七年级数学有理数单元检测试题
- 格式:doc
- 大小:81.50 KB
- 文档页数:2
七年级数学有理数单元测试卷一、选择题(每题 3 分,共 30 分)1. 下列数中,是有理数的是()A. 圆周率πB. 0C. 根号 2D. 无限不循环小数。
2. 在数轴上,距离原点 3 个单位长度的点表示的数是()A. 3B. -3C. 3 或 -3D. 6 或 -6。
3. 下列计算正确的是()A. -2 + 3 = 1B. -5 - 5 = 0C. -1 × 2 = -2D. 4 ÷ 2 = 2.4. 绝对值等于 5 的数是()A. 5B. -5C. 5 或 -5D. 0。
5. 比较 -2,0,-3 的大小,正确的是()A. -2 > 0 > -3B. 0 > -2 > -3C. 0 > -3 > -2D. -3 > -2 > 0.6. 若 a + b < 0,ab > 0,则()A. a > 0,b > 0B. a < 0,b < 0C. a > 0,b < 0D. a < 0,b > 0.7. 计算 (-2)³的结果是()A. -6B. 6C. -8D. 8.8. 下列说法正确的是()A. 正数和负数互为相反数B. 数轴上表示相反数的点到原点的距离相等。
C. 任何数都有相反数D. 一个数的相反数一定是负数。
9. 若 a = 3,b = 2,且 a < b,则 a + b 的值是()A. 1 或 5B. -1 或 -5C. 1 或 -5D. -1 或 5。
10. 观察下列算式:2¹ = 2,2² = 4,2³ = 8,2⁴ = 16,2⁵ = 32,2⁶ = 64,2⁷ = 128,2⁸ = 256,…通过观察,用你所发现的规律确定 2²⁰²³的个位数字是()A. 2B. 4C. 6D. 8.二、填空题(每题 3 分,共 15 分)11. 把 -3,-2.5,0,1,2 这五个数按从小到大的顺序排列:________________。
人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。
七年级数学有理数单元测试卷班级姓名 分数 一、选择题:每题5分,共25分1. 下列各组量中,互为相反意义的量是( )A 、收入200元与赢利200元B 、上升10米与下降7米C 、“黑色”与“白色”D 、“你比我高3cm ”与“我比你重3kg ”2.为迎接即将开幕的广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 10100.2198⨯元 B 6102198⨯元 C 910198.2⨯元 D 1010198.2⨯元 3. 下列计算中,错误的是( )。
A 、3662-=-B 、161)41(2=± C 、64)4(3-=- D 、0)1()1(1000100=-+- 4. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分5.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数二、填空题:(每题5分,共25分)6. 若0<a <1,则a ,2a ,1a的大小关系是 7.若a a =-那么2a 08. 如图,点A B ,在数轴上对应的实数分别为m n ,,则A B ,间的距离是 .(用含m n ,的式子表示)9. 如果0 xy 且x 2=4,y 2 =9,那么x +y =10、正整数按下图的规律排列.请写出第6行,第5列的数字 .A B m 0 n x 第一行 第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列 1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13 20 … 25 24 23 22 21 … ……三、解答题:每题6分,共24分11.① (-5)×6+(-125) ÷(-5) ② 312 +(-12 )-(-13 )+223③(23 -14 -38 +524 )×48 ④-18÷ (-3)2+5×(-12)3-(-15) ÷5四、解答题:12. (本小题6分) 把下列各数分别填入相应的集合里.()88.1,5,2006,14.3,722,0,34,4++-----(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}1013. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14. (本小题6分) 已知在纸面上有一数轴(如图),折叠纸面. (1)若1表示的点与-1表示的点重合,则- 2表示的点与数 表示的点重合;(2)若-1表示的点与3表示的点重合,则5表示的点与数 表示的点重合;15.(本小题8分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?七年级数学有理数测试卷 参考答案1.B 2.C 3.D 4.C 5.C 6.aa a 12 7.≤ 8.n-m 9.±1 10.32 11①-5 ②6 ③12 ④83 12①88.1,2006,722+ ②)5(,14.3,34,4+----- ③)5(,2006,0,4+-- ④88.1,14.3,722,34+--- 13.10千米14. ①2 ②-315.①最高分:92分;最低分70分.②低于80分的学生有5人。
七年级数学有理数单元测试题一、选择题(每题2分,共20分)1. 下列哪个选项不是有理数?A. -3B. 0C. πD. 1/22. 如果a是有理数,那么下列哪个表达式的结果不是有理数?A. a + 2B. a - 2C. a × 2D. a / 23. 两个负有理数相加,结果是什么?A. 正数B. 负数C. 零D. 无法确定4. 以下哪个数是绝对值最小的有理数?A. 5B. -5C. 0D. 1/35. 有理数的乘法运算中,下列哪个说法是错误的?A. 正数乘以正数等于正数B. 负数乘以负数等于正数C. 正数乘以负数等于负数D. 任何数乘以零等于零二、填空题(每题2分,共20分)6. 有理数的加法运算中,两个相反数相加的结果是______。
7. 如果a是有理数,那么-a的绝对值是______。
8. 有理数的除法运算中,零除以任何非零有理数的结果是______。
9. 两个有理数相乘,如果其中一个数为零,则结果一定是______。
10. 有理数的乘方运算中,任何数的零次方等于______。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(1) (-3) × (-2)(2) (-2) + 412. 计算下列表达式的值:(1) |-5| - 3(2) 1/3 + 1/413. 计算下列表达式的值:(1) (-1)^2(2) (-2)^314. 计算下列表达式的值:(1) (-3) × 0(2) 0 - (-5)四、解答题(每题10分,共30分)15. 某商店在一天内卖出了三种商品,其中A商品卖出了10件,单价为20元;B商品卖出了15件,单价为15元;C商品卖出了5件,单价为30元。
请计算商店这一天的总收入。
16. 某工厂生产了100个零件,其中95个是合格的,5个是次品。
如果合格品的单价为10元,次品的单价为0元,计算工厂这批零件的总收入。
17. 一个数的平方是25,这个数是什么?五、附加题(10分)18. 假设你有一个数列:1, 2, 3, ..., n。
七年级数学第一单元有理数测试题一、选择题(每题3分,共15分)1. 下列各数中,是正数的是()A. -(-5)B. - - 5C. -(+5)D. -5.解析:- 选项A:-(-5) = 5,5是正数。
- 选项B:- - 5=-5,-5是负数。
- 选项C:-(+5)=-5,-5是负数。
- 选项D:-5是负数。
答案:A。
2. 在 - 2,0,1,3这四个数中,比0小的数是()A. -2B. 0C. 1D. 3.解析:负数小于0,在 - 2,0,1,3中,-2是负数。
答案:A。
3. 数轴上表示 - 3的点与表示7的点之间的距离是()A. 3B. 10C. 7D. 4.解析:数轴上两点间的距离等于这两点所表示的数的差的绝对值。
所以表示 - 3的点与表示7的点之间的距离为 - 3 - 7 = - 10 = 10。
答案:B。
4. 下列计算正确的是()A. ( - 2)+( - 3)= - 1B. ( - 2) - ( - 3)= - 1.C. ( - 2)×( - 3)=6D. ( - 2)÷( - 3)=-(2)/(3)解析:- 选项A:( - 2)+( - 3)=-(2 + 3)=-5,A错误。
- 选项B:( - 2) - ( - 3)=-2+3 = 1,B错误。
- 选项C:( - 2)×( - 3)=2×3 = 6,C正确。
- 选项D:( - 2)÷( - 3)=(2)/(3),D错误。
答案:C。
5. 绝对值等于本身的数有()A. 0个B. 1个C. 2个D. 无数个。
解析:正数和0的绝对值等于本身,所以有无数个。
答案:D。
二、填空题(每题3分,共15分)6. 如果温度上升3℃记作+3℃,那么下降5℃记作______。
解析:用正负数来表示具有相反意义的量,上升记为正,那么下降就记为负,所以下降5℃记作 - 5℃。
答案: - 5℃。
7. 比较大小: - 4______ - 3(填“>”或“<”)。
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
数学七年级上第一章有理数单元检测参考完成时间:60分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法中不正确的是().A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2 000既是负数,也是整数,但不是有理数D.0是正数和负数的分界2.-2的相反数的倒数是().A.2 B.12C.12−D.-23.比-7.1大,而比1小的整数的个数是().A.6 B.7 C.8 D.94.如果一个数的平方与这个数的差等于0,那么这个数只能是().A.0 B.-1 C.1 D.0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为().A.63×102千米B.6.3×102千米C.6.3×104千米D.6.3×103千米6.有理数a,b在数轴上的位置如图所示,下列各式正确的是().A.a>0 B.b<0C.a>b D.a<b7.下列各组数中,相等的是().A.32与23B.-22与(-2)2C.-|-3|与|-3| D.-23与(-2)38.在-5,110−,-3.5,-0.01,-2,-212各数中,最大的数是().A.-12 B.1 10−C.-0.01 D.-59.如果a+b<0,并且ab>0,那么().A.a<0,b<0 B.a>0,b>0C.a<0,b>0 D.a>0,b<010.若a表示有理数,则|a|-a的值是().A.0 B.非负数C.非正数D.正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.123−的倒数是________,123−的相反数是______,123−的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13.计算:-|-5|+3=__________.所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,12−,13,14−…,第2 013个数是________.15.比132−大而比123小的所有整数的和为________.16.若|x-2|与(y+3)2互为相反数,则x+y=__________.17.近似数2.35万精确到__________位.18.对于任意非零有理数a,b,定义运算如下:a b=(a-b)÷(a+b),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分)19.计算:(每小题4分,共20分)(1)-20+(-14)-(-18)-13;(2)172×314÷(-9+19);(3)-24×131243⎛⎫−+−⎪⎝⎭;(4)(-81)÷12 4+49÷(-16);(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,43−−,0,227,-3.14,2 006,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合{…}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化日期1日2日3日4日5日6日7日人数变化 1.60.80.4-0.4-0.80.2-1.2(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C点拨:A中-3.14不是-π,是负分数,C选项中-2 000是负整数,更是有理数,所以说法错误.故选C.2答案:B3答案:C点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D点拨:A中科学记数法表示为2位数错,B、C中10的指数错,只有D正确,故选D.6答案:D点拨:a在原点左侧为负数,b在原点右侧为正数,所以A、B、C均错,只有D正确.7答案:D点拨:32=9,23=8,故A错;-22=-4,(-2)2=4,所以B错,-|-3|=-3,|-3|=3,所以C错;-23=-8,(-2)3=-8,相等,故选D.8答案:C点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A点拨:a+b<0,所以a,b中一定至少有一个负数,且负数的绝对值较大.又因为ab>0,所以a,b同号,且同为负号.10答案:B点拨:可以用特殊值法求解,当a=2时,|a|-a=|2|-2=0;当a=0时,|a|-a=|0|-0=0;当a=-2时,|a|-a=|2|-(-2)=4,故选B.11答案:37−123123点拨:根据概念分别写出.12答案:-9或-1点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1.13答案:-2点拨:-|-5|=-5,14答案:12013点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是1 2013.15答案:-3点拨:比132−大而比123小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1点拨:|x-2|与(y+3)2互为相反数,所以|x-2|+(y+3)2=0,所以x-2=0,y+3=0,所以x=2,y=-3,所以x+y=-1.17答案:百18答案:-4点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4.19解:(1)―20+(―14)―(―18)―13=-20-14+18-13=-20-14-13+18=-47+18=-29;(2)172×314÷(-9+19)=1571571211024241016⨯÷=⨯⨯=;(3)-24×131243⎛⎫−+−⎪⎝⎭=12-18+8=2;(4)(-81)÷12 4+49÷(-16)=(-81)×49+49×116⎛⎫− ⎪⎝⎭=-36-136=13636−;(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3―(―3)2]=-1-12÷3×(3―9)=-1-12×13×(-6)=-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:22,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭;(2)负数集合:44,, 3.14,(5),3⎧⎫−−−−−+⋅⋅⋅⎨⎬⎩⎭;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:422, 3.14,, 1.88,37⎧⎫−−−+⋅⋅⋅⎨⎬⎩⎭.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏.21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a人,它们相差:(a+1.6+0.8+0.4)-(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a+1.6+0.8+0.4-a-1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人),所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a人,所以到3日时的人数是(a+1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16=+17+7+5+16+11-15-3-6-8-9=56-41=+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米.(2)出租司机最远处离出发点有17千米.(3)56+|-41|=97(千米),0.08×97=7.76(升).答:这天共耗油7.76升.。
华师版七年级数学上册第1章有理数单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.下列各数中,负数是()A.-1 B.0 C.2 D.32.[母题教材P14例1]3的相反数是()A.13B.-13C.3 D.-33.[2024·天津和平区期中]有理数3,1,-2,4中,小于0的数是() A.3 B.1 C.-2 D.44.如图,小丽从原点O出发,第一次向东(右)走30米,第二次向西(左)走50米到达数轴上表示数a的点上,则a的值为()(第4题)A.50 B.30 C.20 D.-205.下列计算中,正确的是()A.-2-1=-1 B.3÷(-13)×3=-3C.(-3)2÷(-2)2=32D.0-7-2×5=-176.[情境题航空航天]2024年4月25日20时59分,神舟十八号载人飞船在酒泉卫星发射中心发射升空,约23 400秒后,神舟十八号载人飞船与空间站组合体完成自主快速交会对接.将23 400用科学记数法表示为() A.0.234×105 B.2.34×104 C.23.4×103 D.2.34×105 7.[2023·山东实验中学模拟]有理数a,b,c在数轴上对应点的位置如图所示.如果a+b=0,那么下列结论正确的是()(第7题)A.|a|>|c|B.a+c<0 C.abc<0 D.ab=18.下列说法中,正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.如果两个数的和是正数,那么这两个数中至少有一个正数D.两个数的差一定小于被减数9.已知|a+3|=5,b=-3,则a+b的值为()A.1或11 B.-1或-11 C.-1或11 D.1或-11 10.[新考向数学文化]小时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-1二、填空题(每题3分,共24分)11.[新趋势跨学科]等高线指的是地形图上高度相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.吐鲁番盆地的等高线标注为-155 m,表示此处的高度海平面155 m(填“高于”或“低于”).12.[2024·杭州公益中学月考]如果|x-3|+(2+y)2=0,那么2x+y的值等于.13.[母题教材P65例1]近似数2.30精确到位.14.绝对值不大于3.14的所有有理数之和等于;不小于-4而不大于3的所有整数之和等于.15.在数轴上与表示-1的点相距2个单位长度的点表示的数是.16.[母题教材P28例3]有5袋苹果,每袋以50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是.17.[2024·清华附中月考]一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹遮盖住的整数个数是.18.[2023·随州]某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次……第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几名同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律;乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的讨论过程,可以得出最终状态为“亮”的灯共有盏.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.[2024·河南周口阶段练习]给出下面六个数:2.5,1,-2,-2.5,0,-32.(1)先画出数轴,再把表示上面各数的点在数轴上表示出来;(2)用“<”号将上面的各数连接起来.20.[母题教材P78复习题T16]计算:(1)-(-1)+32÷(1-4)×2;(2)(-1)1 000-2.45×8+2.55×(-8).21.已知m,n互为相反数,且m≠n,p,q互为倒数.(1)求m+nm +2pq-mn的值.(2)爱思考的璐璐发现其中的条件m≠n是多余的,你认为璐璐的想法对吗?为什么?22.[新视角新定义题]若“ⓧ”表示一种新运算,规定aⓧb=a×b+a+b,请计算下列各式的值..(1)-6ⓧ2;(2)[(-4)ⓧ(-2)]ⓧ1223.在数轴上表示a,0,1,b四个数的点如图所示,已知OA=OB,求|a+|+|a+1|的值.b|+|ab24.[情境题生活应用]体育课上全班女生进行了一分钟仰卧起坐测验,达标成绩为35个.下面是第一组8名女生的成绩记录,其中“+”号表示超过达标成绩的个数,“-”号表示不足达标成绩的个数.-5,0,+7,+12,-9,-1,+6,+14.(1)第一组8名女生中最好成绩与最差成绩相差个.(2)求第一组8名女生的平均成绩为多少?(3)规定:一分钟仰卧起坐次数为达标成绩,不得分;超过达标成绩,每多做1个得2分;未达到达标成绩,每少做1个扣1分.若一分钟仰卧起坐总积分超过60分,便可得到优秀体育小组称号,请通过计算说明第一组8名女生能否获得该称号.25.如图,将一根木棒放在数轴(单位长度为1 cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm.(2)图中点A所表示的数是,点B所表示的数是.(3)一天,妙妙问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?参考答案一、1. A2. D3. C4. D)×3=3×(-3)×3=-27,5. D 【点拨】-2-1=-3,A错误;3÷(-13,C错误;0-7-2×5=0-7-10=B错误;(-3)2÷(-2)2=9÷4=94-17,D正确.故选D.6. B7. C8. C 【点拨】0是有理数,但0既不是正数也不是负数,故A错误;|a|不一定是正数,也可能为0,故B错误;若a+b>0,a≤b,则a≤0,b>0或a>0,b>0,故C正确;2-(-1)=3>2,故D错误.故选C.9. B 【点拨】|a+3|=5,则a+3=±5,解得a=-8或a=2,则a+b=-8+(-3)=-11或a+b=2+(-3)=-1,故选B.10. A 【点拨】如图,设内圈上的数为c,外圈上的数为d.因为(-1)+2+(-3)+4+(-5)+6+(-7)+8=4,横、竖以及内外两圈上的4个数字之和都相等,所以内外两圈的和都是2,横、竖的和也都是2.由-7+6+b+8=2,得b=-5;由6+4+b+c=2,得c=-3;由a+c+4+d=2,得a+d=1.由题意可知,a和d代表的数字为-1和2.当a=-1时,d=2,则a+b=-1+(-5)=-6;当a=2时,d=-1,则a+b=2+(-5)=-3.故选A.二、11.低于12.4 【点拨】根据绝对值以及偶次幂非负得出x-3=0,2+y=0,进而求出x=3,y=-2,问题随之得解.13.百分14.0;-4 【点拨】设|a|≤3.14,其中正有理数有a1,a2,a3…则负有理数有-a1,-a2,-a3...还有0,则a1+a2+a3+...+0+(-a1)+(-a2)+(-a3)+ 0不小于-4而不大于3的整数有-4,-3,-2,-1,0,1,2,3,则所有整数加起来为-4.15.-3或1 【点拨】设这个数为a,当a<-1时,-1-a=2,解得a=-3;当a>-1时,a-(-1)=2,解得a=1.16.244千克【点拨】+4+(-5)+(+3)+(-2)+(-6)=-6(千克),所以这5袋苹果的总质量为50×5-6=244(千克).17.120 【点拨】因为墨迹最左端的数是-109.2,最右端的数是10.5.根据数在数轴上的排列特点,可得墨迹遮盖部分最左侧的整数是-109,最右侧的整数是10.所以遮盖住的整数共有120个.18.10 【点拨】因为1号开关被按了1次,2号开关被按了2次,3号开关被按了2次,4号开关被按了3次,5号开关被按了2次,6号开关被按了4次,7号开关被按了2次,8号开关被按了4次,9号开关被按了3次…所以n号开关被按的次数等于n的约数的个数.因为约数个数是奇数,所以n 一定是平方数.因为100=102,所以100以内共有10个平方数,所以最终状态为“亮”的灯共有10盏.三、19.【解】(1)数轴表示如图所示.(2)由(1)得-2.5<-2<-32<0<1<2.5.20.【解】(1)原式=1+9÷(-3)×2=1+(-3)×2=1-6=-5.(2)原式=1+(-2.45-2.55)×8=-39.21.【解】(1)由m,n互为相反数且m≠n,得m+n=0,mn=-1,由p,q互为倒数得pq=1,所以原式=0m+2×1-(-1)=3.(2)璐璐的想法不对,因为当m=n时,定有m=n=0,则式子m+nm 与mn都没有意义,所以m≠n这个条件不是多余的.22.【解】(1)-6ⓧ2=-6×2+(-6)+2=-16.(2)[(-4)ⓧ(-2)]ⓧ12=[-4×(-2)+(-4)+(-2)]ⓧ12=2ⓧ12=2×12+2+12=312.23.【解】因为OA =OB ,a <0<b ,所以a +b =0,a =-b .由数轴知b >1,所以a <-1,所以a +1<0.所以原式=0+1-a -1=-a .24.【解】(1)23(2)(-5)+0+7+12+(-9)+(-1)+6+14=-15+39=24(个),24÷8=3(个),35+3=38(个).答:第一组8名女生的平均成绩为38个.(3)(-5)×1+7×2+12×2+(-9)×1+(-1)×1+6×2+14×2=-5+14+24-9-1+12+28=63(分),因为63>60,所以第一组能得到优秀体育小组称号.25.【解】(1)8(2)14;22(3)由题意知奶奶与妙妙的年龄差为[119-(-37)]÷3=52(岁),所以奶奶现在的年龄为119-52=67(岁).。
2023-2024学年人教版版七年级数学上册《第一章 有理数》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________ 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)−45的相反数是( ) A .−45B .−54C .45D .542.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( ) A .1.268×109B .1.268×108C .1.268×107D .1.268×1063.(3分)2023的倒数是( ) A .2023B .﹣2023C .−12023D .120234.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( ) A .﹣10℃B .﹣6℃C .6℃D .10℃5.(3分)如图,数轴的单位长度为1,若点A 表示的数是﹣2,则点B 表示的数是( )A .0B .1C .2D .36.(3分)将34.945取近似数精确到十分位,正确的是( ) A .34.9B .35.0C .35D .35.057.(3分)若(m ﹣2)2与|n +3|互为相反数,则n m 的值是( ) A .﹣8B .8C .﹣9D .98.(3分)若两数之积为负数,则这两个数一定是( ) A .同为正数B .同为负数C .一正一负D .无法确定9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <010.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作 度. 12.(4分)比较大小:−(−27) −38.13.(4分)在﹣34中,底数是 ,指数是 .计算:﹣34= . 14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为 . 15.(4分)绝对值小于3的所有整数的和是 . 16.(4分)计算:﹣16÷4×14= . 17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为 . 18.(4分)已知|a |=2,b =3,则b ﹣a = . 三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来. 1.5,0,4,−12,﹣3.20.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.求m +cd +a+bm的值. 21.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)]. 22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯① =﹣1﹣9+4……② =﹣6……③(1)亮亮计算过程从第 步出现错误的;(填序号)(2)请你写出正确的计算过程.23.(6分)定义一种新的运算x∗y=x+2yx,如3∗1=3+2×13=53,求(2*3)*2的值.24.(6分)数轴上点A、B、C的位置如图所示,A、B对应的数分别为﹣5和1,已知线段AB的中点D与线段BC的中点E之间的距离为5.(1)求点D对应的数;(2)求点C对应的数.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=,(−12)⑤=;(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;(−12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)−45的相反数是()A.−45B.−54C.45D.54【分析】根据相反数的定义即可求解.【解答】解:−45的相反数是45.故选:C.2.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为()A.1.268×109B.1.268×108C.1.268×107D.1.268×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1268000000=1.268×109.故选:A.3.(3分)2023的倒数是()A.2023B.﹣2023C.−12023D.12023【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:2023的倒数是12023.故选:D.4.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10℃.故选:D.5.(3分)如图,数轴的单位长度为1,若点A表示的数是﹣2,则点B表示的数是()A.0B.1C.2D.3【分析】根据图形得出点A、点B距离4个单位长度,题干中明确数轴单位长度为1,利用点A表示的数即可推理出点B表示的数.【解答】解:∵数轴的单位长度为1,线段AB=4个单位长度,点A表示的数是﹣2.∴﹣2+4=2∴点B表示的数是2.故选:C.6.(3分)将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.7.(3分)若(m﹣2)2与|n+3|互为相反数,则n m的值是()A.﹣8B.8C.﹣9D.9【分析】首先根据互为相反数的定义,可得(m﹣2)2+|n+3|=0,再根据乘方运算及绝对值的非负性,即可求得m、n的值,据此即可解答.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0,n+3=0解得m=2,n=﹣3∴n m=(﹣3)2=9故选:D.8.(3分)若两数之积为负数,则这两个数一定是()A.同为正数B.同为负数C.一正一负D.无法确定【分析】根据有理数的乘法法则,举反例,排除错误选项,从而得出正确结果.【解答】解:例如(﹣2)×1=﹣2,2×(﹣2)=﹣4,所以C正确故选:C.9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <0【分析】A 、根据有理数的乘法运算法则进行判断; B 、根据有理数的加法运算法则进行判断; C 、根据有理数的减法运算法则进行判断; D 、根据有理数的除法运算法则进行判断. 【解答】解:A 、∵a >0>b ∴ab <0,选项错误,不符合题意; B 、∵a >0>b ∴当|a |>|b |时,a +b >0当|a |<|b |时,a +b <0,选项错误,不符合题意; C 、∵a >0>b∴a ﹣b =a +|b |>0,选项错误,不符合题意; D 、∵a >0>b∴ab <0,选项正确,符合题意;故选:D .10.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周,滚动的距离就是圆的周长,再由圆的周长公式得出周长为π,分两种情况,即可得答案. 【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A 点 故滚动一周后A 点与1之间的距离是π 故当A 点在1的左边时表示的数是1﹣π 当A 点在1的右边时表示的数是1+π. 故选:C .二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作﹣10度.【分析】根据节约20度电记作+20度,可以表示出浪费10度,本题得以解决.【解答】解:∵节约20度电记作+20元∴浪费10度电记作﹣10元.故答案为:﹣10.12.(4分)比较大小:−(−27)>−38.【分析】先求出﹣(−27)=27,再根据正数大于一切负数比较即可.【解答】解:∵﹣(−27)=27∴﹣(−27)>−38故答案为:>.13.(4分)在﹣34中,底数是3,指数是4.计算:﹣34=﹣81.【分析】根据幂的定义:形如a n中a是底数,n是指数,及乘方计算法则计算解答.【解答】解:﹣34中,底数是3,指数是4,﹣34=﹣81故答案为:3,4,﹣81.14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为7﹣5﹣6+4.【分析】直接去括号即可.【解答】解:原式=7﹣5﹣6+4.故答案为:7﹣5﹣6+4.15.(4分)绝对值小于3的所有整数的和是0.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.16.(4分)计算:﹣16÷4×14=﹣1.【分析】首先统一成乘法,再约分计算即可.【解答】解:原式=﹣16×14×14=−1故答案为:﹣1.17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为8.【分析】用数轴上右边的数6减去左边的(﹣2),再根据减去一个数等于加上这个数的相反数进行计算即可求解.【解答】解:6﹣(﹣2)=6+2=8.故答案为:8.18.(4分)已知|a|=2,b=3,则b﹣a=1或5.【分析】根据绝对值的意义得出a的值,然后根据有理数减法运算即可.【解答】解:∵|a|=2,b=3∴a=±2,b=3∴当a=2,b=3时,b﹣a=3﹣2=1;当a=﹣2,b=3时,b﹣a=3﹣(﹣2)=5;故答案为:1或5.三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来.1.5,0,4,−12和﹣3.【分析】补全数轴,并在数轴上表示出各数,并用“<”把它们连接起来即可.【解答】解:如图所示由图可知,﹣3<−12<0<1.5<4.20.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.【分析】根据a、b互为相反数,可得:a+b=0;c、d互为倒数,可得:cd=1;m的绝对值为2,可得:m=±2,据此求出m+cd+a+bm的值是多少即可.【解答】解:∵a、b互为相反数∴a+b=0;∵c 、d 互为倒数 ∴cd =1; ∵m 的绝对值为2 ∴m =±2 ∴m =2时 m +cd +a+bm=2+1+0 =3 ∴m =﹣2时 m +cd +a+bm=﹣2+1+0 =﹣121.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)].【分析】(1)利用有理数的加减运算的法则进行解答即可; (2)先算乘方,括号里的运算,再算乘法,最后算加减即可. 【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10) =﹣7﹣5﹣4+10 =﹣6;(2)−24−(13−1)×13×[6−(−3)] =﹣16﹣(−23)×13×9 =﹣16+2 =﹣14.22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯①=﹣1﹣9+4……②=﹣6……③(1)亮亮计算过程从第 ① 步出现错误的;(填序号)(2)请你写出正确的计算过程.【分析】(1)根据题目中的解答过程,可以发现最先错在哪一步以及错误的原因;(2)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用,写出正确的解答过程即可.【解答】解:(1)亮亮计算过程从第①步出现错误的;(填序号)故答案为:①;(2)15÷5×(﹣3)﹣6×(32+23) =3×(﹣3)﹣6×32−6×23=﹣9﹣9﹣4=﹣22.23.(6分)定义一种新的运算x ∗y =x+2y x ,如3∗1=3+2×13=53,求(2*3)*2的值. 【分析】根据新定义运算列式子计算即可.【解答】解:根据题中的新定义得:(2*3)*2=(2+2×32)∗2=4∗2=4+44=2. 24.(6分)数轴上点A 、B 、C 的位置如图所示,A 、B 对应的数分别为﹣5和1,已知线段AB 的中点D 与线段BC 的中点E 之间的距离为5.(1)求点D 对应的数;(2)求点C 对应的数.【分析】(1)先求出AB 的长,再根据中点的性质可得;(2)根据两点间的距离公式可得.【解答】解:(1)1﹣(﹣5)=66÷2﹣1=3﹣1=2因D 点在0点的左侧所以用负数表示,是﹣2.答:D 点对应的数是﹣2.(2)5﹣2=3因C点在0点的右侧,所以用正数表示是+5.答:C点对应的数是+5.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站4次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?【分析】(1)明确“正”和“负”表示的意义,再进行判断;(2)巡警巡逻时经过岗亭东面6千米处加油站,要注意超过了加油站要返回的距离;(3)计算巡警经过的路程,再乘每行1千米的耗油.【解答】解:(1)根据题意:(+10)+(﹣8)+(+6)+(﹣13)+(+7)+(﹣12)+(+3)+(﹣1)=﹣8∵规定向东方向为正∴A在岗亭西方答:A在岗亭西方,A距离岗亭8千米;(2)第一次向东走10千米,从0﹣10,经过一次第二次又向西走8千米,10﹣2,经过一次第三次又向东走6千米,2﹣8,经过一次第四次又向西走13千米,8﹣(﹣5),经过一次第五次又向东走7千米,﹣5﹣2,不经过第六次又向西走12千米,2﹣(﹣10),不经过第七次又向东走3千米,﹣10﹣(﹣7),不经过第八次又向西走1千米,7—8,不经过所以巡警巡逻时经过岗亭东面6千米处加油站,应该是4次.故答案为:4;(3)|+10|+|﹣8|+|+6|+|﹣13|+|+7|+|﹣12|+|+3|+|﹣1|=60(km)60×0.05=3(升)答:该摩托车这天巡逻共耗油3升.26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=12,(−12)⑤=﹣8;(2)关于除方,下列说法错误的是CA.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=132;5⑥=154;(−12)⑩=28.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于1a n−2;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.【分析】初步探究(1)根据新定义计算;(2)根据新定义可判断C错误;深入思考(1)把有理数的除方运算转化为乘方运算进行计算;(2)利用新定义求解;(3)先把除方运算转化为乘方运算进行计算,然后进行乘除运算.【解答】解:初步探究(1)2③=12,(−12)⑤=﹣8;(2)C 选项错误;深入思考(1)(﹣3)④=132;5⑥=154;(−12)⑩=28. (2)a ⓝ=1a n−2;(3)原式=122÷32×(﹣23)﹣34÷33=﹣131.故答案为12,﹣8,C 与132与154和28。
七年级数学上册第一章有理数单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.[2023·扬州]-3的绝对值是()A.-3B.3C.±3D.132.下列各数-2,2,-5,0,π,0.0123中,非负数的个数有() A.1个 B.2个 C.3个 D.4个3.[真实情境题航空航天]2024年5月3日,嫦娥六号探测器开启世界首次月球背面采样返回之旅,月球表面的白天平均温度是零上126℃,记作+126℃,夜间平均温度是零下150℃,应记作() A.+150℃ B.-150℃C.+276℃D.-276℃4.[新考法概念辨析法]下列说法中正确的是()A.负有理数是负分数B.-1是最大的负数C.正有理数和负有理数组成全体有理数D.零是整数5.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n,q互为相反数,则m,n,p,q四个数中,负数有()A.1个B.2个C.3个D.4个6.下列化简正确的是()A.-[-(-10)]=-10B.-(-3)=-3C.-(+5)=5D.-[-(+8)]=-87.[情境题生活应用]化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数,不足的部分记为负数,它们中质量最接近标准的是()A BC D8.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.n>3B.m<-1C.m>-nD.|m|>|n|9.[2024·泰安泰山区期中]数轴上表示整数的点称为整数点,某数轴的单位长度是1cm,若在这个数轴上随意画一条长15cm的线段AB,则AB盖住的整数点的个数共有()A.13或14个B.14或15个C.15或16个D.16或17个10.[新视角动点探究题]如图,一个动点从原点O开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2025秒时所对应的数是()A.-405B.-406C.-1010D.-1011二、填空题(每题3分,共18分)11.用“>”或“<”填空:-7-9.12.一种袋装面粉标准净重为50kg,质监工作人员为了解这种面粉标准净重和每袋净重的关系,把51kg记为+1kg,那么一袋面粉净重49kg记为kg.13.已知b,c满足|b-1|+-0,则b+c的值是. 14.在数轴上,有理数a与-1所对应的点之间的距离是5,则a =.15.下列说法:①若|a|=a,则a>0;②若a,b互为相反数,且ab≠0,则=-1;③若|a|=|b|,则a=b;④若a<b<0,则|b-a|=b-a.其中正确的有.(填序号)16.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点表示的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.三、解答题(共72分)17.(8分)[母题2024·重庆万州区月考·教材P16习题T1]把下列各数填入相应的大括号内:-0.1,+(-4),6%,20,0,-0.030030 003…,227,2.0·1·.负有理数集合:{,…};非负整数集合:{,…};负整数集合:{,…};正数集合:{,…}.18.(6分)比较下列各组数的大小:(1)|-0.02|与-|-0.2|;(2)-π与-|-3.14|.19.(10分)如图,数轴上点A,B,C,D,E表示的数分别为-4,-2.5,-1,0.5,2.(1)将点A,B,C,D,E表示的数用“<”连接起来;(2)若将原点改在点C,则点A,B,C,D,E表示的数分别为多少,并将这些数用“<”连接起来.20.(10分)[2024·杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?21.(12分)[新视角知识情境化]数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合的思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图①,在数轴上点A表示的数是,点B表示的数是,A,B两点间的距离是.(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为.(3)如图②,小明将刻度尺放在了图①中的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B对应刻度尺上的刻度4.8cm,点E对应刻度1.2cm,则数轴上点E表示的有理数是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上描出与点A的距离为2的点(用不同于A,B的其他字母表示);(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少?答案一、1.B 2.D 3.B4.D【点拨】负有理数包括负分数,负整数,故A错误;-1是最大的负整数,不存在最大的负数,故B错误;正有理数、0和负有理数组成全体有理数,故C错误.5.C6.A7.D【点拨】因为|+0.8|=0.8,|-1.2|=1.2,|1|=1,|-0.5|=0.5,0.5<0.8<1<1.2,所以D选项中的砝码是最接近标准的.8.C9.C【点拨】当线段AB的端点在整数点时,盖住16个整数点;当线段AB的端点不在整数点,即在两个整数点之间时,盖住15个整数点.10.A【点拨】一个动点从原点O开始向左运动,每秒运动1个单位长度,并且每向左运动3秒就向右运动2秒,所以该点的运动周期为5秒,且每5秒向左运动一个单位长度,因为2025÷5=405.所以该点运动到2025秒时对应的数为-405.二、11.>12.-113.112【点拨】因为|b-1|+-0,所以b-1=0,c-12=0.所以b=1,c=12.所以b+c=112.14.4或-615.②④【点拨】①|a|=a,即绝对值等于本身,则a≥0,故①错误;②若a,b互为相反数,且ab≠0,则b=-a≠0,所以=-=-1,故②正确;③两个数的绝对值相等,则这两个数相等或互为相反数,故③错误;④若a<b<0,则b-a>0,因为正数的绝对值等于它本身,所以|b-a|=b-a,故④正确;综上所述,②④正确.16.69;52;-72【点拨】由数轴可知-7212和-4115之间的整数点有-72,-71,…,-42,共31个;-2134和1623之间的整数点有-21,-20,…,16,共38个;故被淹没的整数点有31+38=69(个),负整数点有31+21=52(个),被淹没的最小的负整数点所表示的数是-72.三、17.【解】负有理数集合:{-0.1,+(-4),…};非负整数集合:{20,0,…};负整数集合:{+(-4),…};正数集合:6%,20,227,2.0·1·,….18.【解】(1)因为|-0.02|=0.02,-|-0.2|=-0.2,所以|-0.02|>-|-0.2|.(2)因为-|-3.14|=-3.14,π>3.14,所以-π<-|-3.14|.19.【解】(1)由数轴可知-4<-2.5<-1<0.5<2.(2)将原点改在点C,则点A,B,C,D,E所表示的数分别为-3,-1.5,0,1.5,3,将这些数用“<”连接起来为-3<-1.5<0<1.5<3.20.【解】(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=610×100%=60%.(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).所以这10名同学的平均成绩是29.9秒.21.(1)-3;5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)由(1)得A,B两点间的距离是8,4.8÷8=0.6(cm),则数轴上1个单位长度对应刻度尺上0.6cm,1.2÷0.6=2,所以点E距离点A两个单位长度.故数轴上点E表示的有理数是-1.22.【解】(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.【解】(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②因为M,N两点之间的距离为2024,且M,N两点经折叠后重合,所以M,N两点距离折点的距离为12×2024=1012.所以点M表示的数为2-1012=-1010,点N表示的数为2+1 012=1014.。
七年级数学单元测试〔有理数〕一、填空题〔每题3分,共24分〕1.把以下各数填在相应的大括号中8,43,0.275,0,31-,6-,25.0-,2-正整数集合{ } 整数集合{} 负整数集合{} 正分数集合{ } 2.8.3-的相反数是 ,213的倒数是 ; 3、计算-3+1= ;=⎪⎭⎫ ⎝⎛-÷215 ;=-42 。
4、“负3的6次幂”写作 。
25-读作 ,平方得9的数是 。
5、-2的倒数是 , 311-的倒数的相反数是 。
有理数 的倒数等于它的绝对值的相反数。
6、根据语句列式计算: ⑴-6加上-3与2的积: ;⑵-2与3的和除以-3: ;⑶-3与2的平方的差: 。
7、用科学记数法表示:109000= ;89900000≈ 〔保留2个有效数字〕。
8、按四舍五入法则取近似值:70.60的有效数字为 个,2.096≈ 〔精确到百分位〕;15.046≈ 〔精确到0.1〕。
9、在括号填上适当的数,使等式成立: ⑴⨯=÷-78787〔 〕; ⑵8-21+23-10=〔23-21〕+〔 〕; ⑶+-=⨯-69232353〔 〕。
10.已知()03122=-++y x ,则33y x +=__________; 二、选择题 〔每题3分,共24分〕1.在211-,2.1,2-,0 ,-|-3|,()2--中,负数的个数有〔 〕A .2个B .3个C . 4个D . 5个2.,162=a 则a 是〔 〕A . 4或4-B . 4-C . 4D . 8或8-3.比较4.2-, 5.0-, ()2-- ,3-的大小,以下正确的〔 〕A .3- >4.2- > ()2--> 5.0-B .()2-- > 3->4.2-> 5.0-C .()2-- > 5,0- > 4.2-> 3-D .3-> ()2-->4.2-> 5.0-4.乘积为1-的两个数叫做互为负倒数,则2-的负倒数是〔 〕A . 2-B . 21-C . 21 D .2 5.7.951保留2个有效数字是〔 〕A . 8.00B . 7.9C . 8.0D . 86.()34--等于〔 〕 A . 12- B . 12 C . 64- D . 647.0<ab ,以下各式成立的是〔 〕A . b a =B . 0<<b aC . b a <<0D . b a <<08.一个有理数的相反数和它本身的绝对值的差是以下情形中的〔 〕A . 必为非负数B . 必为正数C . 必为非正数D . 必为09、以下计算结果错误的一个是〔 〕A 、613121-=+-B 、72213-=÷- C 、632214181641⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= D 、()122133=-⨯⎪⎭⎫ ⎝⎛- 10、如果a+b <0,并且ab >0,那么〔 〕A 、a <0,b <0B 、a >0,b >0C 、a <0,b >0D 、a >0,b <0三、计算题〔要求写出过程,每题5分,共30分〕〔1〕31)51(32+-+ 〔2〕2)5()2(10-⨯-+〔3〕24)612141(⨯+-〔4〕41)6.04824()6(⨯--÷-〔5〕2)4(31513297-⨯-⎪⎭⎫ ⎝⎛-÷- 〔6〕322436)12(3211⎪⎭⎫ ⎝⎛-⨯⎥⎦⎤⎢⎣⎡÷-+--五、已知:m 是正有理数,n 是负有理数,而且m =2,n =3,求n m +〔此题5分〕六、小康家里养了8只猪,质量的千克数分别为:104,98.5,96,91.8,102.5,100.7,103,95.5,按以下要求计算:⑴观察这8个数,估计这8只猪的平均质量约为 千克;⑵计算每只猪与你估计质量〔实际质量-估计质量〕分别为:⑶计算偏差的平均数〔精确到十分位〕所以这8只猪的平均质量约为七.观察算式: 21211211=-=⨯ 323121211321211=-+-=⨯+⨯ 4341313121211431321211=-+-+-=⨯+⨯+⨯ 按规律填空(2分) =⨯+⨯+⨯+⨯541431321211_______________ (2分)=⨯+⨯+⨯+⨯+⨯651541431321211_________ …… ……(2分)=⨯++⨯+⨯+⨯+⨯100991541431321211 ______________ 假设n 为正整数,试求:)100)(99(1)4)(3(1)3)(2(1)2)(1(1)1(1++++++++++++++n n n n n n n n n n 的值,并写出求值过程。
有理数 单元测试题一、选择题(每小题3分,共30分)1. 若有理数a ,b 互为相反数,则下列等式恒成立的是( ).A .0=-b aB .0=+b aC .1=abD .1-=ab解:B .2. 如果3a 是负数,那么a ( ).A .0a >B .0a ≥C .0a <D .0a ≤解:C .3. 如果1a a=-,那么a 是 ( ). A .正数 B .负数 C .非正数 D .非负数解:B4. 若0ab ≠,则b a a b+的取值不可能是 ( ). A .0B .1C .2D .-2解:B .5. 两个相反数的商是 ( ).A .-1B .1C .0D .-1或没意义解:D .6. 下列说法正确的是 ( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为0,则这两个数都为0D .若两个数的和为正数,则这两个数中至少有一个为正数解:D .7. 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式m b a cd m ++-2 的值为( ).A .3-B .3C .5-D .3或5-解:B .8. 计算()200820091(1)-+-的值是( ). A .0 B .-1 C .1 D .2解:A .9. 若(2)(3)a =-⋅-,3(2)b =-,3(3)c =--,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .c >a >b D .c >b >a解:C .10. 计算()200820091(1)-+-的值是( ). A .0 B .-1 C .1 D .2解:A .二、填空题(每小题3分,共30分)11. 若数轴上表示的-4点记为A ,表示+2的点记为B ,那么把A 点向 边移动 个单位长度到B 点.解:右 6.12. y x --9的最大值是 ;y x ++-8的最小值是 . 解: 9 , -8.13. 如果022=-+-x x 那么x 的取值范围是 .解:2x ≤.14. 某食品包装袋上标有净含量“385±5(克)”,这包食品的合格净含量范围是_______克~ 克.解:380克~390克.15. 若2x =,3y =,且20x y<,则x y += . 解:1或-1.16. 绝对值大于4且小于7的整数有 .解:5±或6±.17. 已知一列数:1,-2,3,-4,5,-6,7,-8,9,-10……将这列数排列成下列形式. 第一行: 1第二行: -2, 3第三行: -4, 5, -6第四行: 7, -8, 9, -10第五行: 11, -12, 13, -14, 15……按照上述规律排列下去,那么第10行从左边数第5个数是 .解:-50.18. 若11x y⋅=-,则x 和y 之间的关系是__________. 解:互为相反数且不为0.19. 若230a b ->,则b 0.解:<.20. 水星和太阳的平均距离约为57900000km .用科学记数法表示57900000为 .解:75.7910⨯.三、解答题(本大题共5小题,共40分)21.计算:(每小题3分,共9分)(1)计算:()()⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-76.892583450114776.89 解:原式=()76.892583450114776.89++⎪⎭⎫ ⎝⎛-+- =()[]⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-++-50163450114776.8976.89 =0+⎪⎭⎫ ⎝⎛-504512 =10912-.(2)31324()864÷+-. 解:原式9418557624()24()242424245=÷+-=÷-=-.(3) ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+217418 解:原式=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++217418=()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++217418 =()()[]⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++-++214178 =1+⎪⎭⎫ ⎝⎛-41 =43. 22.(6分) 计算:200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 解:原式=2005120041200412003141313121211-+-++-+-+- =1-20051 =20052004.23.(6分) 数a ,b c 在数轴上如图所示,求cc b b a a ++的值.解:由数轴可知0,0,0<>>c b a , ∴a a =,b b =,c c -=, ∴c c b b a a ++=cc b b a a -++ =1+1+(-1)=1.24.(9分). 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。
第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。
由莲山课件提供/ 资源全部免费有理数 单元测试一、选择题(每题3分,共45分)1.下列命题中:(1)零是正数;(2)零是整数;(3)零是最小的有理数;(4)零是非负数;(5)零是偶数,正确命题的个数是( )A .2个B .3个C .4个D .5个 2.若|a|=|b|,则a 与b 的关系为( ) A .a=bB .a=-bC .a=±bD .以上答案都不对3.据联合国近期公布的数字,我国内地吸引外来直接投资已居世界第四,1980~2002年期间,吸引外资累计为4880亿美元,用科学记数法表示正确的是 亿美元。
( ) A .210880.4⨯ B .310880.4⨯ C .4104880.0⨯ D .21080.48⨯ 4.下列比较大小结果正确的是( )A .-3<-4B .-(-2)<|-2|C .3121->-D .71|81|->- 5.下列关系式一定成立的是( )A .若|a|=|b|,则a=bB .若|a|=b ,则a=bC .若|a|=-b ,则a=bD .若a=-b ,则|a|=|b|6.若b<0,则a ,a-b ,a+b ,最大的是( )A .aB .a-bC .a+bD .还要看a 的符号,才能判定 7.对于(-2)4与-24,下列说法正确的是( )A .它们的意义相同B .它的结果相等C .它的意义不同,结果相等D .它的意义不同,结果不等 8.下面说法中正确的是( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数 9.若a 为负数,下列各式不正确的是( )A .a 2=(-a)2B .a 2=|a 2|C .a 3=(-a)3D .-a 3=(-a)310.已知a ×b ×c ×d ×e ,其中有三个负数,则a ×b ×c ×d ×e( )A .大于0B .小于0C .大于或等于0D .小于或等于011.若x 是有理数,则x 2+1一定是( )A.等于1 B.大于1 C.不小于1 D.非负数12.对任意实数a,下列各式中一定成立的是()A.a>|a| B.a>|-a| C.a≥-|-a| D.a<|a|13.下列各对数中,互为相反数的是()A.-|-7|和+(-7) B.+(-10)和-(+10) C.(-4)3和-43D.(-5)4和-5414.若x为有理数,则丨x丨-x表示的数是( )A.正数 B.非正数 C.负数 D.非负数15.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。
人教版七年级数学上册第一章有理数单元测试题一.选择题(共10小题)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.33.点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1 B.﹣2或2 C.﹣2 D.14.<()<,符合条件的分数有()个.A.无数B.1 C.2 D.35.在,,1.62,0四个数中,有理数的个数为()A.4 B.3 C.2 D.16.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+ B.﹣C.×D.÷7.有理数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.<08.312是96的()A.1倍B.C.D.36倍9.2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×108 10.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元二.填空题(共8小题)11.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.12.绝对值不大于11.1的整数有个.13.今年,秦州市市区道路的改造面积约达到231500平方米,使市民行车舒适度大大提升.231500(精确到1000)≈.14.计算:﹣ +|3|﹣+(﹣6)=.15.一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.16.对于任意有理数a、b,规定a⊕b=2a2+ab﹣1,则(﹣3)⊕5=.17.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.18.若a+3=0,则a=.三.解答题(共8小题)19.计算(1)×()×÷;(2)()×12;(3)(﹣125)÷(﹣5);(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].20.求|x+3|+|x﹣5|的最小值.21.如图,点A,B在数轴上,它们对应的数分别是﹣2,3x﹣4,且点A,B到原点的距离相等,求x的值.22.已知A地海拔高度为﹣30m,B地海拔高度为50m,C地海拔高度为﹣10m,哪个地方地势最高?哪个地方地势最低?地势最低的地方与地势最高的地方相差多少米?23.先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.24.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①24×11=264.计算过程:24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①32×11=,②78×11=;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.26.定义新运算@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.参考答案与试题解析一.选择题(共10小题)1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.3.解:由题意得,|2a+1|=3,解得,a=1或a=﹣2,故选:A.4.解:设符合条件的数为x,根据分数的基本性质,把分子分母扩大2倍,则,符合条件的分数有:,,;把分子分母扩大3倍,则,符合条件的分数有:,,,,;…,所以符合条件的分数有无数个,故选:A.5.解:在,,1.62,0四个数中,有理数为,1.62,0,共3个,故选:B.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:由数轴可知:b<﹣1,0<a<1,∴a+b<0,a﹣b>0,ab<0,<0.故选:D.8.解:∵312=(32)6=96,∴312是96的1倍.故选:A.9.解:111.7亿=11170000000=1.117×1010故选:C.10.解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.二.填空题(共8小题)11.解:93480000=9.348×107.故答案为:9.348×107.12.解:原点(0点)左边绝对值不大于11.1的整数有:﹣1、﹣2、﹣3、﹣4、﹣5、﹣6、﹣7、﹣8、﹣9、﹣10、﹣11,原点(0点)右边绝对值不大于11.1的整数有:1、2、3、4、5、6、7、8、9、10、11,还有0,因此,绝对值不大于11.1的整数有:11+1+11=23(个).故答案为:23.13.解:231500≈2.32×105,故答案为2.32×105.14.解:原式=﹣﹣+﹣=﹣1﹣3=﹣4,故答案为:﹣4.15.解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向左爬行2个单位长度,得﹣2,故答案为:2或﹣2.16.解:∵a⊕b=2a2+ab﹣1,∴(﹣3)⊕5=2×(﹣3)2+(﹣3)×5﹣1 =18﹣15﹣1=2.故答案为:2.17.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.18.解:∵a+3=0,∴a=﹣3.故答案为:﹣3.三.解答题(共8小题)19.解:(1)×()×÷=×(﹣)×=﹣;(2)()×12=3+2﹣6=﹣1;(3)(﹣125)÷(﹣5)=[(﹣125)+(﹣)]×(﹣)=25+=25;(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=(﹣1000)+[16﹣(1﹣9)×2]=(﹣1000)+[16﹣(﹣8)×2]=(﹣1000)+(16+16)=(﹣1000)+32=﹣968.20.解:∵|x+3|+|x﹣5|表示点x到点﹣3和点5之间的距离之和,∴当点x在点﹣3和5之间时,距离之和最小,即﹣3≤x≤5故最小值为5﹣(﹣3)=8.21.解:∵点A,B到原点的距离相等,点A表示的数是﹣2,点B在原点的右侧,∴点B表示的数为2,即:3x﹣4=2,解得,x=2,答:x的值为2.22.解:因为50>﹣10>﹣30,所以B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差:50﹣(﹣30)=50+30=80(m).答:B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差80m.23.解:(1)原式=×12﹣×12+×12=4﹣2+6=8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.24.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.25.解:(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为:a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为:“头尾一拉,中间相加,满十进一”.26.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.。
七年级数学单元检测一、填空题:1、公斤和减产150公斤;节俭25千瓦小时电和浪费15千瓦小时电;打球胜 3 局和败 2 局;海平面以上 10 米和海平面以下 10米等,都有是拥有 _________的量。
2、2、-3.2 与它的相反数的和是 _________,商是 _________;比-3.7 的相反数大 5 的数是 _________;( m-n )的相反数是_________。
3、数轴上走开原点 3 个单位的数是 _________,它们互为_______4、假如 | a |> a , 那么 a 是________;当 a≥0 时, | a |是_______.5、假如 | a |=| b |, 那么 a 与 b 的关系是 ________;假如 -| a |=-a | 那么 a=_______。
6、 a 为最小的正整数, b 为 a 的相反数, c 为绝对值最小的数,则( a+b )× 5 + 4c=_______ 。
7、若a、b互为倒数,则_______。
二、选择题:1.假如向东走 4 千米记为 +4 千米,那么走了 -2 千米表示()A、向北走了 2 千米 B、向西走了 2 千米C、向南走了 2 千米D、向东走了 2 千米2.以下说法正确的选项是()A、 -x 表示必定是负数B、 0 既是正数,也是负数C、 0°C 表示没有温度D、用 a 能够表示一个负数3.一个数大于另一个数的绝对值,那么这两个数的和是()A、负数B、正数C、非负数D、非正数4.若 a 为随意一个有理数,则以下说法中正确的选项是()A、 -a 是负数B、| a | 必定是正数C、 -| a | 必定是负数D、 | a | 不必定是正数5.若| a |=a且| a |=-a,则a是()A、正数或零B、负数或零C、零D、以上都可能6.a-| a | 的值是()A、 0 B 、 2a C 、; 2a 或 0 D 、不可以确立7.假如两个数 a、b 互为相反数,且 a≠0,那么以下各式中必定建立的是()A、B、=1 C、=-1 D 、- =-18.已知( a-1 )a=1,那么 a 的取值是()A、 a 是大于 1 的自然数B、 a=0C、 a=2 D 、 a=0 或 a=29.的值是()A、 1 B、 -2 C、 200 D、200010 .(-2100)+(-2)101所得的值是()A、 1 B 、-2 C 、2100 D、-210011 .已知 2.623 3=18.05, x 3=0.01805,那么x等于( )A、 0.2623 B 、 0.02623 C 、 0.002623 D 、 26.2312 .假如 abcd<0 , a+b=0 , cd>0 ,那么这四数中,负因数的个数起码有()A、 4个B、 3个C、 2个D、 1个13 .假如 x, y 表示有理数,且 x、y 知足条件, | x |=5 ,| y |=2 ,| x-y |=y-x ,那么 x+2y 的值是()A. -1 B 、 -9 或-1 C 、 -9 D、以上答案都不是三、计算(1)(2)(3)(4)12. D 13. B三、(1) 8 (2) 50 (3)-57 (4)0[初一数学答案 ]一、 1、相反意义2、0 -1 8.7 n-m3、±3 相反数4、负数 a5、相等或互为相反数06、 07、二、1.。
七年级数学《有理数及其运算》单元测试题( 一 )一、认真填一填,相信你可以把正确的答案填上. 1.︱-21︱倒数是______,︱-2︱相反数是______. 若a 与2互为相反数,则︱a+3︱=_______. 2.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________.3.实数a 在数轴上位置如图所示,则︱a+1︱的结果是_________.a -1 0 14.绝对值等于5的有理数是__________.绝对值最小的数是_____.绝对值大于2小于5的所有整数和为_______. 5有理数的减法法则是:减去一个数等于加上这个数的___________,用字母表示成:_______________________________ 6.计算: (-2)-(-5)=(-2)+(______); 0-(-4)=0+(______); (-6)-3=(-6)+(______); 1-(+37)=1+(______). 712-的绝对值的相反数是____________________. 8.若a 与b 的绝对值分别为2和5,且数轴上a 在b 左侧,则a+b 的值为________. 9.若用A 、B 、C 分别表示有理数a 、b 、c,0为原点如图所示.已知a<c<0,b>0. O化简c+│a+b │+│c-b │-│c-a │=_____________.10.数轴上与2-这个点的距离等于6个单位长度的点所表示的数是 . 11.(1)--的相反数是 .|1|--的相反数是 . 12.计算:(1)11_____--=;(2)|2|(1)----= ; 13.绝对值小于2008的所有整数的和为 .14.|3-| 的意义是 .|3-|= .15.哥哥今年12岁,弟弟今年9岁,用算式表示弟弟..比哥哥..大多少岁,应为: ,计算结果为: ,16.若三个有理数的乘积为负数,则在这三个有理数中,有 个负数. 17.用算式表示:温度由4-℃上升7℃,达到的温度是 . 18.规定521a b a b ⊗=+-,则(4)6-⊗的值为 . 19.已知||3a =,||2b =,且ab <0,则a b -= .20.如果一个数与另一个数的和是-50,其中一个数比6的相反数小5,•则另一个数是___________. 21.绝对值大于2且小于5的所有整数的和是_________. 22.若│a │=5,│b │=2,且a,b 同号,则│a-b │=_________.23. 已知a 是最小的正整数,b 的相反数比它本身大2,c 比最大的负整数大3,计算(2a +3c )·b =_________. 24.用“>”或“<”号填空: (1)如果a >0,b >0,那么a+b ______0; (2)如果a <0,b <0,那么a+b ______0; (3)如果a >0,b <0,|a|>|b|,那么a+b ______0;(4)如果a <0,b >0,|a|>|b|,那么a+b ______0. 25.若x>3,则︱x -3︱=_______;若x<3, 则︱x -3︱=_______. 26.若︱x -2︱+︱ y +3︱=0,则2x-3y=_______.27.计算︱21-1︱+︱31-21︱+︱41-31︱+…+︱1001-991︱=_______.28.把-0.11+(-5.24)-(+0.15)-(-1015)写成省略括号的和的形式为_________.29.绝对值大于4小于12的所有整数的和是________.30. 31.-3减去421与-341的和所得的差是________. 32.-6,-3.5,4三数的和比这三数的绝对值的和小________. 33.求-1,+2,-3,+4,-5,…,-99,100这100个数的和________.34.规定了一种新运算*:若a 、b 是有理数,则a *b = b a 23-,计算2*(-5)= 35.已知甲地高度是-10m ,甲地比乙地高10m ,又乙地比丙地高6m ,则甲地比丙地高________. 36.已知|x-1|=2,则|1+x|-5 =_______.39.已知a >0,b <0,a+b <0,将四个数a ,b ,—a ,—b 按从小到大的顺序排列______________________. 40.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有 个.1. 若 |x | =-x ,则x 一定是( ) (A ) 负数, (B )正数, (C ) 负数或0, (D ) 0.2. 下列说法正确的是( ) (A )一个数的绝对值一定是正数, (B ) 任何正数一定大于它的倒数, (C )a 的相反数的绝对值与a 的绝对值的相反数相等 (D ) 绝对值最小的有理数是03. 比-3.1大的非正整数的个数是( ) (A ) 2 (B )3 (C )4 (D ) 54..关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零 5.a ,b 是有理数,它们在数轴上的对应点的位置如下图所示:把,,,a a b b --按照从小到大的顺序排列 ( ) (A )-b <-a <a <b (B )a <-b <b <-a (C )-b <a <-a <b (D )a <-b <-a <b6.A 为数轴上表示-1的点,将点A 在数轴上向右平移3个单位长度到点B ,则点B 所表示的实数为( )A .3B .2C .-4D .2或-47.数轴上表示3-的点与表示5+的点的距离是( ) A.3 B.-2 C.+2 D.8 8.有理数a 、b 在数轴上位置如图所示,则下列各式正确的是( ) A.a>b B.b>a C.a>0 D. ︱a ︱>︱b ︱b a 09.一个数是10,另一个数比10的相反数小2,则这两个数的和为( ) A .18 B .-2 C .-18 D .2 10.下列各式的值等于5的是 ( )(A) |-9|+|+4|; (B) |(-9)+(+4)|; (C) |(+9)―(―4)|; (D) |-9|+|-4|. 11.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数12.在数轴上与-3的距离等于4的点表示的数是 ( ). A 、1. B 、-7 C 、1或 -7 D 、无数个13.把(-5)-(+3)-(-7)+(-2)写成省略加号和括号的形式,正确的是( ) A 、-5-3+7-2 B 、5-3-7-2 C 、5-3+7-2 D 、5+3-7-214.下列说法中正确的是( ) A .减去一个数等于加上这个数 B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数15.下列说法正确的是( ) A .绝对值相等的两数差为零 B .零减去一个数得这个数的相反数 C .两个有理数相减,就是把它们的绝对值相减 D .零减去一个数仍得这个数16.差是-7.2,被减数是0.8,减数是( ) A .-8 B .8 C .6.4 D .-6.4 17.若0>a ,且b a >,则b a -是( ) A .正数B .正数或负数C .负数D .018.若│a │=5,│b │=3且a>b ,则a-b=( ) A .2或8 B .-2或-8 C .-5或-3 D .±3或±8 19.a ,b 在数轴上位置如图所示,下列结论不正确的是( )A .-a+b<0 B .-a-b>0 C .a+b<0 D .a-b<0oa20.若两个有理数的差是正数,那么( )A. 被减数是负数,减数是正数B. 被减数和减数都是正数C. 被减数大于减数D. 被减数和减数不能同为负数 21. 当x <0,y >0时,则x ,x +y ,x -y ,y 中最大的是( ),A. x B. x +y C. x -y D. y 22.若a 是有理数,则a a -一定是( ) A .正数 B.负数 C.零 D.非负数23.已知b a b a b a +=+==且,7,5,则b a -的值等于( ) A.-12 B.-2 C.-2或-12 D.2 24. 有理数a 、b 在数轴上的位置如图所示,则a+b 的值为( )aA 正数B 负数C 零D 无法确定25. 两个有理数相加,如果和小于每一个加数,那么这两个数 ( )A 同为正数B 同为负数C 一个为0,一个为负数D 一正一负 26. 两个有理数相加,和小于其中一个加数而大于另一个加数,需满足( )A 同为正数B 同为负数C 一正一负D 至少有一个数为0 27.计算(-2)-(+5)+(-8)-(-5)+213所得的结果正确的是( ) A.-713 B.1213 C.-723 D.-122328.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( ) A.-1 B.0 C.1 D.229.如果一个数的绝对值与这个数的商等于-1,则这个数是( ) A.正数 B.负数 C.非正 D.非负 30.下列说法中正确的是( )A.两个负数相减,等于绝对值相减;B.两个负数的差一定大于零C.负数减去正数,等于两个负数相加;D.正数减去负数,等于两个正数相减 三、解答题:1.观察下面按次序排列的每一列数,研究它们各自的变化规律,并接着填出后面的数.(1)22222222____________---- ,,,,,,,,,, (2)246810121416____________---- ,,,,,,,,,, (3)303030303030____________--- ,,,,,,,,,,,,,, (4)光谱数据 3236,2125,1216,59,……的下一个数据是_______(5)观察下面一列数的规律并填空:0,3,8,15,24,_______,_______,...2.计算(1) ; (2)(-0.19)+(-3.12); (3) ;(4) ; (5) . (6)(7)2.7-(-3.1); (8)0.15-0.26; (9)(-5)-(-3.5);(10) ; (11) ; (12)(11)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(12)0.47+(-0.09)+0.39+(-0.3)+1.53; ;(13)-40-(-19)+(-24) (14))91()65(45-⨯-÷ (15))17(171319-⨯(16)61)3161(1⨯-÷ (17))24()121876532(-⨯+-- (18))16(94412)81(-÷⨯÷-(19)125.0)85()125.0(9)413(75.0---+---++- (20)48245834132⨯⎪⎭⎫⎝⎛+--(19)、将下列各有理数填入相应的集合内: ()78.1,36.0,27,0,4,76,38-+---,π整数:{ …} 分数:{ …} 正数:{ …} 负数:{ …}(19)、在数轴上把数+(-2),)3.1(,5.0,0,431-----表示出来,并用“>”号连接起来。
七年级数学上册《第一章有理数》单元测试卷及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如 需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写 在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章有理数。
5.难度系数:中等。
第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.32.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 3.设x 为有理数,若x x =,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个B .1个C .2个D .3个5.以下数轴画法正确的是( ) A .B .C .D .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个B .3个C .4个D .5个7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0B .1C .2D .38.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3B .7-C .0D .202310.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c+++++的值为1±. A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦= .12.若b -的相反数是 2.4-,则b = .13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d+++的最大值是 . 15.新定义如下:()3f x x =-, ()2g y y =+ 例如:() 2235f -=--=, ()3325g =+= 根据上述知识, 若()()6f x g x +=, 则x 的值为 . 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________; (2)当a = 时,12a -+有最小值,最小值是 .三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤) 17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.18.(4分)把下列各数的序号填入相应的大括号内:①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…}; 非负数集合:{_______________…}; 非正整数集合:{_______________…}; 分数集合:{_______________…}.19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期周一 周二 周三 周四 周五学规得分 +5+3−4+7−2(1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示).21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-;(2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}.(1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:_________. (3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.23.(10分)阅读下面的文字,完成后面的问题: 我们知道:11×2=1−12;12×3=12−13;13×4=13−14. 那么: (1)14×5=______;12019×2020=______;(2)用含有n 的式子表示你发现的规律______; (3)求式子11×2+12×3+13×4+⋯+12019×2020的值.24.(12分)阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求: (1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.25.(12分)定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是-3,6.5,11,其中是【M ,N 】美好点的是 ; 写出【N ,M 】美好点H 所表示的数是 .(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?参考答案第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.3【答案】C【分析】先求出每个数的绝对值,再根据有理数的大小比较法则比较即可.本题考查了有理数的大小比较和绝对值,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.【详解】解:55-= ()22--= 00= 0.30.3-= ∵00.325<<< ∴绝对值最小的是0. 故选:C .2.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 【答案】D【分析】此题考查了正数和负数的实际意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,依次判断各可. 【详解】解:“向东10米”与“向西5米”是相反意义的量;故A 不符合题意; 如果气球上升25米记作25+米,那么15-米的意义就是下降15米;故B 不符合题意; 如果气温下降6℃,记为6-℃,那么8+℃的意义就是上升8℃;故C 不符合题意;若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米,正确,故D 符合题意; 故选D3.设x 为有理数,若x x =,则( ) A .x 为正数 B .x 为负数C .x 为非正数D .x 为非负数【答案】D【分析】本题考查绝对值的性质,根据(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩直接判断即可得到答案;【详解】解:∵x x = ∴x 是非负数 故选:D .4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个 B .1个C .2个D .3个【答案】D【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数.根据相反数的定义一一进行分析即可得出答案.【详解】解:①a 的相反数是a -,说法正确;②只有符号不同的两个数互为相反数,说法错误;③()3.8--的相反数是 3.8-,说法正确;④一个数和它的相反数可能相等,如0的相反数等于0,说法正确;⑤正数与负数不一定互为相反数,如2和1-,说法错误;故正确的有3个. 故选:D .5.以下数轴画法正确的是( ) A .B .C .D .【答案】C【分析】本题考查数轴,了解数轴三要素是关键.根据数轴三要素:原点,正方向,单位长度,逐一排除即可.【详解】解:A .没有正方向,错误,不符合题意; B .单位长度不相等,错误,不符合题意;C .有正方向,原点,单位长度相等,正确,符合题意;D .选项没有原点,错误,不符合题意. 故选:C .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个 B .3个C .4个D .5个【答案】B【分析】本题考查了负数的概念,含乘方的有理数化简与化简绝对值,负数就是小于0的数,带负号的数不一定负数.熟练掌握以上知识点是解题的关键.根据相关性质化简各项,再利用负数的概念进行判断即可. 【详解】解: −|−2|=−2,是负数; −22023是负数;()1--=1,不是负数;0不是负数;−(−2)2=−4,是负数; 综上:有3个负数 故选:B .7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0 B .1 C .2 D .3【答案】B【分析】本题考查了整数“整数包括正整数、0和负整数”、有理数的分类“有理数可分为正有理数、0和负有理数”、正数与负数,熟练掌握有理数的分类是解题关键.根据整数、有理数的分类、正数与负数逐个判断即可得.【详解】解:①0不是最小的整数,如负整数10-<,则原说法错误; ②有理数0既不是正数也不是负数,则原说法错误; ③若a 是正数,则a -是负数,则原说法正确; ④自然数0不是正数,则原说法错误;⑤整数0既不是正整数也不是负整数,则原说法错误; ⑥非负数就是指不是负数,即正数和0,则原说法错误; 综上,正确的个数是1个, 故选:B .8.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④【答案】C【分析】本题考查根据点在数轴上的位置比较代数式大小,熟练掌握利用数轴比较数的大小是解决问题的关键.【详解】解:a,b 在数轴上的位置如图所示:0a b ∴<<故①0a b <<正确 a b > ②错误;由①②可得0ab->,③正确; 0,0a b b a +<->∴b a a b ->+ ④错误;综上所述,正确的有①③ 故选:C .9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3 B .7- C .0 D .2023【答案】A【分析】本题考查相反数的性质,负整数.根据相反数、负整数的性质求出相关数据,再通过计算即可求解. 【详解】∵m 和n 互为相反数,a 是最大的负整数 ∴0m n += 1a =-∴m+n2023−3a =02023−3×(−1)=3. 故选:A .10.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c +++++的值为1±.A .1个B .2个C .3个D .4个【答案】A【分析】本题考查有绝对值的化简,数轴上两点间的距离,解答本题的关键是对于错误的结论,要说明理由或者举出反例. 【详解】若11a a=,则a >0, 故①错误, 不合题意; 若a b >则0a b >>或0a b a >>>-或0a b a ->>>或0b a >> 当0a b >>时, 则有()()0a b a b +->是是正数当0a b a >>>-时, 则有()()0a b a b +->是正数 当0a b a ->>>时, 则有()()0a b a b +->是正数 当0b a >>时, 则有()()0a b a b +->是是正数由上可得, ()()0a b a b +->是正数, 故②正确,符合题意;A B C 、、三点在数轴上对应的数分别是-2、6、x ,若相邻两点的距离相等,则x =2或10-或14,故③错误,不合题意;若代数式29312011x x x +-+-+的值与x 无关,则29312011293120112019x x x x x x +-+-+=+-+-+= 故④错误,不合题意;0,0a b c abc ++=<∴a b c 、、中一定是一负两正 b c a +=- ,a c b a b c +=-+=- 不妨设0,0,0a b c >>< b c a c a ba b c+++∴++ b c a c a b a b c +++=++- a b c a b c---=++- 111=--+1=-,故⑤错误,不合题意;故选: A .第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦ .【答案】337-/247-【分析】本题主要考查了多重符号化简,熟练掌握相反数定义,根据“只有符号不同的两个数互为相反数”进行求解即可.【详解】解:333377⎡⎤⎛⎫---=- ⎪⎢⎥⎝⎭⎣⎦.故答案为:337-.12.若b -的相反数是 2.4-,则b = .【答案】 2.4-【分析】根据相反数的性质解答即可.本题考查了相反数的性质,熟练掌握互为相反数的两个数的和为0,列出方程求解是解题的关键.【详解】解:根据题意,得()2.40b -+-=解得 2.4b =-.故答案为: 2.4-.13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.【答案】9【分析】本题考查了数轴.熟练掌握数轴是解题的关键.根据在数轴上表示有理数进行作答即可.【详解】解:由数轴可知,被盖住的整数有−6,−5,−4,−3,−2,1,2,3,4共9个故答案为:9.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d +++的最大值是 . 【答案】2【分析】根据绝对值的运用判断出有理数a ,b ,c ,d 中负数的个数,然后分别讨论求出最大值.本题主要考查了绝对值的运用,采用分类讨论的思想进行解题. 【详解】解:||1abcd abcd=- ∴有理数a ,b ,c ,d 中负数为奇数个.①若有理数a ,b ,c ,d 有一个负三个正 则||||||||2a b c d a b c d+++=; ②若有理数a ,b ,c ,d 有三个负一个正 则||||||||2a b c d a b c d+++=-; 所以||||||||a b c d a b c d +++的最大值是2. 故答案为:2.15.新定义如下:()3f x x =- ()2g y y =+; 例如:() 2235f -=--= ()3325g =+=;根据上述知识, 若()()6f x g x +=, 则x 的值为 . 【答案】72或52-【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据()()6f x g x +=得出含绝对值的方程,解方程可得答案. 【详解】解:由题可得:326x x -++=当3x ≥时326x x -++=,解得72x =; 当23x -<<时326x x -++=,方程无解;当2x ≤-时326x x ---=,解得52x =-; 故答案为:72或52-. 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.【答案】(1)3(2)1,2【分析】本题考查绝对值;(1)有绝对值的非负性可以得出000+=,代入即可求出答案.(2)根据绝对值的非负性解题即可.【详解】(1)∵2010a b -≥-≥, 210a b -+-= ∴2010a b -=-=,∴21a b ==,∴3a b +=故答案为:3;(2)∵10a -≥∴当10a -=时,10a -=最小,此时12a -+有最小值∴当1a =时12a -+有最小值,最小值是2故答案为:1,2.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.【答案】1a = 2b =【分析】本题考查了绝对值非负的性质.当它们相加和为0时,必须满足其中的每一项都等于0.根据非负数的性质列出方程求出未知数的值.【详解】解:|1||2|0a b -+-=10a ∴-= 20b -=1a ∴= 2b =故答案为:1a = 2b =.18.(4分)把下列各数的序号填入相应的大括号内: ①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…};非负数集合:{_______________…};非正整数集合:{_______________…};分数集合:{_______________…}.【答案】②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧【分析】本题考查了正有理数、非负数、非正整数、分数的定义,根据定义直接求解即可,解题的关键是熟悉正有理数、非负数、非正整数、分数的定义,熟练掌握此题的特点并能熟练运用. 【详解】由33--=- ()0.750.75-+=- 3344-= ()3535--= 正有理数集合:{②③⑧⑩…};非负数集合:{②③⑦⑧⑨⑩…};非正整数集合:{⑤⑦…};分数集合:{①②③④⑥⑧…}故答案为:②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期 周一 周二 周三 周四 周五学规得分 +5+3 −4 +7 −2 (1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?【答案】(1)9分(2)-2分【分析】(1)将表格中的得分求和即可;(2)第4周末学规累加分数和第5周学规得分相加,得到第5周末学规累加分数,用第6周末学规累加分数减去第5周末学规累加分数,即为第6周的学规得分.【详解】(1)解:∵+5+3−4+7−2=9∵第5周小李学规得分总计是9分;(2)解:∵第4周末学规累加分数为65分,第5周学规得分总计是9分∵第5周末学规累加分数为:65+9=74∵72-74=-2∵第6周的学规得分总计是-2分.20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示)【答案】(1)3,2(2)4,7 m n -【分析】本题主要考查数轴,熟练掌握数轴上两点间的距离公式是解题的关键.(1)直接根据数轴上两点间的距离进行计算即可.(2)根据数轴上两点间的距离进行计算,再进行规律总结,即可得到答案.【详解】(1)解:点C 与点D 的距离为303-=点B 与点D 的距离为0(2)2--=故答案为:3,2;(2)解:点B 与点E 的距离为2(2)4--=,点A 与点C 的距离为3(4)7--=在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN m n =-故答案为:4,7 m n -.21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-; (2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .【答案】(1)见解析;(2)3401 1.532-<-<<<<;(3)2,3 【分析】本题考查了有理数的大小比较,数轴,准确在数轴上找到各数对应的点是解题的关键. (1)先在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答;(3)根据数轴上两点间距离公式进行计算,即可解答.【详解】解:(1)如图:(2)由(1)可得:3401 1.532-<-<<<<; (3)数轴上表示3和表示1的两点之间的距离312=-=,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离31.5 1.5 1.532⎛⎫=--=+= ⎪⎝⎭故答案为:2;3.22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}. (1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:__________.(3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.【答案】(1)见解析;(2) -1,-4,-4.2,18-;(3)见解析. 【分析】(1)根据数集的包含关系进行分类(2)选出负数;(3)根据观察易得.【详解】解:(1)如图所示.(2)-1,-4,-4.21 8 -(3)有,是2.1.故答案为(2)-1,-4,-4;218-;(3)有,是2.1.23.(10分)阅读下面的文字,完成后面的问题:我们知道:11×2=1−12;12×3=12−13;13×4=13−14.那么:(1)14×5=______;12019×2020=______;(2)用含有n的式子表示你发现的规律______;(3)求式子11×2+12×3+13×4+⋯+12019×2020的值.【答案】(1)14−15(2)12019−12020(3)20192020.【分析】(1)根据阅读部分的提示规律直接进行计算即可;(2)根据阅读部分的提示规律用含n的代数式表示即可;(3)根据得到的规律把原式化为:11−12+12−13+13−14+⋯+12019−12020,再计算即可;(4)先利用非负数的性质求解x,y,再代入代入式结合规律进行计算即可。
七年级数学有理数单元检测试题
一、填空题:沉着冷静是成功的法宝((每小题3分,共24分)
1、 水位升高3m 时水位变化记作+3m ,那么-5m 表示 。
2、在2
1
5-,0,-(-1.5),-│-5│,2,411,24中,整数是 .
3、数轴上与原点距离是3个单位的点,所表示的数是__________。
4、A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是-10米,则地势最高的与地势最低的相差__________米.
5、-13
1
的相反数是_______,它的倒数是_______,它的绝对值是______.
7、 3
)23(-的底数是________,指数是________。
8、 比较大小:31
-
52-
; -(-1)_______-∣-1∣。
二、选择题:认真是成功的保证(每小题3分,共24分)
9、 如图,数轴上有四点A 、B 、C 、D ,其中表示有理数5.2-的点是 ( )
A. A 点
B. B 点
C. C 点
D. D 点
10、 1
2的相反数的绝对值是( )
A. -12
B. 2
C. -2
D. 1
2
11、一个数加上12-等于5-,则这个数是( )
A .17 B.7 C.17- D.7- 12、下列算式准确的是( )
A. (-14)-5=-9
B. 0-(-3)=3
C. (-3)-(-3)=-6
D. |5-3|=-(5-3) 13、一个数的绝对值是3,则这个数能够是( )
A.3
B.3-
C.3或者3-
D.31
14、()3
4--等于( )
A .12- B. 12 C.64- D.64 15.下列说法中,准确的是( ) A.两个有理数的和一定大于每个加数 B.3与1
3-
互为倒数
C.0没有倒数也没有相反数
D.绝对值最小的数是0
16、 下列各式:①)2(--;②2--;③22-;④2)2(--,计算结果为负数的个数有 ( )
A. 4个
B. 3个
C. 2个
D. 1个
三、解答题与计算 细心是成功的关键(总计52分)
17、(4分)把下面的有理数填在相对应的大括号里:(★友情提示:将各数用逗号分开)
15,8
3-, 0, 30-, 15.0, 128-, 522
, 20+, 6.2-
正数集合﹛ ﹜
负数集合﹛ ﹜
整数集合﹛ ﹜
分数集合﹛ ﹜ 18、(5分) -6.27+3.8-0.73+1.2
19、(5分) ()5.5-+()2.3-()5.2---4.8
20、(6分) ()8-)02.0()25(-⨯-⨯ 21、(6分)⎪⎭
⎫
⎝⎛
-
+-
12
7659521()36-⨯
22、(6分) 18-32÷(-2)3-42×(-3)
23、(6分) ()[]
20074152
12--⨯--÷(-3)
24.(7分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:
5.1 3- 2 5.0- 1 2- 2- 5.2- 回答下列问题:
(1)这8筐白菜中最接近标准重量的这筐白菜重 千克; (2)这8筐白菜一共重多少千克?
25、(7分)某检修站,某小组乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8。
(1)计算收工时,此小组在A 地的哪一边,距A 地多远?
(2)若每千米汽车耗油a 升,求出发到收工时此小组耗油多少升?。