微电网能量管理系统概述
- 格式:doc
- 大小:61.00 KB
- 文档页数:17
微电网能量管理与优化策略微电网(Microgrid)是指由多个分布式电源、能量储存装置、电能转换设备等组成的小型电网系统。
相比传统的大型中央电网系统,微电网具有自主性、可靠性和可持续性等特点。
而在微电网的运行中,能量管理与优化策略起到至关重要的作用。
一、微电网能量管理的概述能量管理是指对微电网内各种能源进行有效地分配和利用,以满足用户需求的一种管理系统。
微电网能量管理的目标是实现各种能源的高效利用,最大程度地降低系统运行成本,提高能源利用效率。
微电网能源管理系统通常包括能源计划、能量优化分配、能量储存等模块。
在微电网系统中,能量管理与优化策略是提高系统性能和可靠性的关键。
二、微电网能量管理策略分类1. 能量调度策略能量调度策略是指通过合理安排微电网内各种能源的产生和消耗,以使能源的产生和消耗之间能够达到平衡,进而实现微电网系统的高效运行。
常见的能量调度策略包括负荷跟踪策略、能量平衡策略、优先级调度策略等。
负荷跟踪策略是指根据负荷需求的变化,实时调整微电网内各种能源的输出。
通过使用负荷跟踪策略,微电网能够根据实际需求灵活调整能量的产生和消耗,以提高整体能源利用效率。
能量平衡策略是指通过优化微电网内各个能源单元之间的能量流动,使得微电网内各个能源之间的供需达到平衡,从而提高系统的稳定性和可靠性。
优先级调度策略是指根据各个能源单元的不同特性和能量供需情况,合理地进行能量的调度。
通过设定不同的优先级,优先级调度策略可以确保微电网系统中各个能源单元的供需需求得到满足。
2. 能量储存策略能量储存策略是指通过有效地利用储能设备,将多余的能量储存起来,以备不时之需。
常见的能量储存设备包括电池、超级电容器等。
通过合理配置能量储存设备,并采用恰当的能量储存策略,可以提高微电网的能量利用效率。
能量储存策略主要包括储能容量优化策略和储能能力分配策略。
储能容量优化策略是指通过分析微电网内各个能源单元的特性和供需情况,确定合适的储能容量,以满足系统需求,并尽可能降低系统成本。
微电网能量管理系统的设计与优化第一章:绪论随着能源消耗的增加和信息技术的不断发展,微电网(Microgrid)逐渐成为解决能源与电力危机的有效手段之一。
与传统的集中供电网相比,微电网更具有灵活性和可靠性,可以更好地提供电力供应、满足能源需求、降低能源浪费和环境污染。
微电网能量管理系统是实现微电网运行的重要组成部分,它可以实现微电网的能量管理、优化和控制,为用户提供可靠、高效、节能的能源服务。
本文就微电网能量管理系统的设计和优化进行深入探讨。
第二章:微电网的基本概念与组成微电网是指由多个能源供应单元、用电负载和能量储存单元组成的小型电力系统。
与传统的集中式电力系统相比,微电网具有以下几个显著的特点:1. 可靠性高:微电网中的各个组成单元可以相互协作,以确保电力供应的连续性和稳定性。
2. 灵活性强:微电网中可以使用多种不同的能源供应方式,如太阳能、风能、水能、燃气和燃油等,以满足用户的需求。
3. 节能环保:微电网可以更好地利用可再生能源和废弃物能源,降低能源浪费和环境污染。
微电网包括主电网、微网和终端负载三个层次。
主电网是指国家或地区的大规模电力系统,微网是主电网下的一个小型电力系统,终端负载是指微网的最终用户。
微电网的组成包括能源供应单元、用电负载和能量储存单元。
能源供应单元包括太阳能、风能、燃气、燃油和水力发电等。
能量储存单元包括电池、超级电容器和储水池等。
第三章:微电网能量管理系统的基本概念微电网能量管理系统是指对微电网中的各个组成单元进行统一的监控、控制、调度和优化的系统。
它可以实现微电网的能量管理和优化,提高微电网的可靠性、节能性和灵活性,为用户提供满意的能源服务。
微电网能量管理系统的基本功能包括:1. 能源监测:对微电网中的能源供应、用电负载和能量储存进行实时监测和数据采集。
2. 能源管理:基于能源监测数据,对微电网中的能源进行实时优化和控制,实现最优能量管理。
3. 能源调度:根据微电网中的能源供需情况,对能源进行动态调度和优化,以保证微电网的稳定运行。
微电网能量管理系统关键技术研究一、微电网能量管理系统概述微电网是一种小型的、可控的电力供应网络,它能够于传统的大型电网运行,也可以与大型电网并联运行。
微电网能量管理系统(MEMS)是微电网的核心组成部分,负责协调和优化微电网内各种分布式能源(如太阳能、风能、储能设备等)的运行,以实现能源的高效利用和系统的稳定运行。
1.1 微电网能量管理系统的核心特性MEMS的核心特性主要体现在以下几个方面:- 高效能源管理:MEMS能够实时监测和分析微电网内各种能源的状态,实现能源的最优分配和使用。
- 系统稳定性:MEMS能够预测和响应微电网的负荷变化,通过调整能源输出,保持系统的稳定运行。
- 环境适应性:MEMS能够适应不同的环境条件,如天气变化、能源供应波动等,保证微电网的持续运行。
- 经济性:MEMS能够优化能源的使用,降低能源成本,提高经济效益。
1.2 微电网能量管理系统的应用场景MEMS的应用场景非常广泛,包括但不限于以下几个方面:- 偏远地区供电:为偏远地区提供稳定的电力供应,解决电力基础设施不足的问题。
- 城市小区:在城市小区内构建微电网,提高能源利用效率,减少对大型电网的依赖。
- 工业区:在工业区内构建微电网,实现能源的自给自足,降低能源成本。
- 紧急备用电源:在紧急情况下,如自然灾害导致的大规模停电,微电网可以作为紧急备用电源,保障关键设施的运行。
二、微电网能量管理系统的构建构建一个高效、稳定的微电网能量管理系统需要考虑多个关键技术,包括能源预测、能源优化调度、智能控制等。
2.1 能源预测技术能源预测是MEMS的基础,它涉及到对风能、太阳能等可再生能源的预测。
准确的能源预测能够为能源调度提供重要的决策依据。
- 短期预测:主要针对未来几小时到几天的能源产量进行预测,通常采用统计学方法和机器学习算法。
- 长期预测:主要针对未来几周到几个月的能源产量进行预测,通常采用气候模型和季节性分析方法。
2.2 能源优化调度技术能源优化调度是MEMS的核心,它涉及到如何在满足负荷需求的前提下,实现能源的最优分配和使用。
微电网能量管理系统研究与应用随着能源需求的不断增长,传统的能源供应模式已经无法满足人们的需求。
微电网成为了一种新型的能源供应模式,它可以将分布式能源资源与传统能源资源有机地结合起来,提供更为可靠、高效、绿色的能源供应方案。
然而,为了实现微电网的最优功率管理、最优化的能源控制和更完善的智能化控制,微电网需要一种能量管理系统。
本文将从微电网能量管理系统的概念、发展和应用等方面进行探讨。
一、微电网能量管理系统的概念微电网能量管理系统是指通过集成控制软硬件系统和先进的能源管理技术,对微电网的发电、负荷、储能等资源进行有效的分配和优化管理的系统。
它可以整合不同类型和容量的能源资源和存储设备,实现电力、热力、气力和水力之间的平衡和优化,为微电网系统提供可靠的能源供给,同时减少能源浪费,促进能源的高效利用。
二、微电网能量管理系统的发展随着微电网技术的不断发展,微电网能量管理系统也得到了越来越广泛的应用。
早期的微电网能量管理系统通常采用基于规则的控制策略,通过代码编写实现对微电网的监控和控制。
这种方法可行,但是功能较为单一,且缺乏较高的智能化控制能力,不足以满足现代微电网技术的需求。
随着计算机技术、通信技术和控制技术等的快速发展,微电网能量管理系统逐渐趋于完善。
现代的微电网能量管理系统通常采用智能化控制策略、云技术和大数据技术等多种技术手段实现对微电网的最优化管理。
比如说,基于深度学习的微电网能量管理系统可以通过模拟、学习微电网系统的运行规律,自主地智能控制微电网的发电、负荷、储能等资源分配,实现最优化的能源管理。
三、微电网能量管理系统的应用微电网能量管理系统的先进性和高效性,使得它在人们的生产和生活中得到了广泛的应用。
其中,下面列举了微电网能量管理系统的最主要应用领域:1、地区电网针对地区电网的微电网能量管理系统可以实现对电网各个节点的监测和控制,优化每个节点的能量供应和消耗,从而满足电量平衡和电能质量的要求。
微电网控制系统设计与优化随着新能源技术的不断发展,微电网已成为改善电能供应、降低能耗、保护环境的一种可行的选择。
微电网由多种能源供应设备、储能系统和电能负载设备以及相关的控制系统组成,是一种更加智能化、可靠性和安全性更高的电网形式。
本文将介绍微电网控制系统的设计与优化。
一、微电网控制系统的设计微电网控制系统包括能量管理系统(EMS)和微电网控制器(MGC)。
EMS主要负责能量的监测和管理,包括能源输入输出管理、负荷管理、储能管理等;而MGC则主要负责微电网内部的电能管理和控制。
1. 能量管理系统(EMS)的设计(1) 能源输入输出管理能源输入输出管理是EMS的重要功能之一,其主要目的是监测和管理可再生能源的输入和传统能源的输出。
当可再生能源不足时,传统能源会被调用,以保证电力供应的可靠性。
可再生能源的输入变化会影响电网的稳定性和效率,因此需要对其进行实时监测和控制。
(2) 负荷管理负荷管理是EMS的另一个核心功能。
负荷预测技术可以帮助EMS实现有效的负荷管理,通过分析历史电力数据和未来天气预测等多种因素,对未来的负荷情况进行预测,并制定相应的调度策略。
负荷管理可以减少能源的浪费和损失,并提高微电网的供电质量。
(3) 储能管理微电网的储能系统是EMS所需要管理的关键部分,储能系统的设计和管理可以使微电网更加稳定和高效。
储能系统可以为微电网提供备用功率,以应对突发负荷增加或可再生能源输入波动的情况。
此外,储能系统还可以缓解电网压力,平衡接口电压和频率等。
2. 微电网控制器(MGC)的设计微电网控制器是指植入微电网的一个专门的控制单元,主要负责微电网内部的电能管理和控制。
MGC的设计可以通过电网稳定性控制技术、电能质量控制技术、储能控制技术等方面实现对微电网的精准控制。
(1) 电网稳定性控制技术电网稳定性控制技术是MGC的重要功能之一,其主要用于控制微电网的电压、频率等参数,以保持电网的稳定性。
电网的稳定性受到外界负荷变化和可再生能源输入波动等影响,MGC通过对电压、频率等参数进行精准控制,以保证微电网的供电质量和稳定性。
微电网能量管理系统设计与实现随着人们对绿色能源的追求和对可持续发展的重视,微电网技术也逐渐成为了可再生能源领域的热门话题,其能够实现绿电的就地利用、节约传输成本、提高可靠性等优点备受称赞。
微电网能量管理系统也是微电网技术重要的组成部分,本文将着重探讨微电网能量管理系统的设计与实现。
一、微电网的概念与特点微电网是指由多种不同类型的能源发电系统组成的小型电网系统,以满足特定用途的能源需求,并且具有自主控制性能。
微电网主要由分布式能源资源、储能设备、电力电子设备、电网互联系统和能量管理系统等组成。
微电网具有以下几个特点:1. 自主控制性能强:微电网内部有独立的控制策略和算法,能够对自身能源进行优化调度,并对外部负荷进行自主控制。
2. 多样化的能源来源:微电网通常由多种能源调度和互补,包括太阳能、风能、燃气等,能够充分利用各种能源,提高能源利用效率。
3. 应用范围广泛:微电网可以应用于城市、乡村、岛屿、军营、企业、机场等不同场景,为各种用电需求提供定制能源解决方案。
二、微电网能量管理系统的作用微电网能量管理系统作为微电网技术中的核心技术之一,其作用十分重要。
微电网能量管理系统可以实现微电网内的各种能源、储能设备、负荷之间的协调和优化调度,使其能够更加高效、稳定地运行。
微电网能量管理系统的作用主要包括以下几个方面:1. 能源调度:对微电网内部的能源进行优化和调度,以实现最优的能源匹配,提高能源利用效率。
2. 储能管理:管理储能设备的状态和运行模式,以实现储能设备对微电网的有效支持。
3. 负荷控制:实现对微电网内负荷的精细控制,确保微电网内部的能量平衡。
4. 故障处理:通过对微电网的监测和诊断,及时发现故障并采取合适的措施加以解决。
5. 数据分析:对微电网内的运行数据进行分析和统计,为微电网的进一步优化提供依据。
三、微电网能量管理系统的设计与实现微电网能量管理系统的设计涉及到计算机控制、电力电子和通信技术等多个领域的知识。
微电网能量管理系统设计研究微电网能量管理系统是一种对微电网中能源进行整体调度和管理的系统。
它可以实现对微电网内部能源的优化调配,提高能源利用效率,降低能源消耗成本,并能够实现与外部电网的互联互通。
本文将以微电网能量管理系统的设计研究为主题,介绍该系统的概念、功能、设计要点以及现有的研究成果。
微电网是指由多种能源组成的小型能源供应系统,包括太阳能、风能、电池储能、发电机等。
微电网能量管理系统的设计研究旨在实现对这些能源的集中控制和优化调度,以达到最优的能源利用效果。
该系统的设计需要考虑以下几个方面:首先,微电网能量管理系统应具备可靠性和稳定性。
微电网是分布式能源系统,对电能的供应要求高度可靠,因此系统设计必须具备故障处理和自愈能力。
例如,当微电网某个能源单元故障时,系统应能自动切换到备用单元,以保证能源的持续供应。
其次,系统应考虑能源的优化调度和协调。
微电网中有多种能源来源,它们的产能和能耗不同,因此需要进行合理的能源调配。
设计一个高效的调度算法是非常重要的,它应能根据不同电能需求的权重和能源的可用性,合理分配能源,以实现能源的平衡和优化利用。
第三,系统设计要考虑对外电网的互联互通。
微电网作为一个独立的能源供应系统,应能够与外部电网有机地连接和互动。
这意味着微电网能量管理系统需要与外部电网进行实时通信,并根据电网负荷以及电价等信息调整能源的产生和消耗,以实现与外部电网的无缝衔接。
此外,系统设计还需要考虑不同能源之间的协同调度。
微电网中包含多种能源类型,如太阳能、风能和电池储能等。
这些能源之间应实现协同工作,以提高能源的综合利用效率。
例如,太阳能和风能可以相互补充,通过协同运作可以实现能源的平衡。
现有的微电网能量管理系统设计研究取得了不少进展。
研究人员提出了多种优化调度算法,并通过实验验证了其有效性。
例如,一种基于遗传算法的微电网能量管理系统设计方法可以通过模拟优化来调整能源的分配和供应策略,使系统能够在不同的负荷条件下实现最优的能源利用效果。
微电网能量管理系统概述一、微电网能量组成微电网是近年来出现的一种新型能源网络化供应与管理技术的简称,它能够利地将可再生能源和清洁能源系统的接入,实现需求侧管理以及现有能源的最大化利用。
微电网将发电子系统、储能系统及负荷相结合,通过相关控制装置间的配合,可以同时向用户提供电能和热能,并能够适时有效地支撑大电网,起到消峰填谷的作用。
所以微电网概念一经提出,就引起世界能源专家和电力工业界的广泛重视,世界很多国家都加强了相关基础科学研究的力度,对微电网的认识随着研究的进行在不断地具体化、深入化和系统化。
而微电网对于解决我国现有大电网运行中凸显的问题,以及能源危机等相关问题,无疑是提供了一个好的解决途径。
1.1风能风能是因空气流做功而提供给人类的一种可利用的能量。
空气流具有的动能称风能。
空气流速越高,动能越大。
人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。
到2008年为止,全世界以风力产生的电力约有94.1 百万千瓦,供应的电力已超过全世界用量的1%。
风能虽然对大多数国家而言还不是主要的能源,但在1999年到2005年之间已经成长了四倍以上。
风能优点:1.风能为洁净的能量来源。
2.风力发电是可再生能源,很环保。
3.风能设施多为不立体化设施,可保护陆地和生态。
4.风能设施日趋进步,大量生产降低成本,在适当地点,风力发电成本已低于发电机。
1.风力发电需要大量土地兴建风力发电场,才可以生产比较多的能源。
2.进行风力发电时,风力发电机会发出庞大的噪音,所以要找一些空旷的地方来兴建。
3.在一些地区、风力发电的经济性不足:许多地区的风力有间歇性,更糟糕的情况是如台湾等地在电力需求较高的夏季及白日、是风力较少的时间;必须等待压缩空气等储能技术发展。
1.2光伏光伏是太阳能光伏发电系统的简称。
是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。
光伏能量的来源由光伏板组件,它是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。
由于没有活动的部分,故可以长时间操作而不会导致任何损耗。
简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。
光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。
近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
光伏优点:1.普遍:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且无须开采和运输。
2.无害:开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。
3.巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总量属现今世界上可以开发的最大能源。
4.长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。
1.分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。
平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。
而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。
因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。
2.不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。
为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。
3.效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。
但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。
在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。
1.3柴油发电机柴油发电机是一种小型发电设备,系指以柴油等为燃料,以柴油机为原动机带动发电机发电的动力机械。
整套机组一般由柴油机、发电机、控制箱、燃油箱、起动和控制用蓄电瓶、保护装置、应急柜等部件组成。
整体可以固定在基础上,定位使用,亦可装在拖车上,供移动使用。
柴油发电机组属非连续运行发电设备,若连续运行超过12h,其输出功率将低于额定功率约90%。
尽管柴油发电机组的功率较低,但由于其体积小、灵活、轻便、配套齐全,便于操作和维护,所以广泛应用于矿山、铁路、野外工地、道路交通维护、以及工厂、企业、医院等部门,作为备用电源或临时电源。
柴油发电优点:1.燃油经济、热效高、工况变化时,燃油消耗率曲线变化比较平坦,低负荷下也经济。
2.工作可靠、耐久。
3.因为没有点火系统,故障低。
4.使用范围广。
有害排放物较低。
5.防火安全性好。
1.4生物质生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。
1.5电网联系发电和用电的设施和设备的统称。
属于输送和分配电能的中间环节,它主要由联结成网的送电线路、变电所、配电所和配电线路组成。
通常把由输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网。
简称电网。
二、微电网负载组成2.1负载概述负载是指连接在电路中的电源两端的电子元件。
电路中不应没有负载而直接把电源两极相连,此连接称为短路。
常用的负载有电阻、引擎和灯泡等可消耗功率的元件。
不消耗功率的元件,如电容,也可接上去,但此情况为断路。
把电能转换成其他形式的能的装置叫做负载。
电动机能把电能转换成机械能,电阻能把电能转换成热能,电灯泡能把电能转换成热能和光能,扬声器能把电能转换成声能。
电动机、电阻、电灯泡、扬声器等都叫做负载。
晶体三极管对于前面的信号源来说,也可以看作是负载。
对负载最基本的要求是阻抗匹配和所能承受的功率。
2.2负载组成与分部根据负荷对电力需求的特性可将负荷分为基本两大类:敏感负荷:对这一级负荷断电,将造成人身事故、设备损坏,将生产废品,使生产秩序长期不能恢复,人民生活发生紊乱等。
这是这是敏感负荷中的重要负荷。
由于供电中断会造成大量减产、人民生活会受到较大影响的用户负荷,这是敏感负荷中的比较重要的负荷。
一般负荷(非敏感负荷):敏感负荷以外的属于一般负荷。
可视为一个可控的负荷参与微电网的能量调度,并且在适当的时候(孤网模式时)可中断其供电,以此确保敏感负荷的正常供电。
负荷接入设备功能:1.负荷通断控制:在正常情况下,敏感负荷与一般负荷均应正常供电,当微电网系统因事故出现功率缺额或运行在孤岛模式,应采取切断一般负荷,确保敏感负荷的正常供电。
2.负荷保护:具有自动跳闸和电动合闸功能,可切断故障电流,发挥保护作用。
3.微电网功率平衡控制-自动低频减载:当微电网系统因事故出现功率缺额时,其频率将随之急剧下降,自动低频减载装置的任务是迅速断开相应数量的一般负荷,使系统频率在不低于某一允许值的情况下,达到有功功率的平衡,以确保微电网系统安全运行。
4.负荷监测:提供微电网线路负荷的实时数据包括负荷功率,线路电流情况。
对所有线路进行监控,对大负荷及超负荷提供预警和报警信号。
三、微电源分类、工作方式及接入设备功能3.1微电源典型工作方式光伏电池具有MPPT和定电压两种工作方式。
当工作在MPPT工作方式且无功功率可调时遵循Q-V下垂特性。
当工作在定电压工作方式时遵循P-f下垂特性。
1.当工作在功率可调的方式时遵循P-f下垂特性和Q-V下垂特性。
在此工作方式下,风力发电机可作为具有自适应调节功能的调节电源,快速跟踪负荷有功功率和无功功率的变化。
2.当工作在定功率的方式时按照设定值输出有功功率和无功功率。
风力发电机组采用PQ控制策略.为保证最大限度地利用可再生能源。
3.2微电源接入设备功能由于光伏电池电压等级低,需采用DC-DC中的Boost电路升压至合适的电压等级,然后通过逆变把直流电变换为标准的交流电,供给负荷或并入电网。
即经过DC-DC-AC变换接入微电网。
并可根据系统稳定运行要求自动切换工作方式的功能。
3.3微电源控制功能微电源的基本控制由微电源控制器完成,主要功能包括微电源自身的调节功能即微电源机组工作方式的切换。
能量调节功能包括有功/无功控制、电压/频率调节、孤岛模式下负荷分配/电压、频率调节等。
3.4微电源工作方式的切换根据微电网负荷用电需求并结合微电源控制策略切换微电源的工作方式。
1.对于光伏电池在MPPT和定电压模式之间切换。
2.风力发电机可工作在定功率与功率可调的模式两种方式下。
在功率可调时可工作低位运行和高位运行两种方式下。
3.储能装置根据蓄电池的荷电状况以及此时的负荷是需求,蓄电池可工作在充电模式与放电模式。
3.5能量调节功能1、有功功率调节:在并网运行模式时,系统的频率是固定,微电源发送分配好的有功功率,在孤网运行模式下,通过快速的电力电子装置,根据P-f下垂特性,调节微电源的输出有功功率使功率输出与负荷需求保持平衡。
2、无功功率调节:在并网运行模式下,能量控制器监测负荷和无功的变化,通过储能装置进行无功调节,并补偿无功,维持系统功率平衡。
3、在孤网运行模式下,应具备三个功能:⑴据预先设定的Q-V特性阻止末端电压偏压;⑵参与特定负荷线路的电压调整;⑶根据负荷设定的功率因数补偿无功。
4、电压调节:通过调节微电源电压的幅值,相角,与系统要求相匹配,而且负荷和微电网的功率因数可得到控制。
5、功率因数调节:当电动机启停时负载的功率因数是变化的,可以影响到微电网的电压稳定。
通过调节微电源无功输出使负载的功率因数保持在预先设定的工作点。
对分布式电源的控制除了满足以上要求外,微电源自身还应具有以下功能:(1) 通信功能,接受能量管理系统的调度,同时上传自身的各种状态信息。
(2) 辅助的电能质量改善功能,微电源在自身不对电网造成污染的前提下,能在一定程度上对电网进行谐波抑制和不平衡补偿等。
(3) 保护功能,微电网内部有数量众多的分布式电源,且它们之间的距离短,这就造成了短路电流的急剧增大,而传统的继电保护装置因时效性难以起到应有的保护作用,严重威胁了电力电子设备的安全,所以分布式电源自身必须具备各种可靠的保护功能(如过压、过流及故障等)。