高一必修一数学课件汇编
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
完整版高中数学必修一全册课件目录•高中数学必修一概述•集合与函数概念•基本初等函数(Ⅰ)•函数的应用•空间几何体•点、直线、平面之间的位置关系01高中数学必修一概述包括集合的基本概念、集合间的关系与运算、函数的概念与性质等。
集合与函数概念包括指数函数、对数函数、幂函数等基本初等函数的图像与性质。
基本初等函数包括函数与方程、函数模型及其应用等,通过实例探究函数的性质与应用。
函数的应用教材内容与结构过程与方法通过观察、思考、探究、归纳等活动,培养学生的数学思维能力、创新能力和解决问题的能力。
知识与技能掌握集合与函数的基本概念,理解基本初等函数的图像与性质,能够运用函数知识解决一些实际问题。
情感态度与价值观激发学生学习数学的兴趣和热情,培养学生的数学素养和审美情趣。
教学目标与要求总结归纳定期对所学知识进行总结归纳,形成知识网络,便于记忆和提取。
通过大量的练习,熟练掌握解题方法和技巧,提高解题速度和准确性。
课后复习及时复习巩固所学知识,独立完成作业和练习题,加深对知识点的理解和记忆。
课前预习提前阅读教材,了解本节课的知识点和重点难点,为听课做好准备。
课中听讲认真听讲,积极思考,及时记录重要知识点和解题方法。
学习方法与建议02集合与函数概念03元素与集合的关系属于、不属于。
01集合的概念集合是由一个或多个确定的元素所构成的整体。
02集合的表示方法列举法、描述法、图像法。
集合及其表示方法集合之间的关系与运算集合之间的关系子集、真子集、相等。
集合的运算并集、交集、补集。
集合运算的性质交换律、结合律、分配律等。
函数是一种特殊的对应关系,它使得每个自变量对应唯一的因变量。
函数的概念函数的表示方法函数的三要素解析法、列表法、图像法。
定义域、值域、对应法则。
030201函数及其表示方法1 2 3单调性、奇偶性、周期性等。
函数的性质解决实际问题,如最优化问题、数学建模等。
函数的应用通过函数可以研究方程和不等式的解的性质和范围。
高一必修一数学课件
了解集合、元素的概念,体会集合中元素的三个特征;以下是小编为大家整理分享的高一必修一数学课件,欢迎阅读参考。
高一必修一数学课件
教学目标:
(1)了解集合、元素的概念,体会集合中元素的三个特征;
(2)理解元素与集合的“属于”和“不属于”关系;
(3)掌握常用数集及其记法;
教学重点:掌握集合的基本概念;
教学难点:元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流;
(3)非负奇数;
(4)方程的解;
(5)某校20xx级新生;
(6)血压很高的人;
(7)著名的数学家;
(8)平面直角坐标系内所有第三象限的点
(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a A
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A
4 A,等等。
6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
7.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
(二)例题讲解:
例1.用“∈”或“ ”符号填空:
(1)8 N;(2)0 N;
(3)-3 Z;(4) Q;
(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。
例2.已知集合P的元素为 , 若3∈P且-1 P,求实数m的值。
(三)课堂练习:
课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。
作业布置:
1.习题1.1,第1- 2题;
2.预习集合的表示方法。