档页数:8
贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=﹣x+5,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),则d=|﹣n2+4n+5﹣(﹣n+5)|,由题意可知:﹣n2+4n+5>﹣n+5,。
选择题
下列哪个成语源自历史故事,且与战国时期的赵国有关?
A. 围魏救赵(正确答案)
B. 草船借箭
C. 纸上谈兵
D. 破釜沉舟
贵阳市的市花是什么?
A. 牡丹
B. 兰花
C. 玫瑰
D. 桂花(正确答案,若根据贵阳市实际情况)
下列哪首诗的作者是唐代诗人王维?
A. 《静夜思》
B. 《使至塞上》(正确答案)
C. 《春晓》
D. 《登鹳雀楼》
下列哪个节日与屈原紧密相关,且有赛龙舟的习俗?
A. 中秋节
B. 清明节
C. 端午节(正确答案)
D. 元宵节
下列哪部作品是中国现代文学史上第一部白话短篇小说集?
A. 《呐喊》
B. 《彷徨》
C. 《沉沦》
D. 《狂人日记》(正确答案)
“黔”是贵州省的简称,下列哪个选项正确解释了“黔”字的含义或来源?
A. 贵州多山,黔字象征山高
B. 黔为古代贵州一地名,后成简称(正确答案)
C. 黔字代表贵州的水系特点
D. 黔是贵州特产的一种植物名
下列哪句诗描绘了秋天的景色?
A. 春眠不觉晓
B. 夏日炎炎暑气高
C. 秋风萧瑟,洪波涌起(正确答案)
D. 冬去春来又一年
下列哪个词语与“坚持不懈”意思相近?
A. 半途而废
B. 持之以恒(正确答案)
C. 三心二意
D. 一曝十寒。
2025年贵州省贵阳市历史中考复习试题(答案在后面)一、单项选择题(本大题有12小题,每小题4分,共48分)1、以下哪位历史人物被誉为“中华民国临时大总统”?A. 孙中山B. 康有为C. 袁世凯D. 梁启超2、下列关于秦始皇统一六国的描述,错误的是:A. 秦始皇完成了对六国的统一,结束了长期的战国纷争B. 秦始皇采取了一系列中央集权的措施,如实行郡县制C. 秦始皇为了巩固统一,焚书坑儒,对文化进行了严格控制D. 秦始皇统一六国后,将都城迁至洛阳3、商朝是中国历史上一个重要朝代,其建立者是()。
A、周武王B、盘庚C、帝喾D、汤4、秦始皇统一六国后,为了巩固统治,采取了一系列措施。
下列选项中,哪一项是秦始皇为巩固统一而采取的措施()。
A、分封制B、郡县制C、行省制D、九品中正制5、题干:以下哪项成为中国历史上第一个提出“黄老之学”的学派?A. 儒家B. 道家D. 阴阳家6、题干:下列哪个事件标志着我国封建社会的正式开始?A. 春秋战国时期B. 秦始皇统一六国C. 汉武帝实行“推恩令”D. 隋朝建立7、题干:以下哪个事件标志着中国共产党开始独立领导革命战争和创建人民军队?A、南昌起义B、秋收起义C、广州起义D、井冈山会师8、题干:在以下哪个历史时期,中国实行了“闭关锁国”的政策?A、秦汉时期B、唐朝C、明朝中后期D、清朝前期9、中国历史上第一个统一的中央集权的封建国家是()。
A、夏朝B、商朝C、西周D、秦朝 10、唐朝时期被誉为“诗圣”的诗人是()。
B、杜甫C、白居易D、王维11、以下哪位人物被誉为“我国历史上杰出的军事家、政治家、经济学家和文学家”?A. 岳飞B. 张载C. 蔺相如D. 司马光12、下列哪个事件标志着中国近代史的开始?A. 长江流域的开发B. 太平天国运动C. 鸦片战争D. 洋务运动二、非选择题(本部分有4大题,每大题13分,共52分)第一题阅读材料:在我国古代,科举制度是选拔官员的重要方式。
2023年贵州省贵阳市中考语文试题及答案一、阅读理解1. 阅读下面的短文,回答问题。
在我国南方的农田里,总有许多的水稻香浸浸地向人们展示出成吨的美味,而麦子则显得十分孤单。
为什么南方的农田里没有麦子呢?原来南方的气候湿热,对水稻这类作物最为有利。
而麦子则需要温度适中和燥爽的气候,才能顺利生长,所以在南方的农田里很少见到麦子。
问题:为什么南方的农田里很少见到麦子?答案:南方的气候湿热,对麦子的生长不利。
二、填词1. 选择合适的词语填入短文空格中。
古代中国有一位文学家名叫陆游,他的诗文在历史上__1__流传。
他的文学成就在当时可以说是__2__的。
题目:请根据上下文为1、2处填词。
答案:1. 深远 2. 卓越三、改错1. 下列句子中,有一处错误,请找出并改正。
在孩子们的旅行计划中,他们决定参观了当地的博物馆,并继续前往了动物园。
问题:找出并改正句子中的错误。
答案:在孩子们的旅行计划中,他们决定参观当地的博物馆,并继续前往动物园。
四、作文请你根据以下提示写一篇题为《我的梦想》的作文,要求至少300字。
1. 我的梦想是什么;2. 为什么我有这个梦想;3. 我将如何为实现梦想而努力。
范文:我的梦想我的梦想是成为一名科学家。
小时候,我对自然界的奥秘充满了好奇心,而科学家能够深入研究探索宇宙的奥妙,解释自然的规律,这一点让我深深地被吸引。
我希望能够通过科学的方法,为人类的进步和发展作出自己的贡献。
我有这个梦想的原因是因为科学家的工作对我具有巨大的吸引力和意义。
科学家不仅可以满足自己的好奇心,还可以通过自己的努力为社会做出贡献,为人类的未来开辟新的道路。
我希望能够站在科学的前沿,探索未知的领域,为人类的福祉作出更多的贡献。
为了实现我的梦想,我将努力研究和积累知识。
我会保持研究的热情,深入研究各个学科的知识,培养自己的逻辑思维和创新能力。
我还会积极参与科学实验和研究,不断提升自己的科学素养和研究能力。
同时,我也会研究和借鉴前辈科学家的经验和成果,不断完善自己的科学方法和研究方向。
2023年贵州省贵阳市中考数学试卷(含详细答案)一、选择题1. 以下哪个数是整数?A. 5/2B. 3/4C. √2D. -3答案:D2. 下列图形中,不是正方形的是()A. [图1]B. [图2]C. [图3]D. [图4]答案:C3. 已知函数 y = f(x) 的图像如下图所示,则该函数在区间 [-3, 1] 上的单调递减区间为()A. [-3, -2]B. [-1, 0]C. [0, 1]D. [-2, 0]答案:B4. 若 a = 2^3 × 5^2 ,则 a 的所有正因数的个数是()A. 10B. 15C. 20D. 25答案:C5. 已知sin θ = 1/2 ,则θ 的值是()A. 30°B. 45°C. 60°D. 90°答案:C二、填空题1. 已知一组数据:3,6,9,12,15,18,21,24,27,30,33,则这组数据的众数是______。
答案:无众数2. 设 a = 2^3 × 3^2 ,将 a 分解为质因数的形式是______。
答案:a = 2^3 × 3^23. 在单位圆中,角 C 的终边与单位圆的交点为 P(-√3/2, -1/2) ,则角 C 的参考角是______。
答案:120°三、解答题1. 已知正方体 ABCDEFGH 的棱长为 10 cm,点 M 为 AB 边上的中点,点 N 为 AD 边上的三等分点,连接 MN,并求线段 MN 的长度。
解答:由题可知,AM = MB = 5 cm,AD = 10 cm。
根据题意可得,AN = ND = 10/3 cm。
利用勾股定理可求得 MN 的长度:MN^2 = AM^2 + AN^2MN^2 = 5^2 + (10/3)^2MN^2 = 25 + 100/9MN^2 = 325/9MN ≈ 18.03 cm2. 已知函数 y = f(x) 的图像如下所示,请写出 f(x) 在区间 [-2, 2] 上的解析式。
贵州省贵阳市中考数学试卷一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1..计算:﹣3+4的结果等于()A.7 B.﹣7 C.1D.﹣12..如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠53..今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4C.5D.64..如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.5..小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.276..如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:277..王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条8..如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.A D∥BC D.DF∥BE9..一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B. 1 C. 2 D. 310..已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C.y>3 D.y<3二、填空题(每小题4分,共20分)11..方程组的解为.12..如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于.13..分式化简的结果为.14..“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.15..小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.三、解答题16.(8分)(2015•贵阳)先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.17..近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表景点频数(人数)频率黔灵山公园116 0.29小车河湿地公园0.25南江大峡谷84 0.21花溪公园64 0.16观山湖公园36 0.09(1)此次共调查人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?18..如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)19..在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.20..小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D 处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.21.某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?22..如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.23..如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)24.如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B 两点.(1)a0,b2﹣4ac0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.25.如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG 的周长最小时,求最小周长值.(计算结果保留根号)2018年贵州省贵阳市中考数学试卷一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.计算:﹣3+4的结果等于()A.7 B.﹣7 C.1D.﹣1考点:有理数的加法.分析:利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.解答:解:﹣3+4=1.故选:C.点评:此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2..如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据内错角的定义找出即可.解答:解:根据内错角的定义,∠1的内错角是∠5.故选D.点评:本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3..今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4C.5D.6考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将64000用科学记数法表示为6.4×104.故n=4.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4..如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.考点:简单组合体的三视图.分析:空心圆柱体的左视图是矩形,且有两条竖着的虚线;依此即可求解.解答:解:一个空心圆柱体,其左视图为.故选:B.点评:本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5..小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.27考点:众数;折线统计图.分析:众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中32是出现次数最多的,故众数是32.故选C.点评:本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.6..如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27考点:相似三角形的性质.分析:根据相似三角形的面积的比等于相似比的平方,据此即可求解.解答:解:两个相似三角形面积的比是(2:3)2=4:9.故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7..王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条考点:用样本估计总体.分析:300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.解答:解:150÷(30÷300)=1500(条),故选A.点评:本题考查的是通过样本去估计总体,得出作标记的所占的比例是解答此题的关键.8..如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.A D∥BC D.DF∥BE考点:全等三角形的判定与性质.分析:利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.解答:解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.点评:此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.9..一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B. 1 C. 2 D. 3考点:函数的图象.分析:根据l1是从原点出发可得不打电话缴费为0元,因此是无月租费的收费方式;l2是从(0,20)出发可得不打电话缴费为20元,因此是有月租费的收费方式;两函数图象交点为(400,40),说明打电话400分钟时,两种收费相同,超过500分钟后,当x取定一个值时,l1所对应的函数值总比l2所对应的函数值大,因此当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.解答:解:①l1描述的是无月租费的收费方式,说法正确;②l2描述的是有月租费的收费方式,说法正确;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱,说法正确.故选:D.点评:此题主要考查了函数图象,关键是正确从图象中获取信息.10..已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C.y>3 D.y<3考点:二次函数的性质.分析:先求出x=2时y的值,再求顶点坐标,根据函数的增减性得出即可.解答:解:当x=2时,y=﹣4+4+3=3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x>1时,y随x的增大而减小,∴当x≥2时,y的取值范围是y≤3,故选B.点评:本题考查了二次函数的性质的应用,能理解二次函数的性质是解此题的关键,数形结合思想的应用.二、填空题(每小题4分,共20分)11..方程组的解为.考点:解二元一次方程组.分析:用代入法即可解答,把②y=2,代入①即可求出x的值;解答:解:解,把②代入①得x+2=12,∴x=10,∴.故答案为:.点评:本题考查了解二元一次方程组,有加减法和代入法两种,根据y的系数互为相反数确定选用加减法解二元一次方程组是解题的关键.12..如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于2π.考点:正多边形和圆.分析:根据正方形的面积公式求得半径,然后根据圆的面积公式求解.解答:解:正方形的边长AB=2,则半径是2×=,则面积是()2π=2π.故答案是:2π.点评:本题考查了正多边形的计算,根据正方形的面积求得半径是关键.13..分式化简的结果为.考点:约分.分析:将分母提出a,然后约分即可.解答:解:==.故答案为:.点评:本题考查了约分的知识,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.14..“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.考点:几何概率;勾股定理.分析:首先确定小正方形的面积在大正方形中占的比例,根据这个比例即可求出针扎到小正方形(阴影)区域的概率.解答:解:直角三角形的两条直角边的长分别是2和1,则小正方形的边长为1,根据勾股定理得大正方形的边长为,=,针扎到小正方形(阴影)区域的概率是.点评:本题将概率的求解设置于“赵爽弦图”的游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.易错点是得到两个正方形的边长.15..小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.考点:切线的性质;轨迹.专题:应用题.分析:根据切线的性质得到OH=PH,根据锐角三角函数求出PH的长,得到答案.解答:解:如图,当圆心O移动到点P的位置时,光盘在直尺边上沿着CD向右滚动到再次与AB相切,切点为Q,∵ON⊥AB,PQ⊥AB,∴ON∥PQ,∵ON=PQ,∴OH=PH,在Rt△PHQ中,∠P=∠B=60°,PQ=1,∴PH=,则OP=,故答案为:.点评:本题考查的是直线与圆相切的知识,掌握圆的切线垂直于过切点的半径是解题的关键.三、解答题16.先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.考点:整式的混合运算—化简求值.分析:根据乘法公式和单项式乘以多项式法则先化简,再代入求值即可.解答:解:原式=x2﹣1+x2﹣x3+x3=2x2﹣1;当x=2时,原式=2×22﹣1=7.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力.17..近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表景点频数(人数)频率黔灵山公园116 0.29小车河湿地公园0.25南江大峡谷84 0.21花溪公园64 0.16观山湖公园36 0.09(1)此次共调查400人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)调查的总人数=;(2)“南江大峡谷”所对的圆心角=“南江大峡谷”所占的百分比×360°;(3)首选去黔灵山公园观光的人数=29%×2500.解答:解:(1)84÷21%=400(人)400×25%=100(人),补全条形统计图(如图);故答案是:400;(2)360°×21%=75.6°;(3)2500×=725(人),答:去黔灵山公园的人数大约为725人.点评:本题考查了条形统计图,用样本估计总体以及频数(率)分别表.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.18..如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)考点:菱形的判定与性质.分析:(1)先证明四边形ADCE是平行四边形,再证出一组邻边相等,即可得出结论;(2)过点D作DF⊥CE,垂足为点F;先证明△BCD是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt△CDF中,由三角函数求出DF即可.解答:(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:过点D作DF⊥CE,垂足为点F,如图所示:DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE∥AB,∴∠DCE=∠BDC=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=CD1sin60°=6×=3.点评:本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质、三角函数;熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.19..在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.考点:列表法与树状图法.分析:(1)由题意可得共有小丽、小敏、小洁三位同学,恰好选中小英同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案.解答:解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P(恰好选中小丽)=;(2)列表如下:小英小丽小敏小洁小英(小英,小丽)(小英,小敏)(小英,小洁)小丽(小丽,小英)(小丽,小敏)(小丽,小洁)小敏(小敏,小英)(小敏,小丽)(小敏,小洁)小洁(小洁,小英)(小洁,小丽)(小洁,小敏)所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P(小敏,小洁)==.点评:此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比20..小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D 处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义求得AF 得出答案即可.解答:解:(1)在Rt△BCD中,∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD=5.2(m).答:小华与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.点评:本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.21.某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?考点:分式方程的应用.分析:设传说故事的单价为x元,则经典著作的单价为(x+8)元,根据条件用12000元购买经典著作与用8000元购买传说故事的本数相同,列分式方程即可.解答:解:设传说故事的单价为x元,则经典著作的单价为(x+8)元.由题意,得,解得x=16,经检验x=16是原方程的解,x+8=24,答:传说故事的单价为16元,经典著作的单价为24元.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.22..如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)先将点A(2,1)代入y=求得k的值,再将点A(2,1)代入反比例函数的解析式求得n,最后将A、B两点的坐标代入y=x+m,求得m即可.(2)当反比例函数的值大于一次例函数的值时,即一次函数的图象在反比例函数的图象下方时,x的取值范围.解答:解:(1)将A(2,1)代入y=中,得k=2×1=2,∴反比例函数的表达式为y=,将A(2,1)代入y=x+m中,得2+m=1,∴m=﹣1,∴一次函数的表达式为y=x﹣1;(2)B(﹣1,﹣2);当x<﹣1或0<x<2时,反比例函数的值大于一次函数的值.点评:本题考查了反比例函数与一次函数的交点问题,是一道综合题目,解题过程中注意数形结合的应用,是中档题,难度不大.23..如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)考点:圆周角定理;全等三角形的判定与性质;扇形面积的计算.分析:(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.解答:解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.点评:本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.24.如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B 两点.(1)a>0,b2﹣4ac>0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据抛物线开口向上,且与x轴有两个交点,即可做出判断;(2)由抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;(3)存在,理由为:假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.解答:解:(1)a>0,b2﹣4ac>0;(2)∵直线x=2是对称轴,A(﹣2,0),∴B(6,0),∵点C(0,﹣4),将A,B,C的坐标分别代入y=ax2+bx+c,解得:a=,b=﹣,c=﹣4,∴抛物线的函数表达式为y=x2﹣x﹣4;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,∵抛物线y=x2﹣x﹣4关于直线x=2对称,∴由抛物线的对称性可知,E点的横坐标为4,又∵OC=4,∴E的纵坐标为﹣4,∴存在点E(4,﹣4);(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴点E′的纵坐标是4,。
2023 年贵州省贵阳市中考语文试卷和答案解析一、根底积存〔共4 道小题,20 分〕1.〔4 分〕依据语境和拼音,请用楷体字写出下面横线处的词语。
2023 年“国际博物馆日”的主题是“博物馆的力气”。
博物馆,一头连着历史,一头连着将来,zhāng xiǎn①的是文化的力气。
为此,贵州省地质博物馆、贵州省民族博物馆等多家博物馆推出博物馆奇异夜、星光夜市、民族歌舞表演等一系列活动。
贵州省博物馆重点推介了馆藏的宋代鹭鸟纹彩色蜡染衣裙等令人t àn wéi guān zhǐ②的国宝级文物。
这些精彩纷呈的活动传递着多彩贵州的独特文化。
2.〔3 分〕以下句中加点词语使用有误的一项为哪一项〔〕A.百年以来,中国青年不负祖国重托,他们获得民众的崇敬是当.之.无.愧.的。
B.在逐梦太空的征途上,我国航天事业不断开启令世人刮.目.相.待.的篇章。
C.2023 年,数博会实行线上方式进展,这让国内外企业参展并不感到诘.难.。
D.让每个涉毒罪犯受到应有的法律制.裁.,要靠禁毒战线上全部同志的努力。
3.〔10 分〕依据所给信息默写相应内容。
(1)三人行,焉。
《<论语>十二章》(2)采菊东篱下,。
陶渊明《饮酒》〔其五〕(3)将军百战死,。
《木兰诗》(4),雪上空留马行处。
岑参《白雪歌送武判官归京》(5)一个脱离了低级趣味的人,一个有益于的人。
毛泽东《纪念白求恩》(6)为什么我的眼里?由于我对这土地爱得浅薄……艾青《我爱这土地》(7)《破阵子•为陈同甫赋壮词以寄之》中,诗人起笔表现梦回军营的句子是:,。
〔8 〕毕业临别,同学们用《送杜少府之任蜀州》中的诗句“,”表达虽远犹近的心愿。
4.〔3 分〕以下文学、文化常识表述有误的一项为哪一项〔〕A.《诗经》是我国最早的诗歌总集,又称《诗》或《诗三百》。
B.《左传》即《春秋左氏传》,《曹刿论战》一文选自其中。
C.《秋天的思念》作者史铁生,其代表作有《命假设琴弦》等。
2022年贵州省贵阳市中考物理试卷和答案一、物理选择题:本题共6个小题,每小题3分,共18分。
第1~4题为单项选择题,在每小题给出的四个选项中,只有一项是符合题目要求的。
第5、6题为多项选择题,在每小题给出的四个选项中,至少有两项是符合题目要求的,全选对得3分,选对但不全的得1分,选错或不选得0分。
1.(3分)2022年3月23日“天宫课堂”再次开课。
航天员在空间站内部不借助电子设备便能直接交谈,这是因为空间站内存在()A.重力B.空气C.热量D.磁场2.(3分)数千年来,寻找和开发新材料造福社会是人类的核心追求之一。
半导体材料的应用促进科技日新月异的发展,这意味着人类已经步入了()A.石器时代B.青铜器时代C.铁器时代D.“硅器”时代3.(3分)如图所示,中国环流器二号M装置在可控核聚变(人造太阳)上取得重大突破。
核聚变过程中产生的能量是()A.核能B.动能C.机械能D.重力势能4.(3分)如图甲所示,轿车司机从右后视镜中观察到同向驶来一辆越野车,下一时刻越野车在后视镜中的位置如图乙所示。
设两车均匀速向前行驶,下列说法正确的是()A.后视镜中的像是光的折射形成的B.越野车在轿车司机的左后方行驶C.越野车比轿车行驶的速度大D.越野车相对于轿车是静止的(多选)5.(3分)如图所示电路,电源电压恒为6V。
闭合开关S,滑动变阻器R接入电路的阻值为10Ω时,电流表的示数为1.8A。
下列说法正确的是()A.通过R0的电流是1.2AB.R0的阻值是5ΩC.当R为20Ω时,其电功率是7.2WD.当R为30Ω时,电路总功率是8.4W(多选)6.(3分)如图所示的情景展示了物理世界的平衡之美。
用细线将铁锤悬挂在光滑的尺子上,锤柄末端紧贴尺面,尺子一端置于水平桌面边缘O点处,整个装置恰好处于平衡状态。
若尺面水平且不计尺子和细线所受重力,下列说法正确的是()A.尺子可以视为能绕O点转动的杠杆B.细线对铁锤的拉力与铁锤所受重力是一对平衡力C.细线对尺子的拉力大于锤柄末端对尺子的作用力D.尺子与铁锤组成的整体,其重心在O点的正下方二、填空题:本题共4个小题,每空2分,共10分。
2023年贵州省贵阳市中考语文试卷(含详细答案)选择题1. 下面哪个词语不是“盼”字部首?A. 盏B. 目C. 艹D. 皿答案:C2. “”这句话出自哪位名人之口?A. B. C. D.答案:C3. 下面哪个成语没有使用“月”这个字?A. 月下老人B. 井底之蛙C. 兔死狐悲D. 满载而归答案:B4. 下列哪个词语的词义与其他不同?A. 堆积B. 积累C. 累积D. 累赘答案:D5. “国士无双”是用来形容哪位历史名人的?A. 曹操B. 孙中山C. 司马懿D. 关羽答案:C判断题1. 《红楼梦》的作者是曹雪芹。
答案:√2. “千里之堤毁于蚁穴”这句话出自《道德经》。
答案:×3. 范仲淹所作的《岳阳楼记》是一篇散文。
答案:√4. 李清照是唐代的女词人。
答案:×5. 《白雪歌送武判官归京》的作者是白居易。
答案:×简答题1. “吾尝终日而思矣,不如须臾之所学也。
”这句话是出自哪位名人之手?简述其意义。
答案:文天祥。
意为人生短暂,应当珍惜时间,努力不停地研究和积累。
2. 秦始皇统一六国后,做出了很多伟大的改革,其中最有影响也最有争议的是什么?简述一下。
答案:实行“焚书坑儒”政策。
目的是消除异端邪说,使思想统一。
这个政策引起了极大的争议,然而也使得留下的历史文献更加珍贵。
短文写作题请阅读下面的文字,然后回答问题。
岁月匆匆,岁月如梭,但似乎有些人总是能在有限的时间里做到特别的事情。
比如说,成龙,他在影坛上打拼了几十年,成了国际巨星;再比如说,乔布斯,他死了几年了,但他创办的公司依然是全球风靡的科技公司。
他们为什么能做到这些?其实,秘诀就在于他们都有强烈的目标意识,“人生就像一场马拉松,如果没有终点,人们永远跑不到终点。
”请写一篇作文,以“终点意识”为题,谈谈你对成功的理解。
答案:成功是一个广义的名词,“终点意识”则是成功的具体表现。
在我看来,成功指的是在自己所处的领域中取得卓越的成果,而“终点意识”则是在获得成功之前,对自己的目标和方向有明确的认识,时刻保持对成功的渴望,并且付诸于实际行动中。
贵阳市中考语文试题(附答案)贵阳市中考语文训练试题一、书写水平考查(5分) 1.根据作文的书写水平计分。
二、积累与运用考查(28分) 2.下列加点字注音完全正确的一项是(2分)( )A.牡蛎(nì) 倒坍(dān) 分(fèn)外妖娆B.荫(yìnɡ)庇亵(ìe)渎度(dù)德量力C.守圉(yù) 嗔(zhēn)怒孜(zhī)孜不倦D.阔绰(chuò) 阴晦(huì) 鳞次栉(zhì)比 3.下列成语书写完全正确的一项是(2分)( ) A.持之以恒胸有成竹 B.妇儒皆知一气喝成 C.物竟天择脑羞成怒 D.心旷神宜门廷若市 4.下列词语解释有误的一项是(2分)( ) A.萧索:荒凉、冷落。
B.沉湎:深深地迷恋着,不能自拔。
C.不言而喻:不用说的比喻。
D.中流砥柱:比喻坚强的、能起支柱作用的人或集体。
5.结合语境选词填空,最恰当的一项是(2分)( ) 王守仁,世称“阳明先生”,是明代著名的哲学家、教育家,曾被贬谪到龙场(今修文县)。
在龙场的三年期间,他潜心悟道,了著名的“心即理” 和“知行合一”学说,并萌发了“致良知”思想。
这些学说和思想在中国历史上引起巨大反响,对东亚、东南亚乃至全球都有重要而深远的影响。
因为修文是明学说并传播的始发地,所以人们把修文誉为“王学圣地”。
A.创作因为所以诞辰B.创立不仅而且诞生C.创作不仅而且诞辰D.创立因为所以诞生 6.下列文学常识表述有误的一项是(2分) ( ) A.司马迁的《史记》是我国第一部纪传体通史,全书一百三十篇。
B.元末明初小说家罗贯中的代表作《三国演义》是我国第一部长篇章回体小说。
C.余光中和郑愁予都是台湾诗人,我们学过他们的作品分别是《乡愁》和《雨说》。
D.契诃夫;法国作家,代表作有小说《羊脂球》、剧本《万尼亚舅舅》等。
7.下列汉语知识判断有误的一项是(2分) ( ) A.“春节、清明、端午、中秋等中国传统节日蕴含着丰富厚重的文化内涵。
贵阳市2008年初中毕业学业考试试题卷
综 合 理 科
考生注意:
1.本卷为物理、化学合卷,全卷共8页,共42小题,满分150分,其中物理部分90
分,化学部分60分,答题时间180分钟。
2.一律在《答题卡》相应位置作答,在试卷上答题视为无效。
3.可以使用科学计算器。
4.下面提供部分公式或数据供考生答题时选用。
物理:可能用到的公式 W =FS η=总有W W ×100﹪ P =R U 2
第 Ⅰ 卷
一、物理选择题(本题包括6个小题,共18分。
每小题只有一个选项符合题意)
1.炎热的夏天,当我们打开冰箱门时,会看到从冰箱内涌出团团白雾。
实际上这些白雾是
室内空气中的水蒸气遇冷而形成的小水珠,这一物态变化过程是
A .液化
B .汽化
C .升华 D.凝华
2.如图1所示,均是与光有关的四种现象,其中反映光沿直线传播的是
3.举世瞩目的第29届奥林匹克运动会即将在北京开幕,届时全世界电视观众均可通过卫
星传输的信号在家里收看开幕式盛况,这种卫星称为地球同步通信卫星,这里的“同步”是
指卫星
A.相对太阳静止 B .相对地球静止 C .相对月球静止 D .相对火星静止
4.用电器是将电能转化为其他形式能的器件,在下列用电器中利用电能转化为机械
能的是
A .电饭锅 B.电灯泡 C.电风扇 D.电视机
5.超导是指电阻为零的现象,目前我们只发现某些物质在温度降到足够低时,才出
现超导现象。
如果我们研制出了常温下的超导材料,你认为它最适合制作
A.输电导线 B.电炉丝 C.白炽灯丝 D.保险丝
6.如图2所示,电源电压保持不变,R 1=2R 2,开关S断开时,电流表的示数为I1,
R 1消耗的功率为P 1;开关S 闭合时,电流表示数为电流表的示数为I2,R 1消耗的功
率为P 2,则
A .I1∶I2=1∶1,P 1∶P 2=3∶1 A .I1∶I2=1∶3,P 1∶P 2=1∶1
A .I1∶I2=3∶1,P 1∶P 2=1∶1 A .I1∶I2=1∶1,P 1∶P 2=1∶3
第Ⅱ卷
三、物理非选择题
(一)填空题(每空1分,共20分)
13.刘星同学的质量为40 (选填“Kg”、“g”或“mg”),则他的体
重为N(取g=10N/Kg).
14.小雪同学在探究分子间的作用力时,在注射器筒内先吸入适量的水,
推动活塞降筒内空气排除后,用手指堵住注射器嘴,再用力推活塞,如图5所示,结果她发现筒内水的体积几乎未改变,这一实验表明分子间存在相互作用的(选填“引力”、“斥力”)
15.利用增大受力面积来减小压强的实例在我们生活和生产中非常普遍,如:推土机安装履带、建房时要先构筑地基等,请你再举一实例:。
16.刘星将一块重2N的橡皮泥放入水中后橡皮泥立即沉入水底;他取出橡皮泥将其捏成船状再放入水中,"泥船"却漂浮在水面上,他是利用了的方法来增大浮力的,此时"泥船"所受的浮力为N.
17.发电机是根据原理制成的.发电机产生的电流称为感应电流,感应电流的方向与闭合电路一部分导体切割磁感线的方向及方向有关.
18 .声音是由于物体的振动而产生,但我们看到蝴蝶翅膀在振动时,却听不到因翅膀振动而发出的声音,这是因为蝴蝶翅膀振动的频率20Hz(选填"低于"、“高于”)。
这种听不到的声波有很强的破坏性,在这次“5·12”汶川大地震时,600多公里之外的贵阳也有不少市民出现头晕、恶心等症状,就与这种声波有关,我们将这种声波称为声波。
19.2007年10月24日,我国成功发射了“嫦娥一号”探月卫星,这是我国探月工
程迈出的坚实一步,目前绕月飞行的“嫦娥一号”已通过电磁波向我们发回了很多
月球表面的清晰照片。
以该卫星到地球的距离为3.8×108m计算,则发回一张图片
到地球需 s(保留两位小数),可见利用电磁波传递信息是何等迅捷,请
你举出在生活中利用电磁波传递信息的一个事例:
(光在真空中的传播速度c=3×108m/s)
20.用如图6所示的滑轮组将一个重8N的物体匀速提高2m,所用拉力F为5N。
则此过程拉力所做的有用功是 J,该滑轮组的机械效率是﹪。
21.如图7所示,为一辆行驶中的太阳能汽车,该车的顶部装有由硅晶制成的太阳
能电池板,它将太阳能转化为电能,电能再转化为能。
你认为太阳能汽车与普通燃油汽车相比有什么优点:(说出一点即可)。
22.如图8所示的四种现象中,能说明做功可以改变物体内能的有;能说明热传递可以改变物体内能的有(只需填写序号字母)
23.如图9所示,电压U恒定为8V,R1=12Ω。
滑动变阻器的滑片P从一端滑
到另一端的过程中,电压表的示数从3V变到6V,则R2的阻值为Ω,
滑动变阻器的最大阻值为Ω。
(二)简答题(每小题3分,共9分)
24.飞机发动机工作时,强大的气流从发动机前进入,从机后喷出。
如图10所示,
为波音737客机发动机上张贴的警示标识,警示在发动机工作时,其发动机前方
图示4m范围内不得有人,请你用所学物理知识解释其中原因。
25.如图11所示,
是妈妈拉着两个坐在雪橇上的孩子在雪地里快乐玩耍的情景。
请你观察这张照片后用物理知识解释其中两个现象。
26.今年我省遭遇了50年来最严重的雪凝灾害,灾害导致一些地区大面积停电。
如图12所示,是输电导线被重重的冰凌拉断和拉长的现象,凝冻结束后电力部门对这些被拉长而不能回复原来长度的导线全部拆换。
请根据所学物理知识解释为什么要拆换这些导线?
(三)作图题(每题2分,共8分)
27.如图13所示,小球从斜面上滚下,请在图中画出此时小球所受重力的示意图。
28.根据磁感线所示方向,在图14中标出条形磁铁的N、S极。
29.如图15所示,这是一个近视眼观察远处物体的未完成的,请在图中将光路补充完整。
30.请用笔画线代替导线完成图
滑动变阻器滑片的过程中:(1)小灯泡变亮,电压表的示数变小,电压表有示数且保持不变;(2
(四)科学探究题(31题6分,32题7分,33题8分,共21分)
31.刘星同学在测量液体密度的实验过程中
(1)他先测量空烧杯的质量,如图17(甲)。
请指出他在实验操作中一处明显的差错:。
(2)他改正错误后,测出空烧杯的质量为30g,然后在烧杯中装入适量液体,添加砝码和移动游码,使天平重新平衡后,盘中砝码质量及游码位置如图17(乙)所示,则液体的质量是g。
最后他将烧杯中的液体全部倒入量筒测量其体积,液面位置入如图17(丙)所示,则该液体的密度是
g/cm3(保留一位小数)
32.在探究"滑动摩擦力的大小跟哪些因素有关"的问题时,兴趣小组的同学们作了如下的猜想:
猜想A:滑动摩擦力的大小可能与接触面的粗糙程度有关;
猜想A:滑动摩擦力的大小可能与压力大小有关。
为了验证上述猜想是否正确,同学们设计了如图18所示的实验
V1V2
(1)步骤(a)和(b)是为了验证猜想(选填“A”或“B”)
(2)步骤(a)和(c)是为了验证猜想(选填“A”或“B”)
(3)本实验采用的科学探究方法是。
(4)实验中应使木块做匀速直线运动。
这样做的目的是:。
33.实验小组的同学用如图19(甲)所示电路测量定值电阻Rx 的阻值。
(1)连接好电路后,闭合开关,调节滑动变阻器的滑片,电流表、电压表示数分别如图19(乙)(丙)所示,电流表的读数是A,电压表的读数是V,则电阻Rx=Ω。
(2)在实际情况中,电压表的电阻并非无穷大,电流表内部也有电阻,在这次实验中,如果电流表和电压表的读数无误,那么你认为按甲图的电路图测量导致误差的主要原因是什么:。
(五)综合应用题(解答时需写出必要的文字说明、计算公式,若只写出计算结果将不能得分。
34题6分,35题8分,共14分)
34.举世瞩目的杭州湾跨海大桥于2008年5月1日正式通车,该桥全长36Km,设计车速为100Km/h,是世界上在建和已建的最长跨海大桥,如图20所示。
它的建成对于长江三角洲地区的经济、社会发展都具有深远和重大的战略意义。
(1)求一辆汽车以设计速度行驶通过大桥需要多少时间。
(2)大桥采用双塔钢索斜拉式。
将大桥一部分可抽象为如图21所示的模型,F2为桥重和车辆对桥的压力,F1为钢索的拉力,O为支点,请在图21(乙)中作出F1的力臂L1。
(3)如果桥塔高度降低,此钢索的拉力是否改变?为什么?
35.某物理兴趣小组同学设计了如图22(甲)所示的电路图进行实验探究,电源为可调压直流学生电源,电压表量程为“0~15”,电流表量程为“0~0.6A”,小灯泡标有“6V 1.2W”字样,Ro为20Ω的定值电阻.小组根据记录的电流表和电压表示数变化,描绘出U-I关系图,如图22(乙)所示.
(1)求灯泡正常发光时的电阻。
(2)求当电压表示数为1V时,通过Ro的电流
(3)调节电源电压,求当小灯泡与定值电阻Ro消耗的总功率为0。
8W时,小灯泡的实际电功率。