10-机械工程材料知识综合应用举例
- 格式:ppt
- 大小:103.50 KB
- 文档页数:18
激情导入观察下列物品,它们都是由什么材料构成?材料是机器的物质基础。
材料种类繁多,在机械工程上常用的材料有:钢铁材料、有色金属和非金属材料。
各种材料的性能不同,用途也不同。
因此为了正确的选择和使用材料,必须掌握和了解材料的分类、牌号、性能、应用范围及热处理等有关基本知识。
钢的种类繁多,有多种分类方法。
根据化学成分,钢可分碳素结构钢指含碳量wc<0.70%,主要用于制造齿轮、轴等各种机械零件和制作桥梁、建筑等工程结构件用钢。
普通碳素结构钢用于制造各种机械零件和工程结构件。
这类钢一般属于低碳、中碳钢。
优质碳素结构钢用于制造各种刀具、量具和模具。
这类钢一般属于高碳钢。
(4)按脱氧方法分类沸腾钢:不完全脱氧;镇静钢:完全脱氧;半镇静钢:介于沸腾钢和镇静钢之间。
在实际使用中,钢厂在给钢的产品命名时,往往将成分、质量和用途三种分类方法结合起来,如将钢称为优质碳素结构钢、高级优质碳素工具钢等。
(二)碳素结构钢定义:凡用于制造机械零件和各种工程结构件的钢都称为结构钢。
分类:根据质量可分为普通碳素结构钢和优质碳素结构钢;1.普通碳素结构钢(1)特点:冶炼容易、价格低廉、性能能满足一般工程结构、日常生活用品和普通机械零件的要求。
(2)用途:主要用于焊接、铆接、栓接构件。
Q235应用最多(3)牌号:普通碳素结构钢的牌号由“Q”(表示屈服点的汉语拼音字首)、一组数据(表示屈服强度,单位MPa)、质量等级符号(质量分A、B、C、D四个等级)和脱氧方法符号(F—沸腾钢、b—半镇静钢、Z—镇静钢、TZ—特殊镇静钢,通常Z、TZ 可省略)四个部分按顺序组成。
例:Q235-A.F,“Q”代表屈服点,数值235表示在一定拉观察这些工具,分析它们的用途及材料组成?定义:碳素工具钢是用于制造刃具、模具、量具以及其他工具的钢。
特点:这类工具钢都要求高硬度和高耐磨性,含碳量都在0.7﹪以上,都是优质的或高级优质高碳钢。
3、牌号:拼音字母“T”加数字表示,其中“T”碳素工具钢,数字表示平均含碳量的千分数,若为高级优质碳钢则在牌号后加“A”。
《机械工程材料》教案一、教学目标1. 知识与技能:(1)了解机械工程材料的基本概念、分类及性能;(2)掌握金属材料的组织结构、性能及应用;(3)熟悉非金属材料、复合材料的性能及应用。
2. 过程与方法:(1)通过观察、实验等手段,分析机械工程材料的性能及应用;(2)学会运用相关知识,解决实际工程问题。
3. 情感态度与价值观:(1)培养学生的团队合作精神,提高动手能力;(2)培养学生对机械工程材料的兴趣,增强专业认同感。
二、教学内容1. 机械工程材料的基本概念、分类及性能;2. 金属材料的组织结构、性能及应用;3. 非金属材料的性能及应用;4. 复合材料的性能及应用。
三、教学重点与难点1. 教学重点:(1)机械工程材料的基本概念、分类及性能;(2)金属材料的组织结构、性能及应用;(3)非金属材料、复合材料的性能及应用。
2. 教学难点:(1)金属材料的组织结构与性能的关系;(2)非金属材料、复合材料的性能及应用。
四、教学方法1. 讲授法:讲解机械工程材料的基本概念、分类及性能;2. 实验法:观察、分析金属材料的组织结构、性能;3. 案例分析法:分析非金属材料、复合材料的性能及应用;4. 小组讨论法:探讨金属材料、非金属材料、复合材料在实际工程中的应用。
五、教学过程1. 导入:(1)简要介绍机械工程材料的概念;(2)引导学生思考机械工程材料在工程中的重要性。
2. 讲解:(1)讲解机械工程材料的分类及性能;(2)讲解金属材料的组织结构、性能及应用;(3)讲解非金属材料、复合材料的性能及应用。
3. 实验:(1)安排学生参观实验室,观察金属材料的组织结构;(2)引导学生动手进行实验,分析金属材料的性能。
4. 案例分析:(1)分析非金属材料在工程中的应用案例;(2)分析复合材料在工程中的应用案例。
5. 小组讨论:(1)组织学生分组讨论金属材料、非金属材料、复合材料在实际工程中的应用;(2)引导学生思考如何选择合适的材料解决实际问题。
材料科学:机械工程材料知识点(最新版) 考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。
l 绿色制造技术的核心内容有哪些? 本题答案: 6、名词解释 合金强化 本题答案: 7、填空题 在Fe-Fe3C 相图中,共晶转变温度是( ),共析转变温度是( )。
本题答案: 8、判断题 冷却速度越快,钢的淬透性越高。
本题答案: 9、填空题 45钢正火后渗碳体( ),调质处理后渗碳体( )。
本题答案: 10、问答题 简述弹性变形与塑性变形的区别。
本题答案: 11、填空题 晶体缺陷中的点缺陷除了置换原子还有( )和( )。
本题答案: 12、单项选择题姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------表示晶体中原子排列形式的空间格子叫做()A.晶胞B.晶格C.晶粒D.晶向本题答案:13、问答题列举五种以上塑料的成形方法。
本题答案:14、问答题陶瓷的注浆成形有哪些?本题答案:15、问答题常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe 、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?本题答案:16、填空题钢的中温回火的温度范围在(),回火后的组织为()。
本题答案:17、判断题热处理的加热,其目的是使钢件获得表层和心部温度均匀一致。
本题答案:18、单项选择题下列材料中,最适合制造盛放氢氟酸容器的是()A.1Cr17B.1Cr18Ni9TiC.聚四氟乙烯D.SiO2本题答案:19、问答题为什么铸造生产中,化学成分如具有三低(碳、硅、锰的含量低)一高(硫含量高)特点的铸铁易形成白口?而在同一铸铁中,往往在其表面或薄壁处易形成白口?本题答案:20、问答题塑料的连接方式有哪几种?本题答案:21、问答题什么是复合材料,举例说明复合材料在产品设计中的应用。
《机械工程材料》教案一、教学目标1. 了解机械工程材料的基本概念、分类和性能。
2. 掌握金属材料的组织结构、性能及应用。
3. 熟悉非金属材料、复合材料的分类、性能及应用。
4. 能够根据工程需求选择合适的材料。
二、教学内容1. 机械工程材料的基本概念及分类材料的定义、分类及编号金属材料、非金属材料、复合材料的特征及应用2. 金属材料的组织结构与性能金属的晶体结构金属的力学性能、工艺性能及物理性能金属的强化途径3. 常用金属材料及应用碳钢、合金钢、不锈钢的性能及应用常用有色金属及其合金的性能及应用4. 非金属材料塑料、橡胶、陶瓷的性能及应用复合材料的性能及应用5. 材料的选用及工艺路线设计材料选用的原则工艺路线设计的方法及步骤三、教学方法1. 讲授:讲解基本概念、原理、性能及应用。
2. 互动:提问、讨论,巩固知识点。
3. 案例分析:分析实际工程案例,掌握材料选用及工艺路线设计。
4. 实验:观察材料组织结构,验证性能指标。
四、教学资源1. 教材:《机械工程材料》2. 课件:讲解要点、图片、案例分析3. 实验设备:金相显微镜、硬度计等4. 网络资源:相关论文、视频、网站等五、教学评价1. 平时成绩:课堂提问、作业、实验报告2. 考试成绩:期末考试、考查知识掌握程度3. 综合评价:分析案例、设计工艺路线,评价应用能力六、教学重点与难点1. 教学重点:机械工程材料的基本概念、分类和性能金属材料的组织结构、性能及应用非金属材料、复合材料的分类、性能及应用材料选用的原则和方法2. 教学难点:金属材料的组织结构与性能之间的关系非金属材料、复合材料的性能及应用材料选用和工艺路线设计的实践应用七、教学进度安排1. 课时:共计32课时2. 分配:基本概念及分类:4课时金属材料的组织结构与性能:6课时常用金属材料及应用:4课时非金属材料:3课时复合材料:3课时材料的选用及工艺路线设计:6课时实验:3课时机动:2课时八、教学步骤1. 引入:通过实例引入机械工程材料的概念,激发兴趣。
一、引言作为一名机械工程专业的学生,我有幸参加了机械工程材料实训课程。
通过这次实训,我对机械工程材料有了更加深入的了解,对材料的性质、应用以及加工方法有了更加清晰的认识。
以下是我对这次实训的心得体会。
二、实训内容与过程1. 实训内容本次实训主要包括以下内容:(1)金属材料的性能及分类(2)金属材料的加工工艺(3)非金属材料的应用及特性(4)复合材料的研究与发展(5)材料在机械工程中的应用实例2. 实训过程(1)理论学习:通过课堂讲解、教材阅读、网络搜索等方式,对机械工程材料的基本知识进行学习。
(2)实验操作:在实验室内进行各种实验,如金相显微镜观察、硬度测试、拉伸试验等,以验证理论知识。
(3)项目实践:以小组为单位,完成一项与机械工程材料相关的项目,如设计一种新型材料制品。
三、实训心得体会1. 金属材料通过本次实训,我了解到金属材料在机械工程中的应用非常广泛。
不同类型的金属材料具有不同的性能,如强度、硬度、韧性、耐磨性等。
在机械设计中,合理选择金属材料对提高机械性能和延长使用寿命具有重要意义。
同时,我也认识到金属材料加工工艺的重要性,如热处理、表面处理等,这些工艺可以改善材料的性能。
2. 非金属材料非金属材料在机械工程中的应用也日益广泛,如塑料、橡胶、陶瓷等。
这些材料具有轻质、耐腐蚀、耐磨、绝缘等特性,适用于各种特殊环境。
通过实训,我对非金属材料的加工工艺有了初步了解,如注塑、挤出、压延等。
3. 复合材料复合材料是由两种或两种以上不同性质的材料复合而成的材料,具有优异的综合性能。
在本次实训中,我了解到复合材料的种类、制备方法及其在机械工程中的应用。
复合材料在航空航天、汽车制造、建筑等领域具有广泛的应用前景。
4. 材料在机械工程中的应用实例实训过程中,我们以实际项目为例,了解了材料在机械工程中的应用。
例如,在设计一种新型材料制品时,我们综合考虑了材料的性能、加工工艺、成本等因素,最终选择了合适的材料。
在此输入书名第×章第3章机械工程材料基本知识机械工程材料基本知识3.1 金属材料的力学性能3.2 钢3.3 铸钢3.4 钢的热处理3.5 铸铁3.6 非铁金属3.7 工程塑料3.8 机械工程材料的选用们日常生活很多用品图3-1自行车所示的运动自行车,齿盘、飞轮和链条、辐条制造,车把、车架和车圈是用铝合制造,车的轮胎用的是非金属材料--橡胶,车座的上非金属材料—工程塑料。
在机械工程上常用的材料有:钢铁材料,非铁金属(如铜、铝及其合金)及非金属材料(如塑料、橡胶等)。
各种材料的性能均有差异,尤其是钢铁材料通过热处理后,其性能变化更大。
实践证明,材料的性能差异主要与它们的化学成分、内部组织结构、工作温度及热处理工艺等有关。
因此,为了进行零部件的设计、制造、维修等,必须掌握和了解工程材料的分类、牌号、成分、性能特点、应用范围及热处理等有关基本知识。
由于目前机械工程材料中应用最广泛的是钢铁材料,故本章重点介绍钢铁材料的基本知识,同时简介非铁金属和非金属材料的基本知识。
金属材料的力学性能金属材料的力学性能是指金属材料在外力作用下所表现出来的性能。
力学性能主要有强度、塑性、硬度、韧性等。
1.强度金属材料在静载荷作用下,抵抗塑性变形和断裂的能力称为强度。
2.塑性金属材料在断裂前产生永久变形的能力称为塑性。
3. 硬度材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力称为硬度。
工程上最常用的有布氏硬度、洛氏硬度和维氏硬度。
4.冲击韧度金属材料抵抗冲击载荷作用而不破坏的能力,称为冲击韧度。
钢钢和铸铁是机械工业中广泛应用的金属材料,它们是以铁和碳两种元素为基本组元的复杂合金,统称为铁碳合金。
钢是以铁为主要元素,含碳量一般在2.11%以下,并含有其他元素的材料。
铸铁是碳含量大于2.11%的铁碳合金。
含碳量2.11%通常是钢和铸铁的分界线。
根据钢中所含各种合金元素规定含量界限值,将钢分为非合金钢、低合金钢和合金钢三大类。
/ / 第1章机械工程材料基本知识1.1 金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。
如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。
这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。
这种能力就是材料的力学性能。
金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。
1.1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。
强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。
抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。
对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。
1.1.2 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。
工程中常用的塑性指标有伸长率和断面收缩率。
伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。
断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用 表示。
伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。
良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。
1.1.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力。
硬度的测试方法很多,生产中常用的硬度测试方法有布氏硬度测试法和洛氏硬度试验方法两种。
(一)布氏硬度试验法布氏硬度试验法是用一直径为D的淬火钢球或硬质合金球作为压头,在载荷P的作用下压入被测试金属表面,保持一定时间后卸载,测量金属表面形成的压痕直径d,以压痕的单位面积所承受的平均压力作为被测金属的布氏硬度值。
机械工程材料复习第一部分基本知识一、概述⒈目的掌握常用工程材料的种类、成分、组织、性能和改性方法的基本知识(性能和改性方法是重点).具备根据零件的服役条件合理选择和使用材料;具备正确制定热处理工艺方法和妥善安排工艺路线的能力.⒉复习方法以“材料的化学成分→加工工艺→组织、结构→性能→应用”之间的关系为主线,掌握材料性能和改性的方法,指导复习.二、材料结构与性能:⒈材料的性能:①使用性能:机械性能(刚度、弹性、强度、塑性、硬度、冲击韧性、疲劳强度、断裂韧性);②工艺性能:热处理性能、铸造性能、锻造性能、机械加工性能等.⒉材料的晶体结构的性能:纯金属、实际金属、合金的结构(第二章);纯金属:体心立方()、面心立方(),各向异性、强度、硬度低;塑性、韧性高实际金属:晶体缺陷(点:间隙、空位、置换;线:位错;面:晶界、压晶界)→各向同性;强度、硬度增高;塑性、韧性降低.合金:多组元、固溶体与化合物.力学性能优于纯金属。
单相合金组织:合金在固态下由一个固相组成;纯铁由单相铁素体组成。
多相合金组织:由两个以上固相组成的合金.多相合金组织性能:较单相组织合金有更高的综合机械性能,工程实际中多采用多相组织的合金。
⒊材料的组织结构与性能⑴。
结晶组织与性能:F、P、A、Fe3C、Ld;1)平衡结晶组织平衡组织:在平衡凝固下,通过液体内部的扩散、固体内部的扩散以及液固二相之间的扩散使使各个晶粒内部的成分均匀,并一直保留到室温。
2)成分、组织对性能的影响①硬度(HBS):随C﹪↑,硬度呈直线增加, HBS值主要取决于组成相的相对量。
②抗拉强度():C﹪<0。
9%范围内,先增加,C﹪>0.9~1。
0%后,值显著下降。
③钢的塑性()、韧性():随着C﹪↑,呈非直线形下降.3)硬而脆的化合物对性能的影响:第二相强化:硬而脆的化合物,若化合物呈网状分布:则使强度、塑性下降;若化合物呈球状、粒状(球墨铸铁):降低应力集中程度及对固溶体基体的割裂作用,使韧性及切削加工性提高;呈弥散分布于基体上:则阻碍位错的移动及阻碍晶粒加热时的长大,使强度、硬度增加,而塑性、韧性仅略有下降或不降即弥散强化;呈层片状分布于基体上:则使强度、硬度提高,而塑性、韧性有所下降。
工程材料与机械制造基础讲稿1. 引言工程材料是指在机械制造和工程领域中所使用的各种材料。
它们具有一些特定的物理和化学性质,能够满足不同工程应用的要求。
机械制造是指通过机械设备和工具对材料进行加工和制造的过程。
机械制造与工程材料密切相关,合理选择和使用工程材料对机械制造具有重要的影响。
2. 常用工程材料2.1 金属材料金属材料是指由金属元素组成的材料。
金属材料具有良好的导电性和热传导性,因此在电子、电器、汽车、航空航天等领域广泛应用。
常见的金属材料包括钢铁、铜、铝等。
不同金属材料具有不同的物理和机械性质,例如钢铁具有高强度和硬度,铝具有较低的密度和良好的耐腐蚀性。
2.2 非金属材料非金属材料是指不包含金属元素的材料。
非金属材料具有一些特殊的性质,例如绝缘性能、高耐热性等。
常见的非金属材料包括塑料、陶瓷和复合材料等。
塑料具有良好的可塑性和绝缘性能,广泛应用于包装、建筑和电子等行业。
陶瓷具有高强度、高硬度和高耐热性,常用于制作耐磨、耐高温的零部件。
复合材料由多种材料的组合构成,具有优秀的综合性能,例如碳纤维复合材料在航空航天和汽车领域有广泛应用。
3. 工程材料的选择原则3.1 强度和刚度在机械制造中,通常会对材料的强度和刚度有要求。
强度是材料抵抗变形和破坏的能力,刚度是材料抵抗变形的能力。
因此,在选择工程材料时,需要考虑工件所承受的载荷和应力情况,选择具有足够强度和刚度的材料。
3.2 密度和重量对于一些重量敏感的应用,例如汽车和航空器,需要选择密度较低的材料,以减轻整体重量。
同时,还需要考虑材料的强度和刚度,确保结构的安全性。
铝是一种密度较低且强度较高的材料,因此在航空航天领域有广泛应用。
3.3 耐腐蚀性某些工程材料需要具有良好的耐腐蚀性能,以应对恶劣的工作环境。
例如,在化工行业和海洋工程中,常使用具有良好耐腐蚀性的材料,例如不锈钢和镍基合金。
3.4 温度稳定性在一些高温或低温应用中,工程材料需要具有良好的温度稳定性。
工程材料知识点总结工程材料是指在建筑、土木、机械、电气等工程中使用的各种材料。
它们具有不同的物理和化学性质,用途也各不相同。
下面将从常见的几大类材料中总结一些重要的知识点。
金属材料:金属材料是工程领域最常见的一类材料,其特点是热导率高、导电性好、强度高、塑性好等。
常见的金属材料有钢材、铁材、铝材、铜材等。
其中,钢材是最常用的金属材料之一,其具有高强度、耐腐蚀、可塑性好等特点,适用于各种工程结构。
水泥和混凝土:水泥是一种重要的建筑材料,是混凝土的主要成分。
它由石灰石经过煅烧后,经过研磨形成的粉状物质。
水泥的主要特点是早期强度低,但逐渐增加,可以通过控制水泥的配比来调整混凝土的强度和硬化时间。
混凝土是一种由水泥、砂子、骨料、水等按一定比例混合而成的人工石材,具有很高的耐用性和承重能力,广泛应用于建筑和土木工程中。
玻璃材料:玻璃是一种无定形的非晶态材料,主要由二氧化硅和其他氧化物混合熔融后制成。
它具有透明度高、硬度高、耐腐蚀等特点,广泛应用于窗户、器皿、光学仪器等领域。
在工程中,玻璃材料还可以作为复合材料的增强材料使用,提高材料的机械性能和耐用性。
塑料材料:塑料是一种由合成树脂经加工成型而成的材料,其特点是轻质、耐酸碱、绝缘性好等。
塑料材料具有很高的适用性,应用范围广泛,例如在电子工程、汽车制造等领域中使用到的塑料配件。
复合材料:复合材料是由两种或两种以上成分组成的材料,通过各成分之间的相互作用形成新的性能。
常见的复合材料有纤维复合材料、金属基复合材料、陶瓷基复合材料等。
纤维复合材料是其中最常见的一种,由纤维和树脂复合而成。
它具有比金属轻、强度高、耐腐蚀等特点,广泛应用于航空、汽车、体育用品等领域。
陶瓷材料:陶瓷材料是一类由无机非金属材料经高温烧结而成的材料,具有很高的硬度、耐磨性和耐荷载性。
由于其良好的绝缘性能,陶瓷材料在电气工程领域有很广泛的应用,例如电子器件、绝缘体等。
木材:木材是自然生长的一种有机材料,具有很好的机械和物理性能,也是一种可再生资源。
机械类应知应会知识点汇总机械工程作为一门综合性学科,涉及广泛且复杂。
对于机械工程专业的学生或从事机械相关工作的人来说,掌握一些基本的知识点是非常重要的。
本文将对机械类应知应会的知识点进行汇总,并以简洁美观的方式进行排版,以便读者阅读体验更好。
一、力学基础知识1. 牛顿定律:牛顿第一定律、牛顿第二定律和牛顿第三定律是力学中最基本的三个定律,它们分别描述了物体的惯性、受力和作用-反作用原理。
2. 动能和势能:动能是物体运动时具有的能量,势能是物体处于某位置或状态时具有的能量。
3. 弹性力学:弹性力学是研究物体在变形过程中的力学性质,包括材料的弹性模量、杨氏模量等。
二、材料科学与工程1. 材料分类:根据结构和成分的不同,材料可分为金属材料、非金属材料和复合材料。
2. 强度学说:材料在受力时会产生应力和应变,强度学说研究材料在应力作用下的变形和破坏。
3. 塑性变形:塑性变形是材料在受力超过其弹性极限时产生的形变,具有不可逆性。
三、机械设计与制造1. 工程制图:机械设计师需要掌握工程制图的基本知识,包括多视图投影、剖视图、尺寸标注等。
2. 机械零件标准件:机械设计需要了解常见的机械零件标准件的规格和尺寸,例如螺栓、螺母、平键等。
3. 简单机构:机械设计中常用的简单机构有齿轮传动、曲柄连杆机构、凸轮机构等,需了解其基本原理和应用。
四、热力学与传热学1. 热力循环:热力循环是描述热力系统能量转化的循环过程,常见的有卡诺循环、斯特林循环等。
2. 热传导:热传导是物质内部能量传递的一种方式,需要了解传热的基本定律和传热系数的计算方法。
3. 热工量测量:热力学系统中的热工量需要通过测量来得到,如温度、压力、功等的测量方法和仪器。
五、流体力学1. 流体静力学:研究流体在静止状态下的力学性质,包括压力、密度、浮力等。
2. 流体动力学:研究流体在运动状态下的力学性质,涉及流体的流速、流量和能量转换等。
3. 流体阻力:流体在运动过程中会受到阻力的作用,需了解阻力的计算方法和流体阻力特性。
编制审核时间年月日编号 NO.010章节名称第四章工程材料第七节材料选择及运用学习目标1.掌握零件的失效形式及原因。
2.掌握选材的原则、方法和步骤。
3.了解典型零件选材举例。
学习重点难点学习重点掌握选材的原则、方法和步骤。
学习难点在实际生产生活能够正解的选择材料。
知识链接材料的选择与应用是机械设计与制造工作中重要的基础环节,自始至终地影响整个设计过程。
选材的核心问题是在技术和经济合理的前提下,保证材料的使用性能与零件(产品)的设计功能相适应。
掌握各类工程材料的特性、正确选用材料是对机械设计与制造工程人员的基本要求。
自主学习一、零件的失效是指:。
二、零件失效形式有:、、。
对结构材料的失效而言,前三种是最主要的;其中断裂失效(尤其是脆性断裂)因其危险性而易受重视、且研究最多,疲劳断裂最普遍,是断裂失效的主要方式。
对于功能材料,物理性能降级是其主要失效形式,但也存在断裂与腐蚀、磨损等问题。
三、选材的原则、方法和步骤。
1.选材的一般原则基本原则是在保证材料满足的前提下,再考虑材料的和材料的。
(1)满足使用性能是指材料能保证零件正常工作所必须具备的性能。
选材时,首要任务是正确地分析零件的和主要的,准确地判断零件所要求的。
(2)兼顾材料的(3)充分考虑2.选材的方法根据零件的工作条件,找出其,作为选材的主要依据。
以性能为主要依据。
以为主要依据。
以为主要依据。
3.选材的步骤(1)分析零件的工作条件及失效形式,确定。
(2)对同类零件的用材情况进行调查研究,可从其等方面分析选材是否合理,以此作为选材参考。
(3)从零件性能要求中找出,通过力学计算或试验等方法,确定零件应具有的力学性能指标或理化性能指标。
四、了解典型零件选材举例(1)机床齿轮一般可选中碳钢制造,为了提高淬透性,也可选用中碳合金钢应用场合:传递动力、改变运动的速度和方向,转速中等,载荷不大,工作平稳无强烈冲击。
(2)汽车齿轮一般用合金渗碳钢制造。
应用场合:。
3科技资讯科技资讯S I N &T NOLOGY I NFORM TI O N2008N O .09SC I ENC E &TEC HN OLO GY I NFO RM ATI O N科教平台1《机械工程材料学》课程特点《机械工程材料学》是机械类冷加工各专业的一门重要技术基础课,主要包括金属学、热处理、金属材料、失效分析与选材以及非金属工程材料等。
以培养学生具有合理选用金属材料、正确制定热处理工艺方法、妥善安排工艺路线的初步能力,了解非金属材料及其在机械工程方面的应用为主要目标。
本课程的重点是金属材料的结构、成分、热处理、组织和性能之间的关系。
而综合实验就成为必不可少的一个重要环节。
综合实验的内容包括根据所给实际零件性能要求选择合适的材料、制定正确的热处理工艺规范、进行热处理操作并检测热处理后的硬度、制备金相试样、观察并分析组织形态,完成实验报告。
目的就是为了锻炼学生的实际动手能力,增强对知识的直观性把握。
本课程涉及到大量的金相组织,例如铁碳合金的平衡组织、非平衡组织、铸铁的组织、有色金属的组织等,要在有限的课堂学习和综合实验过程中掌握大量的金相组织特征并理解组织和性能之间的关系比较困难,这就需要利用实验的网络化教学延长自我学习时间,扩充金相组织图片的信息量,拓宽机械工程材料的知识面。
2网络化实验教学的设计思想根据该课程量大面广的特点,利用现代多媒体技术,通过网络化极大的提高实验教学效率,在有限的实验时间里让学生学习更多的实验知识。
该网络化实验教学的设计思想体现以下几个方面:人机对话,实现教师与学生互动;实现二人以上的分组讨论;资源共享,一个学生所调的视场可供全班观察;利用多媒体课件事现虚拟教学;实现实物采集,利用多媒体观察实物样品。
3网络化实验教学应用3.1实验教学前网络化应用对于实验室教师,在《机械工程材料学》综合实验实施前,设计实验课程的多媒体课件和电子实验报告,课件内容要反映出课程的重点及课程与实际应用的连接点,电子实验报告要体现实验操作水平以及理论知识的掌握程度。
第1篇一、基础知识与原理1. 题目:请简述机械能的守恒定律及其在机械设计中的应用。
解析:机械能的守恒定律指出,在闭合系统中,机械能的总量保持不变。
在机械设计中,这一原理可以帮助我们分析和优化机械系统的能量转换和损失,提高机械效率。
2. 题目:什么是齿轮传动?简述齿轮传动的优点和缺点。
解析:齿轮传动是一种常用的机械传动方式,通过齿轮的啮合实现动力和运动的传递。
齿轮传动的优点包括传动精度高、传动比稳定、结构紧凑等;缺点包括制造成本较高、维护难度较大等。
3. 题目:请解释什么是机械振动,并简述振动对机械系统的影响。
解析:机械振动是指机械系统在受到外部或内部干扰时,产生的周期性运动。
振动对机械系统的影响包括:影响机械精度、降低机械寿命、增加能耗等。
4. 题目:什么是摩擦?请简述摩擦的类型及其对机械系统的影响。
解析:摩擦是指两个物体接触时,由于表面粗糙度、相互作用力等因素产生的阻力。
摩擦的类型包括静摩擦、滑动摩擦、滚动摩擦等。
摩擦对机械系统的影响包括:增加能耗、降低机械效率、影响机械精度等。
5. 题目:什么是机械设计的基本原则?请举例说明。
解析:机械设计的基本原则包括:可靠性、经济性、安全性、环保性等。
例如,在设计齿轮减速器时,应保证其可靠性,确保在规定的使用条件下正常工作。
二、机械设计与应用6. 题目:请简述机械设计的步骤。
解析:机械设计的步骤包括:需求分析、方案设计、结构设计、计算与校核、加工与装配、试验与改进等。
7. 题目:请解释什么是机构运动简图,并举例说明。
解析:机构运动简图是表示机构运动关系的图形,可以直观地展示机构的运动特性。
例如,齿轮机构运动简图可以表示齿轮的啮合关系、转动速度等。
8. 题目:请简述机械设计中常见的机构类型及其特点。
解析:机械设计中常见的机构类型包括:连杆机构、齿轮机构、凸轮机构、槽轮机构等。
它们的特点如下:(1)连杆机构:结构简单、运动灵活、易于实现复杂运动。
(2)齿轮机构:传动精度高、传动比稳定、结构紧凑。