北师大版七年级下册数学期末模拟试卷 C-推荐
- 格式:doc
- 大小:758.00 KB
- 文档页数:15
第2题图nmba70°70°110°第3题图CBA2112第六题图DCBA 北师大版七年级下册数学期末模拟试卷 C一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是 。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。
5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。
6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如则=na 。
8、已知412+-kx x 是一个完全平方式,那么k 的值为 。
9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。
10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷- C. 226)3(x x = D. 222)(y x y x +=+第1页 共4页DCBA DC B A FEDCB A EDCBA12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61 C. 51 D. 31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④876954521第2页 共4页乙甲BA OEDCBA三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。
2023-2024学年北师大版七年级数学下册期末试题一、单选题1.小华抛一枚硬币,连续3次正面朝上,第四次()A.一定正面朝上B.一定反面朝上C.可能正面(也可能反面)朝上2.下列四个图案中,不是轴对称图形的是()A.B.C.D.3.如图,下面图象表示小红从家里出发去散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,请根据图象,确定下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回C.从家里出发,一直散步(没有停留),然后回家了D.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了4.若等腰三角形的一个内角是50︒,则这个三角形最大的内角的度数是()A.65︒B.80︒C.50︒D.65︒或80︒5.以7和3及另一边组成的边长都是整数的三角形共有( )A .2个B .3个C .4个D .5个6.甲、乙两名同学在一次用频率估计概率的实验中,统计了某一个结果出现的频率,绘制了如下的表格,则符合这一结果的实验可能是( )A .抛一枚质地均匀的硬币,出现正面的概率B .从一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率C .掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率D .从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率7.如图所示,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是( )A .ASAB .SAS 或AASC .HLD .SSS8.下列运算中,正确的是( )A .326326x x x ⋅=B .224()-=x y x yC .236(2)6x x =D .54122x x x ÷= 9.下列说法正确的个数( )①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形. A .1个 B .2个 C .3个 D .4个10.广东省和计划生育委员会6月6日通报,广东新增一例输入性寨卡病毒病例,截至目前,广东省今年共报告13例寨卡病毒病例,寨卡病毒是一种通过蚊虫叮咬进行传播的虫蝶病毒,典型的症状包括急性起病的地热、斑丘疹、关节疼痛(主要累及手、足小关节),其他症状包括肌痛、头痛、眼眶痛及无力,易导致新生儿小头症,其直径为20纳米(1米=1000000000纳米),用科学记数法表示为( )A .7210⨯米B .8210⨯米C .7210-⨯米D .8210-⨯米二、填空题11.如图,Rt ABC △中,90ACB ∠=︒,50A ∠=︒,将其折叠,使点A 落在边CB 上A '处,折痕为CD ,则A DB '∠=.12.如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=54°,则∠2=°.13.(1)已知正n 边形的一个外角是45︒,则n =;(2)如图,在ABC V 中,10BC =,AB 的垂直平分线交BC 于D ,AC 的垂直平分线交BC 与E ,则ADE V 的周长等于;(3)如图所示,在ABC V 中,已知点D ,E ,F 分别为BC ,AD ,BE 的中点.且28cm ABC S =V ,则图中CEF △的面积=;(4)ABC V 中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为厘米/秒.14.若多项式225x mx ++是一个完全平方式,则m = .三、单选题15.下列计算中,()(1)()b x y bx by -=-;(2)()b xy bxby =;(3)x y x y b b b -=-;(4)443216(6)=;(5)212122n n n x y xy ---=A .只有(1)与(2)正确B .只有(1)与(3)正确C .只有(1)与(4)正确D .只有(2)与(3)正确四、填空题16.计算:(4×105)×(5×104)=. 17.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是.18.有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论是(填序号).19.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC V 和正CDE V ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ;以下四个结论:①AD BE =;②PQ AE ∥;③100AOE ∠=︒;④PA QE PD QB +=+;其中正确的的结论是(填序号).20.已知ABC DEF ≌△△,ABC V 的三边长分别为4、m 、n ,DEF V 的三边长分别为5、p 、q .若ABC V 的三边长均为整数,则m n p q +++的最大值为.五、解答题21.计算:()130411*******π-⎛⎫⎛⎫+⋅-- ⎪ ⎪⎝⎭⎝⎭. 22.已知:如图,AB AC =,D 是AB 上一点,DE BC ⊥于点E ,ED 的延长线交CA 的延长线于点F .求证:ADF △是等腰三角形.23.如图,已知ABC V 是等边三角形,D 为边AC 的中点,,AE EC BD EC ⊥=.(1)求证:≌BDC CEA V V .(2)请判断ADE V 是什么三角形,并说明理由.24.先化简,再求值:()()()2()2x y x y x y y x y +-+-+-,其中x =1,y =−1.25.如图,在四边形ABCD 中,=AB BC ,BF 是ABC ∠的平分线,//AF DC ,连接AC CF ,,求证:CA 是DCF ∠的平分线.。
北师大版七年级下学期期末数学模拟试题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)计算a2•a5的结果是()A.a3B.a10C.a﹣3D.a72.(4分)下列世界博览会会徽图案中是轴对称图形的是()A.B.C. D.3.(4分)下列计算正确的是()A.a5+a5=a10B.(3a)2=6a2C.a7÷a=a6D.(a3)2=a54.(4分)下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,CCTV第一套节目正在播放天气预报C.从一个只装有红色小球的袋中,任意摸出一球是红球D.经过某一有交通信号灯的路口,恰好遇到红灯5.(4分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米6.(4分)一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C的度数为()A.75°B.65°C.55°D.45°7.(4分)我市为迎接2014青奥会的召开,现对某景观道路进行拓宽改造.工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的函数关系的大致图象是()A.B.C.D.8.(4分)如图,长方形纸片ABCD的边长AB=2,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是()A.120°B.110°C.115°D.105°9.(4分)将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a﹣b)=a2﹣ab10.(4分)如图,下列条件中,一定能判断AB∥CD的是()A.∠2=∠3 B.∠1=∠2C.∠4=∠5 D.∠3=∠411.(4分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC12.(4分)如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC 于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CB D.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)比较大小:25(填“>,<,=”).14.(4分)一只小狗跳来跳去,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则小狗停留在黑色方格中的概率是.15.(4分)已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是cm.16.(4分)若4x2﹣mx+是一个完全平方式,则实数m的值应为.17.(4分)如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为.18.(4分)如图,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=2,点D从B点开始运动到C点结束,DE交AC于E,∠ADE=45°,当△ADE是等腰三角形时,AE的长度为.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8分)如图,点B、F、C、E在同一条直线上,FB=CE,AC∥DF,AC=DF.求证:AB=DE.20.(8分)如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、200、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张(转盘等分成20份).(1)小华购物450元,他获得购物券的概率是多少?(2)小丽购物600元,那么:①她获得50元购物券的概率是多少?②她获得100元以上(包括100元)购物券的概率是多少?四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答过程书写在答题卡中对应的位置上21.(10分)计算:(1)(a﹣b﹣3)(a﹣b+3)(2)[(a+1)(a+2)﹣2]÷a22.(10分)如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.23.(10分)如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态(1)填表:铁环个数 1 2 3 4链条长(cm) 4.6 8.2(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.17米长的链条,至少需要多少个铁环?24.(10分)先仔细阅读材料,再尝试解决问题:通过对有理数的学习,我们知道x2≥0,本学期学习了完全平方公式后,我们知道a2±2ab+b2=(a±b)2.所以完全平方式(a±b)2的值为非负数,这一性质在数学中有着广泛的应用.比如探求多项式2x2+4c﹣5的最大(小)值时,我们可以这样处理:解:原式=2(x2+2x)﹣5=2(x2+2x+12﹣12)﹣5=2[(x+1)2﹣12]﹣5=2(x+1)2﹣7因为(x+1)2≥0,所以2(x+1)2﹣7≥0﹣7.当x=﹣1时,2(x+1)2﹣7取得最小值,最小值是﹣7 请根据上面的解题思路,解答下列问题:(1)求多项式3x2﹣12x+2的最小值是多少,并写出对应的x的取值;(2)求多项式x2+4x+y2﹣2y+8的最小值.25.(10分)著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即(a2+b2+c2+d2)(e2+f2+g2+h2)=A2+B2+C2+D2,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可减弱为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.【动手一试】试将(12+52)(22+72)改成两个整数平方之和的形式.(12+52)(22+72)=;【阅读思考】在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式x2﹣y2+改成两个平方之差的形式.解:原式=﹒【解决问题】请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式(a2+b2)(c2+d2)改成两个整数平方之和的形式(其中a、b、c、d均为整数),并给出详细的推导过程﹒五、解答题(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上26.(12分)直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=A B.请你利用该定理和以前学过的知识解决下列问题:在△ABC中,直线a绕顶点A旋转.(1)如图2,若点P为BC边的中点,点B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a 于点N,连接PM、PN.求证:PM=PN;(2)如图3,若点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图4,∠BAC=90°,直线a旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)计算a2•a5的结果是()A.a3B.a10C.a﹣3D.a7【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:a2•a5=a7.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.(4分)下列世界博览会会徽图案中是轴对称图形的是()A.B.C. D.【分析】根据轴对称图形的概念求解即可.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)下列计算正确的是()A.a5+a5=a10 B.(3a)2=6a2C.a7÷a=a6D.(a3)2=a5【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、a5+a5=2a5,故此选项错误;B、(3a)2=9a2,故此选项错误;C、a7÷a=a6,正确;D、(a3)2=a6,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.4.(4分)下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,CCTV第一套节目正在播放天气预报C.从一个只装有红色小球的袋中,任意摸出一球是红球D.经过某一有交通信号灯的路口,恰好遇到红灯【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、任意买一张电影票,座位号是偶数是随机事件,选项错误;B、打开电视机,CCTV第一套节目正在播放天气预报是随机事件,选项错误;C、从一个只装有红色小球的袋中,任意摸出一球是红球是必然事件,选项正确;D、经过某一有交通信号灯的路口,恰好遇到红灯是随机事件,选项错误.故选:C.【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000043=4.3×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(4分)一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C的度数为()A.75°B.65°C.55°D.45°【分析】依据三角形内角和为180°,即可得到这个三角形残缺前的∠C的度数.【解答】解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣(∠A+∠B)=180°﹣(45°+60°)=75°,故选:A.【点评】本题主要考查了三角形内角和定理,三角形内角和是180°.7.(4分)我市为迎接2014青奥会的召开,现对某景观道路进行拓宽改造.工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的函数关系的大致图象是()A.B.C.D.【分析】根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.【解答】解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选:D.【点评】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.8.(4分)如图,长方形纸片ABCD的边长AB=2,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是()A.120°B.110°C.115°D.105°【分析】先根据三角形内角和定理得到∠BEC的度数,再根据折叠的性质即可得到∠AEF的度数,最后根据平行线的性质,即可得到∠DFE的度数.【解答】解:∵∠BCE=30°,∠B=90°,∴∠BEC=60°,由折叠可得,∠AEF=∠CEF,∴∠AEF=(180°﹣∠BEC)=60°,由CD∥AB,可得∠AEF+∠DFE=180°,∴∠DFE=180°﹣60°=120°.故选:A.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.9.(4分)将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a﹣b)=a2﹣ab【分析】分别求出两个图形的面积,再根据两图形的面积相等即可得到恒等式.【解答】解:图甲面积=(a﹣b)(a+b),图乙面积=a(a﹣b+b)﹣b×b=a2﹣b2,∵两图形的面积相等,∴关于a、b的恒等式为:(a+b)(a﹣b)=a2﹣b2.故选:C.【点评】本题考查了平方差公式的几何解释,根据面积相等分别求出图形的面积是解题的关键.10.(4分)如图,下列条件中,一定能判断AB∥CD的是()A.∠2=∠3 B.∠1=∠2 C.∠4=∠5 D.∠3=∠4【分析】根据平行线的判定定理,同位角相等两直线平行,内错角相等两直线平行,则得出答案.【解答】解:A、由∠2=∠3,不能判断AB∥CD,故本选项错误;B、∵∠1=∠2,内错角相等,两直线平行∴AB∥CD,故本选项正确;C、由∠4=∠5,不能判断AB∥CD,故本选项错误;D、由∠3=∠4,不能判断AB∥CD,故本选项错误.故选:B.【点评】本题考查了平行线的判定,熟练掌握平行线的判定定理,是解此题的关键.11.(4分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.12.(4分)如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC 于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CB D.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,然后求出A、B、C、D四点共圆,根据同弧所对的圆周角相等可得∠BDC=∠BAC;∠DAE=∠CBD,再根据全等三角形对应角相等可得∠DAE=∠DAF,然后求出∠DAF=∠CB D.【解答】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,在Rt△CDE和Rt△BDF中,,∴Rt△CDE≌Rt△BDF(HL),故①正确;∴CE=AF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∴A、B、C、D四点共圆,∴∠BDC=∠BAC,故③正确;∠DAE=∠CBD,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共4个.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)比较大小:2>5(填“>,<,=”).【分析】首先分别求出两个数的平方各是多少;然后判断出两个数的平方的大小关系,即可判断出两个数的大小关系.【解答】解:,52=25,因为28>25,所以2>5.故答案为:>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是判断出两个数的平方的大小关系.14.(4分)一只小狗跳来跳去,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则小狗停留在黑色方格中的概率是.【分析】先求出正方形中共有多少个方格,再求出黑色的方格的个数,最后求出黑色方格所占的比即可.【解答】解:∵正方形中共有15个方格,黑色的方格有5个,∴小狗停留在黑色方格中的概率是:=,故答案为:.【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出黑色方格的面积与总面的比.15.(4分)已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是15cm.【分析】分3cm是腰长和底边两种情况,根据三角形的三边关系讨论求解即可.【解答】解:若3cm是腰长,则三角形的三边分别为3cm,3cm,6cm,∵3+3=6,∴不能组成三角形,若3cm是底边,则三角形的三边分别为3cm,6cm,6cm,能组成三角形,周长=3+6+6=15cm,综上所述,这个等腰三角形的周长是15cm.故答案为:15.【点评】本题考查了等腰三角形的性质,关键在于分情况讨论并利用三角形的三边关系判断是否能够组成三角形.16.(4分)若4x2﹣mx+是一个完全平方式,则实数m的值应为±.【分析】根据完全平方公式即可求出答案.【解答】解:∵4x2﹣mx+=4x2﹣mx+()2,∴mx=±2××2x,解得m=±.故答案为:±.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.17.(4分)如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为70°.【分析】根据轴对称的性质可得∠ACB=∠ACD,∠ABC=∠EBA,再根据三角形的内角和等于180°列式计算即可∠2+∠3的度数,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠α.【解答】解:由题可得,∠ACB=∠ACD,∠ABC=∠EBA,∵∠1:∠2:∠3=29:4:3,∴∠2+∠3=180°×=35°,∴∠α=∠EBC+∠DCB=2(∠2+∠3)=2×35°=70°,故答案为:70°.【点评】本题考查轴对称的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并表示出∠α是解题的关键.18.(4分)如图,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=2,点D从B点开始运动到C点结束,DE交AC于E,∠ADE=45°,当△ADE是等腰三角形时,AE的长度为1或4﹣2.【分析】分类讨论:当EA=ED,△ADE为等腰三角形,由∠ADE=45°得到∠EAD=45°,∠AED=90°,则AD平分∠BAC,AD⊥BC,DE⊥AC,然后根据等腰直角三角形的性质得到DE=AC=1;当DA=DE,△ADE为等腰三角形,由∠ADE=45°得到∠ADB+∠EDC=180°﹣45°=135°,而∠EDC+∠DEC=135°,所以∠ADB=∠DEC,根据三角形相似的判定得到△ABD∽△DCE,则BD:CE=AB:DC=AD:DE,利用AD=DE得到AB=DC=2,BD=CE;由于∠BAC=90°,AB=AC=2,根据等腰直角三角形的性质得BC=2,所以BD=2﹣2=EC,然后根据AE=AC﹣EC进行计算.【解答】解:当EA=ED,△ADE为等腰三角形∵∠ADE=45°,∴∠EAD=45°,∠AED=90°,∵∠BAC=90°,∴AD平分∠BAC,AD⊥BC,DE⊥AC,如图1,∵AB=AC=2,∴DE=AC=1;当DA=DE,△ADE为等腰三角形,如图2∵∠ADE=45°,∴∠ADB+∠EDC=180°﹣45°=135°,而∠EDC+∠DEC=135°,∴∠ADB=∠DEC,而∠B=∠C,∴△ABD∽△DCE,∴BD:CE=AB:DC=AD:DE,而AD=DE,∴AB=DC=2,BD=CE,∵BC=2,∴BD=2﹣2=EC,∴AE=AC﹣EC=2﹣(2﹣2)=4﹣2.故答案为1或4﹣2.【点评】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;相似三角形的对应线段的比等于相似比.也考查了等腰直角三角形的性质.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8分)如图,点B、F、C、E在同一条直线上,FB=CE,AC∥DF,AC=DF.求证:AB=DE.【分析】从已知AC∥DF⇒∠ACF=∠DFE,FB=CE⇒BC=EF,推出△ABC≌△DEF,即可得出AB=DE.【解答】证明:∵FB=CE,∴BC=EF,∵AC∥FD,∴∠ACB=∠DFE(两直线平行,内错角相等),在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AB=DE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.(8分)如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、200、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张(转盘等分成20份).(1)小华购物450元,他获得购物券的概率是多少?(2)小丽购物600元,那么:①她获得50元购物券的概率是多少?②她获得100元以上(包括100元)购物券的概率是多少?【分析】(1)由于每购买500元商品,才能获得一次转动转盘的机会,所以小华购物450元,不能获得转动转盘的机会,故获得购物券的概率为0;(2)①找到50元的份数占总份数的多少即为获得50元购物券的概率;②找到100元及以上的份数占总份数的多少即为获得100元以上(包括100元)购物券的概率.【解答】解:(1)∵450<500,∴小华购物450元,不能获得转动转盘的机会,∴小华获得购物券的概率为0;(2)小丽购物600元,能获得一次转动转盘的机会.①她获得50元购物券的概率是=;②她获得100元以上(包括100元)购物券的概率是.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.本题的易错点在于准确无误的找到50元、100元及以上的份数.四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答过程书写在答题卡中对应的位置上21.(10分)计算:(1)(a﹣b﹣3)(a﹣b+3)(2)[(a+1)(a+2)﹣2]÷a【分析】(1)直接利用公式法计算进而得出答案;(2)直接利用多项式乘法计算进而利用整式除法运算法则计算得出答案.【解答】解:(1)(a﹣b﹣3)(a﹣b+3)=(a﹣b)2﹣9=a2﹣2ab+b2﹣9;(2)[(a+1)(a+2)﹣2]÷a=(a2+3a+2﹣2)÷a=a+3.【点评】此题主要考查了整式的混合运算,正确应用乘法公式是解题关键.22.(10分)如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.【分析】根据两直线平行,同位角相等可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行判断出DG∥AB,然后根据两直线平行,同旁内角互补解答.【解答】解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB,∴∠AGD=180°﹣∠BAC=180°﹣80°=100°.【点评】本题考查了平行线的判定与性质,熟记性质与判定方法并判断出DG∥AB是解题的关键.23.(10分)如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态(1)填表:铁环个数 1 2 3 4链条长(cm) 4.6 8.2 11.815.4(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.17米长的链条,至少需要多少个铁环?【分析】(1)根据铁环粗0.5厘米,每个铁环长4.6厘米,进而得出3个/4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y与n的关系式;(3)由(2)得,3.6n+1≥217,进而求出即可.【解答】解:(1)由题意可得:3×4.6﹣4×0.5=11.8(cm),故3个铁环组成的链条长为11.8cm.4×4.6﹣6×0.5=15.4(cm),故4个铁环组成的链条长为15.4cm.故答案为:11.8;15.4;(2)由题意得:y=4.6n﹣2(n﹣1)×0.5,即y=3.6n+1;(3)据题意有:3.6n+1≥217,解得:n≥60,答:至少需要60个铁环.【点评】此题主要考查了一元一次不等式的应用,利用链条结构得出链条长的变化规律是解题关键.24.(10分)先仔细阅读材料,再尝试解决问题:通过对有理数的学习,我们知道x2≥0,本学期学习了完全平方公式后,我们知道a2±2ab+b2=(a±b)2.所以完全平方式(a±b)2的值为非负数,这一性质在数学中有着广泛的应用.比如探求多项式2x2+4c﹣5的最大(小)值时,我们可以这样处理:解:原式=2(x2+2x)﹣5=2(x2+2x+12﹣12)﹣5=2[(x+1)2﹣12]﹣5=2(x+1)2﹣7因为(x+1)2≥0,所以2(x+1)2﹣7≥0﹣7.当x=﹣1时,2(x+1)2﹣7取得最小值,最小值是﹣7 请根据上面的解题思路,解答下列问题:(1)求多项式3x2﹣12x+2的最小值是多少,并写出对应的x的取值;(2)求多项式x2+4x+y2﹣2y+8的最小值.【分析】(1)、(2)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)3x2﹣12x+2=3(x2﹣4x+4﹣4)+2=3(x﹣2)2﹣10∵(x﹣2)2≥0,∴3(x﹣2)2﹣10≥﹣10,当x=2时,多项式3x2﹣12x+2的最小值是﹣10;(2)x2+4x+y2﹣2y+8=x2+4x+4+y2﹣2y+1+3=(x+2)2+(y﹣1)2+3,当x=﹣2、y=1时,多项式x2+4x+y2﹣2y+8的最小值3.【点评】本题考查的是配方法的应用、非负数的性质,掌握完全平方公式、灵活运用配方法是解题的关键.25.(10分)著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即(a2+b2+c2+d2)(e2+f2+g2+h2)=A2+B2+C2+D2,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可减弱为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.【动手一试】试将(12+52)(22+72)改成两个整数平方之和的形式.(12+52)(22+72)=32+372;【阅读思考】在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式x2﹣y2+改成两个平方之差的形式.解:原式=﹒【解决问题】请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式(a2+b2)(c2+d2)改成两个整数平方之和的形式(其中a、b、c、d均为整数),并给出详细的推导过程﹒【分析】【动手一试】根据题目中的式子可以写出相应的式子;【解决问题】根据题目中的无中生有,可以证明结论成立.【解答】解:【动手一试】(12+52)(22+72)=32+372,故答案为:32+372;【解决问题】(a2+b2)(c2+d2)=(ac+bd)2+(ad﹣bc)2,证明:(a2+b2)(c2+d2)=(a2c2+b2d2)+(a2d2+b2c2)=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2.【点评】本题考查分式的混合运算、数学常识、多项式乘多项式,解答本题的关键是明确题意,找出题目中的式子的规律,写出相应的结论并证明.五、解答题(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上26.(12分)直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=A B.请你利用该定理和以前学过的知识解决下列问题:在△ABC中,直线a绕顶点A旋转.(1)如图2,若点P为BC边的中点,点B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a 于点N,连接PM、PN.求证:PM=PN;(2)如图3,若点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图4,∠BAC=90°,直线a旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.【分析】(1)如图2中,延长NP交BM的延长线于G.只要证明△PNC≌△PGB,推出PN=PG,再根据直角三角形斜边中线定理即可证明.(2)结论:PM=PN.延长NP交BM于G,证明方法类似(1).(3)如图4中,延长NP交BM于G.先证明△EAN≌△CAM,推出EN=AM,AN=CM,再证明△ENP≌△CGP,推出EN=CG=AM,PN=PG,因为AN=CM,所以MG=MN,即可证明PM⊥PN.【解答】(1)证明:如图2中,延长NP交BM的延长线于G.∵BM⊥AM,CN⊥AM,∴BG∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.。
七年级下册北师大版数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 26厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个等差数列的前三项分别是2,5,8,那么这个数列的第四项是多少?A. 7B. 10C. 11D. 125. 下列哪个图形是中心对称图形?A. 正方形B. 长方形C. 三角形D. 梯形二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 一个三角形的内角和一定是180度。
()3. 任何两个等边三角形都是全等的。
()4. 一个等差数列的相邻两项之差是常数。
()5. 任何两个等腰三角形都是相似的。
()三、填空题(每题1分,共5分)1. 一个数的因数是______和______。
2. 一个等腰三角形的底角是______度,顶角是______度。
3. 一个正方形的对角线长是______厘米,它的面积是______平方厘米。
4. 一个等差数列的公差是______,它的第10项是______。
5. 一个平行四边形的对角线互相______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等腰三角形的性质。
3. 简述轴对称图形的定义。
4. 简述中心对称图形的定义。
5. 简述勾股定理的定义。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
3. 一个正方形的对角线长是10厘米,求这个正方形的面积。
4. 一个平行四边形的对角线互相垂直,其中一条对角线长是12厘米,另一条对角线长是16厘米,求这个平行四边形的面积。
2022-2023学年北师大数学七年级下册期末测试卷参考答案与试题解析一.选择题(共12小题)1.如图,在△ABC中,∠B=40°,∠A=∠C,AF=CD,AE=CF,则∠EFD等于()A.50°B.60°C.70°D.80°【考点】全等三角形的判定与性质;三角形内角和定理.【分析】由三角形内角和定理得出∠A=∠C=70°,证明△AEF≌△CFD(SAS),由全等三角形的性质得出∠AFE=∠CDF,则可得出答案.【解答】解:∵∠B=40°,∴∠A=∠C=(180°﹣40°)=70°,在△AEF和△CFD中,,∴△AEF≌△CFD(SAS),∴∠AFE=∠CDF,∵∠AFE+∠EFD+∠CFD=180°,∠C+∠CDF+∠CFD=180°,∴∠EFD=∠C=70°.故选:C.2.一个正方形的边长为acm,若它的边长增加5cm,则新正方形面积增加了()cm2.A.25B.10a C.25+5a D.25+10a【考点】完全平方公式的几何背景.【分析】完全平方公式(a+b)=a2+2ab+b2的应用.【解答】解:原正方形的面积=a2(cm2)新正方形的面积=(a+5)2=(a2+10a+25)cm2所以增加的面积=(10a+25)cm2.故本题选D.3.若一个三角形的三边长分别为2,6,a,则a的值可能是()A.3B.4C.6D.8【考点】三角形三边关系.【分析】根据三角形的三边关系列出不等式,即可求出a的取值范围.【解答】解:∵三角形的三边长分别为2,6,a,∴6﹣2<a<6+2,即4<a<8,故选:C.4.圆的对称轴有()A.0条B.1条C.2条D.无数条【考点】轴对称图形;轴对称的性质.【分析】直接利用如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进而结合圆的性质得出答案.【解答】解:圆的对称轴有无数条.故选:D.5.下列事件中,是必然事件的是()A.今年冬季兴城的最低气温为40℃B.下午考试,小明会考满分C.乘坐公共汽车恰好有空座D.四边形的内角和是360°【考点】随机事件.【分析】根据事件发生的可能性大小判断即可.【解答】解:A、今年冬季兴城的最低气温为40℃,是不可能事件,不符合题意;B、下午考试,小明会考满分,是随机事件,不符合题意;C、乘坐公共汽车恰好有空座,是随机事件,不符合题意;D、四边形的内角和是360°,是必然事件,符合题意;故选:D.6.据报道,新型冠状病毒的直径约为0.0000001米,则该病毒的直径用科学记数法表示为()A.0.1×10﹣6米B.1×10﹣7米C.10×10﹣8米D.1×10﹣8米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.0000001=1×10﹣7.故选:B.7.如图,∠PQR=132°,SQ⊥QR,QT⊥PQ,则∠SQT=()A.48°B.32°C.24°D.66°【考点】垂线;余角和补角.【分析】利用垂直的概念,得出∠PQS=∠PQR°﹣90°,再利用互余的性质,得出∠SQT=∠PQT﹣∠PQS.【解答】解:∵,∠PQR=132°,QT⊥PQ,∴∠PQS=132°﹣90°=42°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=∠PQT﹣∠PQS,=90°﹣42°,=48°.故选:A.8.已知点A,B,C,D,E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠DOC与∠BOE互补C.∠AOB=∠DOE D.∠AOB与∠COD互余【考点】余角和补角.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∴∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°.故选:B.9.如图,已知矩形ABCD中,点E是BC的中点,点P从点B出发,沿B→D→A→B以1cm/s 的速度匀速运动到点B,到达点B后停止.图2是点P运动时,△PEC的面积y(cm2)随运动时间x(s)变化的关系图象,则图2中a,b的值为()A.a=3,b=12B.a=4,b=12C.a=3,b=14D.a=4,b=14【考点】动点问题的函数图象.【分析】从图2中5,9可得出BD=5,AD=9﹣5=4,根据勾股定理可求出AB的长,由此可得出b的值;根据点P在AD上运动时,面积不变,利用三角形面积公式可求出a.【解答】解:结合点P的运动,根据图2可知,BD=5,AD=9﹣5=4,∴BC=AD=4,∵点E是BC的中点,∴EC=2,在矩形ABCD中,∠A=90°,由勾股定理可知,AB=3,∴CD=AB=3;∴b=9+3=12;当点P运动到点D时,y=•EC•CD=×2×3=3.即a=3.故选:A.10.根据图中给定的条件,下列各图中可以判断∠1与∠2一定相等的是()A.①②B.①③C.①②③D.①②③④【考点】直角三角形的性质;对顶角、邻补角;平行线的性质.【分析】根据直角三角形的两锐角互余判断即可.【解答】解:如图①,∠1+∠3=90°,∠2+∠3=90°,则∠1=∠2;如图②,∠1=90°﹣∠3,∠2=90°﹣∠4,∠3=∠4,则∠1=∠2;图③和图④不能判断∠1与∠2一定相等,故选:A.11.如图,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=9,BD=1,AP=x.△AMN的面积为y,则y关于x的函数图象的大致形状是()A.B.C.D.【考点】动点问题的函数图象.【分析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤4.5;(2)4.5<x≤9;【解答】解:(1)当0<x≤4.5时,如图,在菱形ABCD中,AC=9,BD=1,AO=1,AC⊥BD,∵MN⊥AC,∴MN∥BD,∴△AMN∽△ABD,∴,即=,∴MN=x,∴y=AP×MN=x2(0<x≤4.5),∵>0,∴函数图象开口向上;(2)当4.5<x≤9,如图,同理证得,△CDB∽△CNM,,即:,∴MN=﹣x+1,∴y=AP×MN=x•(﹣x+1)=﹣x2+x,即:y=﹣x2+x;∵﹣,∴函数图象开口向下,综上,答案C的图象大致符合.故选:C.12.如图,在△ABC中,点D是边BC的中点,,△ABC的面积是4,则下列结论正确的是()A.S1=S2B.S1=2C.S2=0.5D.S1﹣S2=1【考点】三角形的面积.【分析】设AD与BE相交于点O,连接OC,过点A作AF⊥BE,垂足为F,过点C作CG⊥BE,交BE的延长线于点G,设△BOD的面积为x,根据点D是边BC的中点,可得△BOD的面积=△COD的面积=x,△ABD的面积=△ACD的面积,从而利用等式的性质可得△AOB的面积=△AOC的面积,再根据已知可得CE=AE,从而可得△AOE 的面积=3△COE的面积,进而可得AF=3CG,然后利用三角形的面积可得△AOB的面积=3△BOC的面积=6x,从而可得△AOC的面积6x,进而可得△AOE的面积=x,△COE的面积=x,最后求出S1=6x,S2=x,再根据△ABC的面积是4,可得2(x+6x)=4,从而求出x的值,进行计算逐一判断即可解答.【解答】解:设AD与BE相交于点O,连接OC,过点A作AF⊥BE,垂足为F,过点C 作CG⊥BE,交BE的延长线于点G,设△BOD的面积为x,∵点D是边BC的中点,∴△BOD的面积=△COD的面积=x,△ABD的面积=△ACD的面积,∴△AOD的面积﹣△BOD的面积=△ADC的面积﹣△COD的面积,∴△AOB的面积=△AOC的面积,∵,∴CE=AE,∴△AOE的面积=3△COE的面积,∴AF=3CG,∴△AOB的面积=3△BOC的面积=3•2x=6x,∴△AOC的面积=△AOB的面积=6x,∴△AOE的面积=△AOC的面积=x,△COE的面积=△AOC的面积=x,∴S1=△AOB的面积=6x,S2=△DOC的面积+△OEC的面积=x,∴S1≠S2,故A不符合题意;∵△ABC的面积是4,∴2△ABD的面积=4,∴2(△AOB的面积+△BOD的面积)=4,∴2(x+6x)=4,∴x=,∴S1=6x=,S2=x=,∴S1﹣S2=﹣=1,故B,C都不符合题意;D符合题意;故选:D.二.填空题(共6小题)13.如图,在边长为(m+4)的正方形纸片上剪出一个边长为m的小正方形后,将剩余部分剪拼成一个长方形(不重叠无缝隙),若这个矩形的一边长为4,则另一边长是(2m+4).【考点】平方差公式的几何背景.【分析】设另一边长为x,然后根据分割前后面积不变列方程求解.【解答】解:设另一边长为x,根据题意得:4x+m2=(m+4)2,解得:x=2m+4,则另一边长为(2m+4),故答案为:(2m+4).14.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=65°,则∠2=130°.【考点】平行线的性质.【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG,从而得到∠GEF,根据平角的定义即可求得∠1,再由平行线的性质求得∠2.【解答】解:∵AD∥BC,∠EFG=65°,∴∠DEF=∠EFG=65°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=65°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣65°﹣65°=50°,∴∠2=180°﹣∠1=130°.故答案为:130°.15.已知一个梯形的面积为60,上底长是高的2倍,设高为x,下底为y,则y关于x的函数解析式为y=.【考点】函数关系式.【分析】根据梯形的面积可得,进一步可得y关于x的函数解析式.【解答】解:设高为x,∵上底长是高的2倍,∴上底长为2x,∵一个梯形的面积为60,∴,∴y=,故答案为:y=.16.如图,∠ACB=90°,AD⊥CE,BE⊥CE,垂足分别为D,E,添加一个条件,使△ACD ≌△CBE,添加的条件是BE=CD(答案不唯一).(写出一个即可)【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是BE=CD,判断两三角形全等的根据是SAS,理由是:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠CBE+∠BCE=90°,∴∠ACD=∠CBE,在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故答案为:BE=CD(答案不唯一).17.如图,在△ABC中,AB=AC,AD⊥BC.若BD=6,则CD=6.【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形“三线合一”的性质,可得CD=BD=6.【解答】解:∵AB=AC,∴∠ABD=∠ACD,∵AD⊥BC,∴∠ADC=∠ADB=90°,∴CD=BD=6.故答案为:6.18.如图,D、E、F分别为BC、AD、CE的中点.若S△ABC=8cm2,则S△DEF=1cm2.【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵D、E、F分别为BC、AD、CE的中点,且S△ABC=8cm2,∴△ACD的面积=S△ABC=4cm2,△ACE的面积=△ACD的面积=2cm2,△AEF的面积=△ACE的面积=1cm2.故答案为:1cm2.三.解答题(共9小题)19.计算:(1)a4•(a2)3;(2)2a3b2c÷(a2b);(3)6a(ab﹣b)﹣(2ab+b)(a﹣1);(4)(a﹣2)2﹣(3a+2b)(3a﹣2b).【考点】整式的混合运算.【分析】(1)直接利用幂的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案;(3)直接利用单项式乘单项式以及多项式乘多项式计算,进而得出答案;(4)直接利用完全平方公式以及平方差公式化简,进而合并同类项得出答案.【解答】解:(1)原式=a4•a6=a10;(2)原式=2×3a3b2c÷a2b=6abc;(3)原式=2a2b﹣6ab﹣(2a2b﹣2ab+ab﹣b)=2a2b﹣6ab﹣2a2b+ab+b=﹣5ab+b;(4)原式=a2﹣4a+4﹣(9a2﹣4b2)=a2﹣4a+4﹣9a2+4b2=﹣8a2﹣4a+4+4b2.20.如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【考点】平行线的判定.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).21.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示.(1)乙比甲先出发0.5小时.(2)甲骑行的速度是每小时千米.(3)相遇后,甲的速度大于乙的速度(填“大于”、“小于”或“等于”).(4)甲比乙少用了1小时.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.【解答】解:由题意可得:(1)乙比甲先出发0.5小时.故答案为:0.5;(2)甲骑行的速度为:=(千米/小时).故答案为:;(3)相遇后,甲的速度大于乙的速度(填“大于”、“小于”或“等于”).故答案为:大于;(4)甲比乙少用了1小时.22.如图,AD为△ABC的高,AE、BF为△ABC的角平分线,若∠CBF=30°,∠AFB=70°.(1)求∠DAE的度数;(2)若点M为线段BC上任意一点,当△BMF为直角三角形时,请直接写出∠CFM的度数.【考点】三角形内角和定理.【分析】(1)根据∠DAE=∠BAE﹣∠BAD,求出∠BAE,∠BAD即可;(2)分两种情形:当∠FMB=90°时,当∠BFM=90°时,分别求解即可.【解答】解:(1)∵BF为△ABC的角平分线.∠CBF=30°∴∠ABF=∠CBF=30°,∠ABC=2∠CBF=60°,∵AD为△ABC的高,∴∠ADB=90°,∴∠BAD=30°,在△ABF中,∠AFB=70°,∴∠BAF=80°,∠C=40°,∵AE为△ABC的角平分线,∴∠BAE=40°,∴∠DAE=∠BAE﹣∠BAD=10°;(2)当∠FMB=90°时,∠CFM=90°﹣40°=50°.当∠BFM=90°时,∠BMF=90°﹣30°=60°,∵∠BMF=∠C+∠CFM,∴∠CFM=60°﹣40°=20°.综上所述,∠CFM度数为50°或20°.23.如图,BE=CF,AC=DF,AC∥DF.求证:△ABC≌△DEF.【考点】全等三角形的判定.【分析】首先根据AD=BE可得AB=DE,再由AC∥DF可得∠A=∠FDE,然后利用SAS定理证明△ABC≌△DEF即可.【解答】证明:∵CF=BE,∴CF+EC=BE+CE,即BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ACB和△DFE中,,∴△ABC≌△DEF(SAS).24.如图(1),AB=14cm,AC=10cm,AC⊥AB,BD⊥AB垂足分别为A、B,点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x 和t的值.【考点】全等三角形的判定.【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C =∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP ≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【解答】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.25.如图,已知BN平分∠ABC,P为BN.上的一点,PF⊥BC于F,P A=PC.(1)求证:∠PCB+∠BAP=180°;(2)线段BF、BC、AB之间有怎样的数量关系?请直接写出你探究的结论:2BF=AB+BC.【考点】全等三角形的判定与性质.【分析】(1)过点P作PD⊥BA于D,由角平分线的性质可得PD=PF,由“HL”可证Rt△ADP≌Rt△CFP,可得∠PCF AE=∠PCB,即可得结论;(2)证明△BPD≌△BPF(AAS),进而得出BD=BF,再根据边与边之间的关系即可得出2BF=AB+AC.【解答】(1)证明:作PD⊥AB于点D,∵BN平分∠ABC,PF⊥BC,∴PD=PF又∵P A=PC,∴Rt△ADP≌Rt△CFP(HL),∴∠DAP=∠FCP,∵∠PCB+∠FCP=180°,∴∠PCB+∠BAP=180°;(2)解:2BF=AB+BC,理由如下:∵∠DBP=∠FBP,BP=BP,∠BEP=∠BFP,∴△BPD≌△BPF(AAS),∴BD=BF,∴BD+BF=AB﹣AD+BC+CF=AB+BC,∴2BF=AB+BC,故答案为:2BF=AB+BC.26.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=7,求△AEG的周长.(2)若∠BAC=110°,求∠EAG的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的性质得到EA=EB,GA=GC,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理得到∠B+∠C=70°,根据等腰三角形的性质得到∠EAB+∠GAC=∠B+∠C=70°,计算即可.【解答】解:(1)∵DE是AB的垂直平分线,GF是AC的垂直平分线,∴EA=EB,GA=GC,∴△AEG的周长=EA+EG+GA=EB+EG+GC=BC=7;(2)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAB+∠GAC=∠B+∠C=70°,∴∠EAG=110°﹣70°=40°.27.综合与探究【实践操作】在数学实践活动课上,“奋进”小组准备研究如下问题:如图,点A,O,B在同一条直线上,将一直角三角尺如图1放置,使直角顶点重合于点O,∠COD是直角,OE平分∠BOC.【问题发现】(1)若∠AOC=30°,则∠DOE的度数为15°;(2)将这一直角三角尺如图2放置,其他条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将这一直角三角尺如图3放置,其他条件不变,请直接写出∠AOC和∠DOE的度数之间的关系.【考点】余角和补角;角平分线的定义.【分析】(1)根据角平分线的定义、余角和补角的定义、平角的定义,可以得出答案;(2)根据角平分线的定义、余角和补角的定义、平角的定义可以得出结论;(3)根据角平分线的定义、余角和补角的定义、平角的定义可以得出结论.【解答】解:(1)∵∠AOC=30°,∠AOC+∠BOC=180°,∴∠BOC=180°﹣∠AOC=180°﹣30°=150°,∵OE平分∠BOC,∴∠COE=∠BOC=×150°=75°,∵∠COD是直角,∴∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣75°=15°;故答案为:15°;(2)∠AOC=2∠DOE,理由如下:∵∠COD是直角,∴∠COD=90°.∴∠COE=90°﹣∠DOE.∵OE平分∠BOC,∴∠BOC=2∠COE.∴∠AOC=180°﹣∠BOC=180°﹣2∠COE=180°﹣2(90°﹣∠DOE)=180°﹣180°+2∠DOE=2∠DOE,即∠AOC=2∠DOE.(3)∠AOC=360°﹣2∠DOE,理由如下:∵OE平分∠BOC,∴∠BOC=2∠COE,又∵∠AOC=180°﹣∠BOC,∴∠AOC=180°﹣2∠COE,∵∠COD=90°,∴∠COE=∠DOE﹣∠COD=∠DOE﹣90°,∴2∠COE=2∠DOE﹣180°,∴∠AOC=180°﹣(2∠DOE﹣180°),∴∠AOC=360°﹣2∠DOE.。
北师大版数学七年级下册期末考试模拟试题(一)一、选择题(12×3=36分) 1、下列运算中,正确的是( )A.22(3)6a a = B. 623a a a ÷= C. 336()a a = D. 325a a a ⋅=2、下列图形不是轴对称图形的是( )A.B. C.D. 3、已知2(3)(2)x x x bx c +-=++,那么b 、c 的值分别是( )A .1b =,6c =-B .1b =,6c =C .5b =,6c =-D .5b =,6c = 4、如图1,由AB//DC ,能推出正确的结论是( )A .∠3=∠4B .∠1=∠2C .∠A=∠CD .AD//BC 5、如图2,往地板中随意一颗石头,石头落在黑色区域的概率为( )A .12B .516C .38D .346、对于四舍五入得到的近似数43.2010⨯,下列说法正确的是( )A .有3个有效数字,精确到百分位B .有5个有效数字,精确到个位C .有3个有效数字,精确到百位D .有2个有效数字,精确到百分位 7、已知△ABC 的三个内角满足:22A B C ∠=∠=∠,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定8、佳佳星期六下午在商场购物时,通过镜子看到她背后墙上一面普通时钟的时针与分针的位置如图3所示.这时实际时间是( )A .3:20B .3:40C .4:20D .8:209、如图4,AB=8,AC=7,PB 、PC 分别平分∠B 、∠C ,DE ∥BC .则△ADE 的周长是( )A .15B .20C .25D .3010、洗衣机洗衣经历了注水(此前机内无水)、洗涤、脱水(包括排水)三个连续的过程.下列图中可以近似地刻画出洗衣机在这段时间内的水量变化情况的是( )CCA .B .C . D.11、以下不一定能判定两个三角形全等的条件是( )A .两角及它们的夹边对应相等B .两角及其中一角的对边对应相等C .两边及它们的夹角对应相等D .两边及其中一边的对角对应相等 12、如图5所示的是线段AB 关于直线l 对称的图形,那么:①AB A B ''= ; ②直线l 垂直平分BB ';③BB AA ''∥ ;④AB 延长线与A B ''的延长线的交点在直线l 上。
七年级第二学期数学期末测试试卷一、选择题。
1、下列标志中,可以看作是轴对称图形的是()A B C D2、济南春夏之季鲜花烂漫,空气中弥漫着各种花粉,有一种花粉的直径是0.000063米,将0.000063用科学记数法表示应为()A. 6.3X 10_4B. 0.63X 10_4C. 6.3X 10 -5D. 63X 10 一53、如图,直线c与直线a,b相交,且a// b,Z 1 = 60°,则/2的度数()A. 30°B. 60°C. 80°4、下列计算正确的是( )A. a5+ a2= a7B. 2a2- a2= 2C. a3• a2= a8D. (a9)3= a95、如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A. 三角形的稳定性B. 两点之间钱段最短C两点确定一条直线D. 垂线段最短7如图所示,货车匀速通过的隧道长大于货车长时,货车从进入隧道至离开隧8以下各组线段为边不能组成直角三角形的是( )A. 3,4,5B. 6, 8,10C. 5, 12,13D. 8, 15,20道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是8 —枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投 掷这个骰子一次,得到的点数与 3, 4作为等腰三角形三边的长,能构成等腰三 角形的概率是()22 3 3 6 下列说法正确的是()A. 同位角相等B. 两条直线被第三条直线所截,内错角相等C 对顶角相等D.两条平行直线被第三条直线所裁,同旁内角相等10、如图,在边长为a 的正方形中,剪去一个边长为 b 的小正方形(a >b ,如 图I ),将余下的部分剪开后拼成一个梯形(如图 2),根据两个图形阴影部分 面积的关系,可以得到一个关于 a , b 的恒等式为()A. (a — b)2 = a 2— 2ab + b 2A、 B、 C 、DA BCDB. (a + b)2 = a 2 + 2ab + b 2C. a 2-b 2 = (a + b)(a — b)D. a(a + b) = a 2+ ab11、如图,在△ MBC 中,AB = 4, AC = 6,/ ABC 和/ACB 的平分线交于 O 点, 过点O 作BC 的平行线交 AB 于M 点,交AC 于N 点,则△ AMN 的周长为A. 7B. 8C. 9D. 1012、如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律, 最后一个三角形中y 与n 之间的关系是()A 、 y = 2n + 1B 、 y = 2n +n bC、y= 2n+1+ nD、y= 2n+ n+ 1二、填空题。
北师大版七年级下册数学期末考试试卷一、单选题1.45︒的余角是()A .45︒B .90︒C .135︒D .180︒2.在下列图形中,1∠与2∠是对顶角的是()A .B .C .D .3.下列运算正确的是()A .347a a a +=B .34722a a a = C .437(2)8a a=D .824a a a ÷=4.下面四幅“二十四节气”标识系统设计分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A .B .C .D .5.如图,转盘被分成8个相同的扇形,自由转动转盘,当转盘停止时,指针落在阴影部分区域的概率是()A .58B .12C .38D .346.等腰三角形的周长为22,其中一边长是8,则其余两边长分别是()A .6和8B .7和8C .7和7D .6,8或7,77.如图,已知12∠=∠,要说明ABD ACD ∆≅∆,还需从下列条件①ADB ADC ∠=∠,②B C ∠=∠,③DB DC =,④AB AC =中选一个,则正确的选法个数是()A .1个B .2个C .3个D .4个8.甲、乙两人在100米赛跑中,路程()s m 与时间()t s 的关系如图所示,根据图象,下列结论错误的是()A .甲比乙先到达终点B .甲、乙速度相差2/m sC .甲的速度为10/m sD .乙跑完全程需12s9.如图,ABC ∆中,BD 平分ABC ∠,EF 垂直平分BC 交BC 于点E ,交BD 于点F ,连接CF ,若60A ∠=︒,25ABD ∠=︒,则ACF ∠的度数为()A .25︒B .45︒C .50︒D .70︒10.我国宋朝数学家杨辉1261年的著作《详解九章算法》给出了在()(na b n +为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按a 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则2019(1)x +展开式中含2018x 项的系数是()A .2016B .2017C .2018D .2019二、填空题11.流感病毒的直径为0.00000008,用科学记数法表示为__.12.写出一个不可能事件_____.13.一不透明的口袋里装有白球和红球共20个,这些球除颜色外完全相同,小明通过多次模拟试验后发现,其中摸到白色球的频率稳定在0.2左右,则口袋中红色球可能有___个.14.若2a b +=,226a b +=,则ab 的值是__.15.如图,把一个直角三角尺(30)ABC A ∠=︒的直角顶点放在长方形桌面CDEF 的顶点C 处,桌面的另一个顶点F 在三角尺斜边上.若140∠=︒,则AFE ∠=__.16.如图,ABC ∆中,90C ∠=︒,8AC =,4BC =,AX AC ⊥,点P 、Q 分别在边AC 和射线AX 上运动,若ABC ∆与PQA ∆全等,则AP 的长是__.三、解答题17.计算:021|2|( 3.14)(1)2π----+-18.先化简,再求值:2[(2)(2)]2x y x x y y +--÷,其中13x =,12y =-.19.如图,//AB DE ,12180∠+∠=︒,试说明://BC EF .20.如图,已知AOB ∠,求作射线OC ,使AOC BOC ∠=∠(要求:尺规作图,保留作图痕迹,不写作法),并说明其中的道理.21.航拍无人机甲从海拔0m 处出发,以5/m s 匀速铅直上升,与此同时,航拍无人机乙从海拔30m 处出发,以3/m s 匀速铅直上升.设无人机上升时间为()x s ,无人机甲、乙所在位置的高度分别为1y 、2()y m (1)根据题意,填写下表:上升时间/x s510⋯1/y m 25⋯2/y m60⋯(2)请你分别写出1y 、2y 与x 的关系式;(3)在某时刻两架无人机能否位于同一高度?若能,求无人机上升的时间和所在高度;若不能,请说明理由.22.一个袋中装有7个红球,8个黑球,9个白球,每个球除颜色外都相同.(1)求从袋中随机摸出一个球是红球的概率;(2)若先从袋中拿出7个红球和(5)m m >个黑球,再从剩下的球中摸出一球.①若事件“再摸出的球是白球”为必然事件,求m 的值;②若事件“再摸出的球是白球”为随机事件,求m 的值,并求出这个事件概率的最小值.23.(1)如图1,边长为a 的大正方形中有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式.(用含a ,b 的等式表示)(2)运用(1)中所得到的公式,计算下列各题:①2201820192017-⨯;②2(3)(3)x y x y ---+24.如图,四边形ABCD 中,//AD BC ,点P 在AB 边上,CP 平分BCD ∠,DP 平分ADC ∠.(1)按三角形内角的大小分类,试判断CPD ∆的形状,并说明理由;(2)若10AB =,90B ∠=︒,求点P 到CD 的距离.25.在ABC ∆中,点D 在AB 边所在直线上(与点A ,B 不重合),点E 在BC 边所在直线上,且AD CE =,DE 交AC 边于点F .(1)如图1,若ABC ∆是等边三角形,点D 在AB 边上,过点D 作DH AC ⊥于H ,试说明:HF AH CF =+.某同学发现可以由以下两种思路解决此问题:思路一:过点D 作//DG BC ,交AC 于点G ,如图1因为ABC ∆是等边三角形,得AGD ∆是等边三角形又由DH AC ⊥,得(AH GH =)再说明(ECF DGF ∆≅∆)得出GF FC =.从而得到结论.思路二:过点E 作EM AC ⊥,交AC 的延长线于点M ,如图2⋯①请你在“思路一”中的括号内填写理由;②根据“思路二”的提示,完整写出说明过程;(2)如图3,若ABC ∆是等腰直角三角形,90B ∠=︒,点D 在线段BA 的延长线上,过点E 作EH AC ⊥于H ,试探究AC 与HF 之间的数量关系,并说明理由.参考答案1.A【解析】根据互为余角的两个角的和等于90°可解.【详解】解:45︒的余角是45︒.故选:A.【点睛】本题考查了余角的定义,属于基础题,解题时牢记定义是关键,难度一般. 2.C【解析】根据对顶角的概念解答即可.【详解】A ,∠1与∠2不是对顶角,A 错误,B ,∠1与∠2不是对顶角,B 错误,C ,∠1与∠2是对顶角,C 正确,D ,∠1与∠2不是对顶角,D 错误;故选:C .【点睛】本题考查的是对顶角和邻补角的概念和性质,掌握有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角是解题的关键.3.B 【解析】试题分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.A 、3a 和4a 不是同类项不能合并,故本选项错误;B 、34722a a a ⋅=,故本选项正确;C 、()341228a a =,故本选项错误;D 、826a a a ÷=,故本选项错误.故选B .考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.4.D 【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,故选项错误;B 、不是轴对称图形,故选项错误;C 、不是轴对称图形,故选项错误;D 、是轴对称图形,故选项正确.故选:D .【点睛】本题主要考查了对称图形的定义,正确理解定义是解题关键.5.A【解析】【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.【详解】解:由于一个圆平均分成8个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有8种等可能的结果,在这8种等可能的结果中,指针指向阴影部分区域的有5种可能果,所以指针落在阴影部分区域的概率是5 8,故选:A.【点睛】此题考查了概率公式,用到的知识点为:概率=相应的面积与总面积之比.6.D【解析】【分析】要确定等腰三角形的另外两边长,可根据已知的边的长,结合周长公式求解,由于长为8的边已知没有明确是腰还是底边,要分类进行讨论.【详解】解:∵等腰三角形的周长为22,∴当8为腰时,它的底长=22-8-8=6,8+6>8,能构成等腰三角形;当8为底时,它的腰长=(22-8)÷2=7,7+7>8能构成等腰三角形,即它的另外两边长分别为8,6或者7,7.故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;注意养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.C【解析】【分析】欲使△ABD≌△ACD,已知∠1=∠2,AD公共,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【详解】解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.【点睛】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.B【解析】【分析】通过图象可以看出甲乙两人从同一起点同时出发,路程都是100米,甲用时10秒,乙用时12秒,依次可判断甲乙的速度,从而解决问题.【详解】解:通过图象可以看出甲乙两人从同一起点同时出发,路程都是100米,甲用时10秒,乙用时12秒,所以甲比乙先到达终点,所以A 结论正确,不符合题意;甲的速度为1001010/m s ÷=,乙的速度为2510012/3m s ÷=,所以B 选项错误符合题意;C 和D 选项结论均正确,不符合题意.故选:B .【点睛】本题主要考查了函数的图象,需要从图象分析出实际问题,解题的关键是理解横轴和纵轴表示的含义,转化为实际问题中的数据.9.B【解析】【分析】据角平分线的性质可得∠DBC=∠ABD=25°,然后再计算出∠ACB 的度数,再根据线段垂直平分线的性质可得BF=CF ,进而可得∠FCB=25°,然后可算出∠ACF 的度数.【详解】解:∵BD 平分∠ABC ,∴∠DBC=∠ABD=25°,∵∠A=60°,∴∠ACB=180°-60°-25°×2=70°,∵BC 的中垂线交BC 于点E ,∴BF=CF ,∴∠FCB=25°,∴∠ACF=70°-25°=45°,故选:B .【点睛】本题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.10.D【解析】【分析】根据表中的系数找出规律,首先确定x 2018是展开式中第几项,根据杨辉三角即可解决问题.【详解】解:由题意,2019201920182019(1)20191x x x +=++⋯+可知,展开式中第二项为20182019x 2019(1)x ∴+展开式中含2018x 项的系数是2019.故选:D .【点睛】本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.11.8×10-8【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以0.00000008=考点:本题考查的是科学记数法的表示方法点评:本题是属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.12.明天是三十二号【解析】不可能事件是指在一定条件下,一定不发生的事件.一个月最多有31天,故明天是三十二号不可能存在,为不可能事件.13.16【解析】【分析】由题意:“小明通过多次摸球试验后发现”知所得频率可以近似地认为是概率,再由概率之和为1计算出红色与黑色球的频率,最后由数据总数×频率=频数计算个数即可.【详解】解: 白色球频率稳定在0.2左右,∴摸到红色与黑色球的频率为10.20.8-=,故口袋中红色与黑色球个数可能是200.816⨯=个,故答案为:16.【点睛】本题考查了概率的意义,大量反复试验下频率稳定值即概率.关键是算出摸到球的频率.14.-1【解析】【分析】注意到题中有平方和出现,可先考虑用完全平方公式进行解题.【详解】解:226a b += ,222()24a b a ab b +=++=2462ab ∴=-=-得1ab =-,故答案为1-.【点睛】此题主要考查完全平方公式的转化.通常题中出现平方和,可以优先考虑使用完全平方公式,但要熟记并会运用完全平方公式,完全平方公式为:(a±b )2=a 2±2ab+b 2.15.10︒【解析】【分析】由四边形CDEF 为矩形,得到EF 与DC 平行,利用两直线平行同位角相等求出∠AGE 的度数,根据∠AGE 为三角形AGF 的外角,利用外角性质求出∠AFE 的度数即可.【详解】解: 四边形CDEF 为矩形,//EF DC ∴,140AGE ∴∠=∠=︒,AGE ∠ 为AGF ∆的外角,且30A ∠=︒,10AFE AGE A ∴∠=∠-∠=︒,故答案为:10︒.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.16.4或8【解析】【分析】根据全等三角形的性质即可得到结论.【详解】解:ABC ∆ 与PQA ∆全等,4AP BC ∴==或8AP AC ==,故答案为:4或8.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.17.5【解析】【分析】先根据a 0=1(a≠0)和负整数指数幂的意义以及绝对值的意义进行计算,然后进行乘法运算、加减运算即可.【详解】解:原式214=-+5=.【点睛】本题考查了实数的运算:先算乘方或开方,再进行乘除运算,最后进行实数的加减运算;有括号或绝对值的,先计算括号或去绝对值.也考查了a 0=1(a≠0)和负整数指数幂的意义.18.0【解析】【分析】原式中括号第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x 与y 的值代入计算即可求出值.【详解】解:原式2222(442)2(64)232x xy y x xy y xy y y x y =++-+÷=+÷=+,当13x =,12y =-时,原式1132()11032=⨯+⨯-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.19.见解析.【解析】【分析】依据AB ∥DE ,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠3+∠2=180°,进而判定BC ∥EF.【详解】证明:∵AB ∥DE ,∴∠1=∠3,又∵∠1+∠2=180°,∴∠3+∠2=180°,∴BC ∥EF.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.20.见解析.【解析】【分析】利用基本作图(作已知角的角平分线)作出OC ,同时得到OC′,然后根据“SSS“判断△ODP ≌△OEP 得到∠DOP=∠EOP ,再根据等角的补角相等得到∠AOC′=∠BOC′.【详解】解:如图,射线OC 或OC '为所作.通过证明ODP OEP ∆≅∆得到DOP EOP ∠=∠,然后根据等角的补角相等得到AOC BOC ∠'=∠'.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.(1)50,45;(2)15y x =,2303y x =+;(3)能,15秒钟时两架无人机能位于75米的同一高度.【解析】【分析】(1)由题意得:甲从海拔0m 处出发,以5m/s 匀速铅直上升,则y 1=50;乙从海拔30m 处出发,以3m/s 匀速铅直上升,则5秒后到达45米的距离;(2)表格数据,利用找规律的方法即可求解;(3)由题意得:y 1=y 2,则5x=30+3x ,即可求解.【详解】解:(1)由题意得:当10x =时,150y =;当5x =时,2303545y =+⨯=;故答案为50,45;(2)由题意得:15y x =,2303y x =+,(3)由题意得:12y y =,则5303x x =+,解得:15x =,51575y =⨯=,答:15秒钟时两架无人机能位于75米的同一高度.【点睛】本题考查的是一次函数的综合运用,在没有明确函数性质时,求函数表达式,通常用找规律的方法求解.22.(1)724;(2)①8m =;②6m =,911.【解析】【分析】(1)利用概率公式计算即可.(2)①由题意袋中,都是白球,m=8.②由题意m=6或7或8,当m=6时,这个事件概率的最小.【详解】解:(1)从袋中随机摸出一个球是红球的概率7778924==++.(2)①由题意袋中,都是白球,8m =.②由题意6m =或7或8,当6m =时,这个事件概率的最小,最小值911=.【点睛】本题考查概率,随机事件等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)22()()a b a b a b -=+-;(2)①1;②2224218x xy y -+-.【解析】【分析】(1)分别根据面积公式进行计算,根据图1的面积=图2的面积列式即可;(2)利用平方差公式进行计算,即可得到计算结果.【详解】解:(1)原阴影面积22a b =-,拼剪后的阴影面积()()a b a b =+-,∴得到的公式为:22()()a b a b a b -=+-;故答案为:22()()a b a b a b -=+-;(2)①2201820192017-⨯22018(20181)(20181)=-+⨯-22201820181=-+1=;②2(3)(3)x y x y ---+22[()9]x y =--222(29)x xy y =-+-2224218x xy y =-+-.【点睛】本题考查了平方差公式的几何背景,根据几何图形得出平方差公式,并利用平方差公式进行计算,本题熟练掌握平方差公式是关键.24.(1)CPD ∆为直角三角形,见解析;(2)点P 到CD 的距离为5.【解析】【分析】(1)由AD ∥BC 证明∠ADC+∠BCD=180°,再由CP 平分∠BCD ,DP 平分∠ADC 证明∠PDC+∠PCD=90°,所以∠DPC=90°,即△CPD 为直角三角形;(2)由CP 平分∠BCD ,DP 平分∠ADC ,得PA=PE=PB=5.即点P 到CD 的距离为5.【详解】解:(1)//AD BC ,180ADC BCD ∴∠+∠=︒,CP 平分BCD ∠,DP 平分ADC ∠,12PDC ADC ∴∠=∠,12PCD BCD ∠=∠,11()1809022PDC PCD ADC BCD ∴∠+∠=∠+∠=⨯︒=︒,180()1809090DPC PDC PCD ∴∠=︒-∠+∠=︒-︒=︒,CPD ∴∆为直角三角形;(2)过点OP 作PE CD ⊥于点E .90B∠=︒,90A∴∠=︒,CP平分BCD∠,DP平分ADC∠,PA PE PB∴==,10AB=,5PA PE PB∴===.点P到CD的距离为5.【点睛】本题考查了角平分线性质定理,熟练运用性质是解题的关键.25.(1)①等腰三角形三线合一,AAS或ASA;②见解析;(2)12FH AC=,详见解析.【解析】【分析】(1)①根据等腰三角形的性质,全等三角形的判定即可解决问题.②证明△DHA≌△EMC(AAS),推出AH=CM,DH=EM,证明△DHF≌△EMF(AAS),推出FM=FH=12HM,即可解决问题.(2)结论:FH=12AC.如图3中,作DM⊥CA交CA的延长线于M.证明△AMD≌△CHE,推出AM=CH,DM=HE,证明△HFE≌△MFD(AAS),推出FH=FM=12HM即可.【详解】解:(1)①思路一:过点D 作//DG BC ,交AC 于点G ,如图1因为ABC ∆是等边三角形,得ACD ∆是等边三角形又由DH AC ⊥,得AH GH =(等腰三角形三线合一)再说明(ECF DCF AAS ∆≅∆或)ASA 得出GF FC=故答案为等腰三角形三线合一,AAS 或ASA .②思路二:过点E 作EM AC ⊥,交AC 的延长线于点M ,如图2.ABC ∆ 是等边三角形,60A ACB ECM ∴∠=∠=∠=︒,DH AC ⊥ ,EM AC ⊥,90AHD EMC ∴∠=∠=︒,AD EC = ,()DHA EMC AAS ∴∆≅∆,AH CM ∴=,DH EM =,90DHF EMF ∠=∠=︒ ,DFH EFM ∠=∠,()DHF EMF AAS ∴∆≅∆,12FM FH HM ∴==,AH CM = ,AC HM ∴=,12FH AC ∴=,FH AH CF ∴=+.(2)结论:12FH AC =.理由:如图3中,作DM CA ⊥交CA 的延长线于M .ABC ∆ 是等腰直角三角形,45C CAB DAM ∴∠=∠=∠=︒,DM AC ⊥ ,EH AC ⊥,90EHC M ∴∠=∠=︒,AD EC = ,()AMD CHE AAS ∴∆≅∆,AM CH ∴=,DM HE =,90EHF M ∠=∠=︒ ,HFE DFM ∠=∠,DM HE =,()HFE MFD AAS ∴∆≅∆,12FH FM HM ∴==,CH AM = ,AC MH ∴=,12FH AC ∴=.【点睛】本题属于三角形综合题,考查全等三角形的判定和性质,等边三角形的性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
北师大版七年级下学期期末数学模拟试题说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l 的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()A. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()第6题图第7题图AC BFEDA. B. C. D.10. 如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:份数x(份) 1 2 3 4价钱y(元)0.5 1.0 1.5 2.0则买48份这种报纸应付元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)17. 计算:()011||220182π----第10题图18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?第20题图22. 如图,已知BC是△ABD的角平分线,BC=DC,∠A=∠E=30°,∠D=50°.(1)写出AB=DE的理由;(2)求∠BCE的度数.第22题图五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.(1)如图1,测得∠1=∠2,可判定a∥b吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗?请说明理由;(3)如图3,若要使a∥b,则∠1 与∠2 应该满足什么关系式?请说明理由.图1N24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.(1)如图1,在直线l 上找一点C ,使得线段AC+DC 最小(请通过画图指出点C 的位置); (2)如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC 上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由;图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm18151263②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.北师大版七年级下学期期末数学模拟试题一、精挑细选,火眼金睛(每小题3分,共30分)1.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.N点确定一条直线D.垂线段最短【分析】根据三角形的稳定性即可解决问题.【解答】解:根据三角形的稳定性可固定窗户.故选:A.【点评】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.2.下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=﹣a6C.(ab)2=ab2D.a6÷a3=a2【分析】根据同底数相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为a2•a3=a5,故本选项错误;B、(-a2)3=-a6,正确;C、应为(ab)2=a2b2,故本选项错误;D、应为a6÷a3=a3,故本选项错误.故选:B.【点评】本题考查同底数幂的乘法,积的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键.3.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【专题】计算题.【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180-125=55°,∵∠A=45°,∴∠E=180°-∠A-∠EFA=180°-45°-55°=80°.故选:B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.4.下列数据不能确定物体位置的是()A.5楼6号B.北偏东30°C.大学路19号D.东经118°,北纬36°【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【解答】解:A、5楼6号,是有序数对,能确定物体的位置,故本选项不合题意;B、北偏东30°,不是有序数对,能确定物体的位置,故本选项符合题意;C、大学路19号,“大学路”相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;D、东经118°北纬36°,是有序数对,能确定物体的位置,故本选项不合题意.故选:B.【点评】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.5.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2 C.a(x﹣4)2D.a(x+2)(x﹣2)【专题】因式分解.【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2-4ax+4a,=a(x2-4x+4),=a(x-2)2.故选:A.【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.6.下列语句中,不正确的个数是()①直径是弦;②弧是半圆;③长度相等的弧是等弧;④经过圆内一定点可以作无数条直径.A.1个B.2个C.3个D.4个【分析】根据弦、弧、等弧的定义即可求解.【解答】①根据直径的概念,知直径是特殊的弦,故正确;②根据弧的概念,知半圆是弧,但弧不一定是半圆,故错误;③根据等弧的概念:在同圆或等圆中,能够互相重合的弧是等弧.长度相等的两条弧不一定能够重合,故错误;④如果该定点和圆心不重合,根据两点确定一条直线,则只能作一条直径,故错误.故选:C.【点评】理解圆中的一些概念:弦、直径、弧、半圆、等弧.7.计算20172﹣2016×2018的结果是()A.2 B.﹣2 C.﹣1 D.1【专题】计算题;整式.【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=20172-(2017-1)×(2017+•1)=20172-20172+1=1,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β【分析】根据β为角x和α的对顶角所在的三角形的外角,再根据三角形一个外角等于和它不相邻的两个内角的和解答.【解答】解:如图,∵α=∠1,∴β=x+∠1整理得:x=β-α.故选:B.【点评】本题主要利用三角形外角的性质求解,需要熟练掌握并灵活运用.9.点P在第二象限,且到x轴的距离为5,到y轴的距离为3,则点P的坐标是()A.(﹣5,3)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求解即可.【解答】解:∵点P在第二象限,且到x轴的距离为5,到y轴的距离为3,∴点P的横坐标为-3,纵坐标为5,∴点P的坐标是(-3,5).故选:C.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.10.若(x+1)(x﹣1)(x2+1)(x4+1)=x n﹣1,则n等于()A.16 B.8 C.6 D.4【专题】计算题.【分析】根据平方差公式计算(x+1)(x-1)=x2-1,(x2-1)(x2+1)=x4-1,(x4-1)(x4+1)=x8-1,即可得到答案.【解答】解:(x+1)(x-1)=x2-1,(x2-1)(x2+1)=x4-1,(x4-1)(x4+1)=x8-1=x n-1,即n=8,故选:B.【点评】本题考查平方差公式,正确掌握平方差公式是解题的关键.二、认真填写,试一试自己的身手(每小题3分,共24分)11.已知∠1=4°18′,∠2=4.4°,则∠1∠2.(填“大于、小于或等于)专题】线段、角、相交线与平行线.【分析】依据度分秒的换算,即可得到∠2=4.4°=4°24′,进而得出∠1与∠2的大小关系.【解答】解:∵∠1=4°18′,∠2=4.4°=4°24′,∴∠1<∠2,故答案为:小于.【点评】本题主要考查了角的大小比较,注意角的度数越大,角越大.12.如果(x+y﹣3)2+(x﹣y+5)2=0,则x2﹣y2=.【分析】根据非负数的性质求出x+y,x-y,然后根据平方差公式进行计算即可得解.【解答】解:根据题意得,x+y-3=0,x-y+5=0,解得x+y=3,x-y=-5,所以,x2-y2=(x+y)(x-y)=3×(-5)=-15.故答案为:-15.【点评】本题考查了平方差公式,非负数的性质,几个非负数的和为0时,这几个非负数都为0.13.若4x2+kxy+9y2是一个完全平方式,则k的值为.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵4x2+kxy+9y2是一个完全平方式,∴k=±12,故答案为:±12【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.一个正多边形的每个外角都是36°,这个正多边形的边数是.【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.15.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.【专题】分类讨论.【分析】先根据非负数的性质列式求出a、b再分情况讨论求解即可.【解答】解:根据题意得,a-1=0,b-2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.【点评】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.16.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,-2).故答案为:(3,-2).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.17.一个多边形除一个内角外,其余各内角之和是2570°,则这个内角是度.【专题】常规题型;多边形与平行四边形.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求解即可.【解答】解:设这个内角度数为x°,边数为n,则(n-2)×180-x=2570,180•n=2930+x,∵n为正整数,0°<x<180°,∴n=17,∴这个内角度数为180°×(17-2)-2570°=130°.故答案为:130.【点评】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系.注意多边形的一个内角一定大于0°,并且小于180度.18.如图所示,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【专题】计算题.【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【解答】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.故答案为:240°.【点评】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后在加在一起三、认真解答,一定要细心哟!(本题8个小题,满分66分,要写出必要的计算推理、解答过程)19.(8分)分解因式:(1)﹣2x4+32x2(2)3ax2﹣6axy+3ay2【专题】常规题型.【分析】(1)直接提取公因式-2x2,进而利用平方差公式分解因式即可;(2)直接提取公因式3a,进而利用完全平方公式分解因式即可.【解答】解:(1)-2x4+32x2=-2x2(x2-16)=-2x2(x+4)(x-4);(2)3ax2-6axy+3ay2=3a(x2-2xy+y2)=3a(x-y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.20.(8分)先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣【专题】计算题;整式.【分析】利用平方差公式、单项式乘多项式及完全平方公式去括号,再合并同类项化简后,再将x的值代入计算可得.【点评】本题主要考查整式的混合运算-化简21.(8分)如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【专题】作图题.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【点评】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.(8分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【专题】工程问题.【分析】本题需先根据题意设出未知数,再根据题目中的等量关系列出方程组,求出结果即可.【解答】解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:答:A饮料生产了30瓶,B饮料生产了70瓶.【点评】本题主要考查了二元一次方程组的应用,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.23.(8分)如图,点O是△ABC内的任意一点.求证:∠BOC=∠A+∠ABO+∠ACO.【专题】三角形.【分析】连接AO并延长,交BC于点D,由三角形外角的性质可知∠BOD=∠BAD+∠ABO,∠COD=∠CAD+∠ACO,再把两式相加即可得出结论.【解答】证明:连接AO并延长,交BC于点D,∵∠BOD是△AOB的外角,∠COD是△AOC的外角,∴∠BOD=∠BAD+∠ABO①,∠COD=∠CAD+∠ACO②,①+②得,∠BOC=(∠BAD+∠CAD)+∠ABO+∠ACO,即∠BOC=∠BAC+∠ABO+∠ACO.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.24.(8分)如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.【专题】几何图形.【分析】由AB=BO,则∠BOC=∠A,于是∠EBO=2∠A,而OB=OE,得∠E=∠EBO=2∠A,由∠EOD=∠E+∠A=3∠A,根据∠EOD=84°,即可得到∠A的度数.【解答】解:∵AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.【点评】本题考查了圆心角、弧、弦的关系,关键是根据三角形内角和定理和三角形外角的性质解答.25.(8分)如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积.【分析】(1)补充成网格平面直角坐标系,然后确定出点B、C、D的位置,再与点A 顺次连接即可;(2)利用四边形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)四边形ABCD如图所示;【点评】本题考查了坐标与图形性质,三角形的面积,补充成网格平面直角坐标系更容易确定点的位置.26.(10分)已知直线AB∥CD,点E,F分别在直线AB和CD上.(1)如图1,点O在直线AB与CD的内部,试猜想∠BEO,∠EOF,∠DFO之间的关系,并说明理由.(2)若点O在直线AB与CD的外部,如图2,(1)中的结论还成立吗?若不成立,∠BEO,∠EOF,∠DFO之间又有怎么样的关系?并说明理由.【分析】(1)过O作OG∥AB,由平行线的性质可得到∠EOF=∠BEO+∠DFO;(2)设OF交AB于点H,由平行线的性质结合外角的性质可得到∠DFO=∠BEO+∠EOF.【解答】解:(1)∠EOF=∠BEO+∠DFO,理由如下:如图1,过O作OG∥AB,∵AB∥CD,∴OG∥CD,∴∠BEO=∠EOG,∠DFO=∠FOG,∴∠EOF=∠EOG+∠FOG=∠BEO+∠DFO;(2)不成立,此时∠DFO=∠BEO+∠EOF,理由如下:如图2,设OF交AB于点H,∵AB∥CD,∴∠DFO=∠BHO,又∵∠BHO=∠BEO+∠EOF,∴∠DFO=∠BEO+∠EOF.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.北师大版七年级下学期期末数学模拟试题一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,.每个小题3分,共30分)1.下列运算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a5D.(a3)2=a5【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则计算,判断即可.【解答】解:a3和a2不是同类项,不能合并,A错误;a3和a2不是同类项,不能合并,B错误;a3•a2=a5,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方,掌握相关的运算法则是解题的关键.2.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°【分析】等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.3.如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短B.垂线段最短C.过一点只能作一条直线D.平面内,过一点有且只有一条直线与已知直线垂直【专题】线段、角、相交线与平行线.【分析】根据垂线段最短,可得答案.【解答】解:计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故选:B.【点评】本题考查了垂线段的性质,利用了垂线段的性质.4.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p 与q的值即可.【解答】解:∵(x-2)(x+3)=x2+x-6=x2+px+q,∴p=1,q=-6,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【分析】根据平行线的性质以及对顶角相等的性质进行判断.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.6.下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x)C.(+y)(y﹣)D.(x﹣2)(x+1)【专题】常规题型.【分析】根据平方差公式即可求出答案.【解答】解:(A)原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2-x+1,故D不能用平方差公式;故选:C.【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.7.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选:B.【点评】本题考查了函数图象,根据距离的变化描述函数是解题关键.8.如图,已知∠ABC=∠BA D.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.B C=AD D.A C=BD【专题】几何图形.【分析】已有条件∠ABC=∠BAD再有公共边AB=AB,然后结合所给选项分别进行分析即可.【解答】解:A、添加∠C=∠D时,可利用AAS判定△ABC≌△BAD,故此选项不符合题意;B、添加∠BAC=∠ABD,根据ASA判定△ABC≌△BAD,故此选项不符合题意;C、添加AB=DC,根据SAS能判定△ABC≌△BAD,故此选项不符合题意;D、添加AC=DB,不能判定△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.计算(x﹣2)x=1,则x的值是()A.3 B.1 C.0 D.3或0【专题】常规题型.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则化简得出答案.【解答】解:∵(x-2)x=1,当x-2=1时,得x=3,原式可以化简为:13=1,当次数x=0时,原式可化简为(-2)0=1,当底数为-1时,次数为1,得幂为-1,故舍去.故选:D.【点评】此题主要考查了零指数幂的性质和有理数的乘方运算,正确掌握运算法则是解题关键.10.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.二、填空题(每题3分,共15分)11.如图,要使AD∥BF,则需要添加的条件是(写一个即可)【专题】线段、角、相交线与平行线.【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【解答】解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.【专题】函数及其图象.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.2米的速度匀速上升列出关系式.13.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.【专题】三角形.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,∴AC⊥DB,故②③正确.故答案是:3.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.14.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为.【分析】根据白球个数除以小球总数进而得出得到白球的概率,进而得出答案.【解答】解:∵在一个不透明的盒子中装有8个白球,设黄球有x个,根据题意得出:解得:x=4.故答案为:4.【点评】此题主要考查了概率公式的应用,熟练利用概率公式是解题关键.15.如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若∠DAE=28°,则∠BAC=°.【专题】三角形.【分析】想办法求出∠B+∠C的度数即可解决问题;【解答】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EACM∵∠B+∠C+∠BAC=180°,∠DAE=28°,∴2∠B+2∠C+∠DAE=180°,∴∠B+∠C=76°,∴∠BAC=180°-76°=104°.故答案为104.【点评】本题考查线段的垂直平分线的性质、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共75分)16.(16分)(1)计算:﹣20+4﹣1×()﹣2(2)2016×2018﹣20172(3)(a+3)(a﹣1)﹣a(a﹣2)(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b【专题】常规题型.。
(第8题1.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 ( )A .SASB .ASAC .AASD .SSS 2.一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .3.如图2,有一个五角星的图案,那么图中的∠A +∠B +∠C +∠D +∠E= °4.如图3,先将正方形ABCD 对折,折痕为EF ,将这个正方形展平后,再分别将A 、B 对折,使点A 、点B 都与折痕EF 上的点G 重合,则∠NCG 的度数是 度。
图1 图2 图35.在“石头、剪刀、布”的猜拳游戏中,俩人出拳相同的概率的是( )A .B .C .D .6.如图,玲玲在美术课上用丝线绣成了一个“2”,AB ∥DE ,∠A=30°,∠ACE=110°,则∠E 的度数为( )A.30° B 。
150° C 。
120° D 。
100°7。
近似数3。
0的准确值a 的取值范围是( )A 。
2。
5<a <3。
4 B.2.95≤a≤3。
05 C.2。
95≤a <3。
05 D.2.95<a <3。
58 长度分别为3cm ,5cm ,7cm,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A.1B.2C. 3 D 。
410 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .11.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s (km )和骑车时间t (h )之间的函数关系如下图所示,给出下列说法:(1)他们都骑行了20km ;(2)乙在途中中停留了0。
5h ;(3)甲、乙两人同时到达目的地;(4)相遇后,甲 的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个 B .2个 C .3个 D .4个12.如图,△ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,DE ⊥AB 于E ,若AB =6㎝,则△DEB 的周长为( )A .5㎝B .6㎝C .7㎝D .8㎝13.一幅三角板,如图所示叠放在一起.则图中∠的度数是( )A .75°B .60°14B 15∥ACE 16∠,BD :CD =5:3,的面积是 .17、 如图,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=72°,则∠EGF 等于 ( )A . 36°B . 54°C . 72 °D . 108°18、若实数满足(x +y +2)(x +y -1)=0,则x +y 的值为( )A 、 1B 、-2C 、 2或-1D 、-2或119 锐角三角形的三个内角是∠A 、∠B 、∠C ,如果,,,那么、A .没有锐角 B .有1个锐角 C .有2个锐角 D .有3个锐角20、如图,中,D 、E 、F 分别是BC 、AD 、BE 的中点,若cm 2,则21、如右图,下列条件中,能判定DE ∥AC 的是( ) A 、∠EDC=∠EFC B ∠AFE=∠ACD C ∠3=∠4 D ∠1=∠2 22、一个正方形的边长增加了2cm ,面积相应增加了32cm 2,。
第2题图nmba70°70°110°第3题图CBA2112第六题图DCB A北师大版七年级下册数学期末模拟试卷 C一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是 。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。
5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。
6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=na 。
8、已知412+-kx x 是一个完全平方式,那么k 的值为 。
9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。
10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷- C. 226)3(x x = D. 222)(y x y x +=+876954521第1页 共4页DCBA DC B A FEDCB A EDC BA 12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A. 91B. 61 C. 51 D. 3113、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A. 110°B. 115°C.125°D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论:① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD , 四个结论中成立的是 ( ) A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④第2页 共4页乙甲BAOED CBA三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵, 计划今后每年栽果树3000棵。
(1)试用含年数x (年)的式子表示果树总棵数y (棵); (2)预计到第5年该地区有多少棵果树?21、(8分)小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB 上建一个水泵站,向两村供水,用以解决村民生活用水问题。
(1) 如果要求水泵站到甲、乙两村庄的距离相等,水泵站M 应建在河岸AB 上的何处? (2)如果要求建造水泵站使用建材最省, 水泵站M 又应建在河岸AB 上的何处?22、(8分)超市举行有奖促销活动:凡一次性购物满300元者即可获得 一次摇奖机会。
摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、 40元。
一次性购物满300元者,如果不摇奖可返还现金15元。
(1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算。
23、(8分)如图,已知△ABC 中,AB = AC,点D 、E 分别在AB 、AC 上,且BD = CE,如何说明OB=OC 呢?效--------------------第3页 共4页/时解:∵AB=AC ∴∠A B C =∠A C B ( )又∵BD = CE ( ) BC = CB ( )∴△BCD ≌△CBE ( )∴∠( ) = ∠( ) ∴OB = OC ( )。
24、.(10分)(2012·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.(1)图中有哪几对全等三角形,请写出来; (2)试判断OE 和AB 的位置关系,并给予证明.25、(8分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题。
(1)玲玲到达离家最远的地方是什么时间?离家多远? (2)她何时开始第一次休息?休息了多长时间? (3)她骑车速度最快是在什么时候?车速多少? (4)玲玲全程骑车的平均速度是多少?26、(10分)把两个含有45°角的直角三角板如图放置,点D 在AC 上连接AE 、BD ,试判断AE与BD 的关系,并说明理由。
第4页 共4页北师大版七年级下册数学期末模拟试卷 C一、二、三、19、 7.5 , 29,y x 2123+ 20、x y 300024000+=,390005==y x 时,21、如图:22、P 一等奖=161,60×161+50×81+40×41=20 20﹥15 ∴选择摇奖。
23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边。
24、图略 ,(1)农村居民纯收入不断增加,特别是进入2000年后增幅更大;(2)2005年农村人均纯收入达3865元;(3)2005年农村人均纯收入是1990年的5倍多;(供参考)25、(1)12点,30千米 (2)10:30 , 30 分钟 (3)13~15点,15千米/小时(4)10千米/小时26、延长BD 交AE 于F ,证△BCD ≌△ACE ,可得BD=AE ,BD ⊥AE .期末综合检测第一~六章(90分钟 100分)一、选择题(每小题3分,共24分)1.如图所示,BC∥DE,∠1=108°,∠AED=75°,则∠A的大小是( )(A)60°(B)33°(C)30°(D)23°2.下列运算正确的是( )(A)3a-(2a-b)=a-b(B)(a3b2-2a2b)÷ab=a2b-2(C)(a+2b)(a-2b)=a2-2b2(D)(-12a2b)3=-18a6b33.(2012·武汉中考)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( )(A)标号小于6(B)标号大于6(C)标号是奇数(D)标号是34.如图,△ABC的高AD,BE相交于点O,则∠C与∠BOD的关系是( )(A)相等(B)互余(C)互补(D)不互余、不互补也不相等5.(2012·绵阳中考)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )(A)2mn (B)(m+n)2(C)(m-n)2(D)m2-n26.根据生物学研究结果,青春期男女生身高增长速度呈现如图规律,由图可以判断,下列说法错误的是( )(A)男生在13岁时身高增长速度最快(B)女生在10岁以后身高增长速度放慢(C)11岁时男女生身高增长速度基本相同(D)女生身高增长的速度总比男生慢7.如图,AB∥CD,CE∥BF,A,E,F,D在一条直线上,BC与AD交于点O 且OE=OF,则图中有全等三角形的对数为( )(A)2 (B)3 (C)4 (D)58.(2012·大庆中考)如图所示,将一个圆盘四等分,并把四个区域分别标上Ⅰ、Ⅱ、Ⅲ、Ⅳ,只有区域Ⅰ为感应区域,中心角为60°的扇形AOB 绕点O 转动,在其半径OA 上装有带指示灯的感应装置,当扇形AOB 与区域Ⅰ有重叠(O 点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB 任意转动时,指示灯发光的概率为( )(A)16 (B)14(C)512(D)712二、填空题(每小题4分,共24分)9.如图,直线a ,b 被直线c 所截(即直线c 与直线a ,b 都相交),且a ∥b ,若∠1=118°,则∠2的度数=____度.10.(2012·泰州中考)若代数式x 2+3x+2可以表示为(x-1)2+a(x-1)+b 的形式,则a+b 的值是____.11.(2012·厦门中考)在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片的数字恰好是奇数的概率是____.12.某市出租车价格是这样规定的:不超过2千米,付车费5元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x >2)千米,付车费y 元,则所付车费y 元与出租车行驶的路程x 千米之间的函数关系为________________.13.(2012·嘉兴中考)在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为____.14.(2012·三明中考)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是__________________.(不再添加辅助线和字母)三、解答题(共52分)15.(10分)(2012·贵阳中考)先化简,再求值:.2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=1216.(10分)(2012·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD,点O 是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形,请写出来;(2)试判断OE和AB的位置关系,并给予证明.17.(10分)(2012·吉林中考)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是____、____(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.18.(10分)(2012·乐山中考)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1.(要求:A与A1,B与B1,C 与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.19.(12分)甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”“石头”“剪子”“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?答案解析1.【解析】选B.因为BC∥DE,所以∠EDB=∠1=108°.又因为∠EDB=∠A+∠AED,所以∠A=∠EDB-∠AED=108°-75°=33°.2.【解析】选D.A,3a-(2a-b)=a+b,故选项错误; B,(a3b2-2a2b)÷ab=a2b-2a,故选项错误;C,(a+2b)·(a-2b)=a2-4b2,故选项错误;故D正确.3.【解析】选A.A是一定发生的事件,是必然事件,故选项正确;B是不可能发生的事件,故选项错误;C是不确定事件,故选项错误;D是不确定事件,故选项错误.4.【解析】选A.因为△ABC的高为AD,BE,所以∠C+∠OAE=90°,∠OAE+∠AOE=90°,所以∠C=∠AOE,因为∠AOE=∠BOD(对顶角相等),所以∠C=∠BOD.故选A.5.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.6.【解析】选D.由图可知男生在13岁时身高增长速度最快,故A选项正确;女生在10岁以后身高增长速度放慢,故B选项正确;11岁时男女生身高增长速度基本相同,故C选项正确;女生身高增长的速度不是总比男生慢,有时快,故D选项错误.7.【解析】选B.①因为CE∥BF,所以∠OEC=∠OFB,又OE=OF,∠COE=∠BOF,所以△OCE≌△OBF,所以OC=OB,CE=BF;②因为AB∥CD,所以∠ABO=∠DCO,∠COD=∠AOB,因为OC=OB,故△AOB≌△DOC,所以AB=CD;③因为AB∥CD,CE∥BF,所以∠ABF=∠ECD,又因为CE=BF,AB=CD,所以△CDE≌△BAF.8.【解析】选D.如图,因为当扇形AOB落在区域Ⅰ时,指示灯会发光;当扇形AOB落在区域Ⅱ的∠FOC(∠FOC=60°)内部时,指示灯会发光;当扇形AOB落在区域Ⅳ的∠DOE(∠DOE=60°)内部时,指示灯会发光.所以指示灯发光的概率为:609060736012++=. 9.【解析】因为a ∥b ,所以∠1=∠3=118°,因为∠3与∠2互为邻补角,所以∠2=62°.答案:6210.【解析】因为x 2+3x+2=(x-1)2+a(x-1)+b=x 2+(a-2)x+(b-a+1).所以a-2=3, b-a+1=2,所以a=5,b=6,所以a+b=5+6=11.答案:1111.【解析】因为有整数1到10的10张卡片,所以随机抽取1张卡片,共有10种等可能的结果.因为该卡片的数字恰好是奇数的有5种情况,所以该卡片的数字恰好是奇数的概率是51102=. 答案:1212.【解析】由题意得,李老师乘出租车行驶了x(x >2)千米,故可得:y=5+(x-2)×1.6=1.6x+1.8.答案:y=1.6x+1.813.【解析】如图,过D 点作DE ⊥AB 于点E ,则DE即为所求,因为∠C=90°,AD 平分∠BAC 交BC 于点D ,所以CD=DE(角的平分线上的点到角的两边的距离相等),因为CD=4,所以DE=4.答案:414.【解析】答案不惟一,如AB=AC 或∠B=∠C 或∠BED=∠CFD 或∠AED=∠AFD 等;理由是:①因为AB=AC ,所以∠B=∠C ,根据ASA 证出△BED ≌△CFD ,即可得出DE=DF ;②由∠B=∠C ,∠BDE=∠CDF ,BD=DC ,根据ASA 证出△BED ≌△CFD ,即可得出DE=DF ;③由∠BED=∠CFD ,∠BDE=∠CDF ,BD=DC ,根据AAS 证出△BED ≌△CFD ,即可得出DE=DF ;④因为∠AED=∠AFD ,∠AED=∠B+∠BDE ,∠AFD=∠C+∠CDF ,又因为∠BDE=∠CDF ,所以∠B=∠C ,即由∠B=∠C ,∠BDE=∠CDF ,BD=DC ,根据ASA 证出△BED ≌△CFD ,即可得出DE=DF.答案:答案不惟一,如AB=AC 或∠B=∠C 或∠BED=∠CFD 或∠AED=∠AFD 等15.【解析】原式=2b 2+a 2-b 2-(a 2+b 2-2ab)=2b 2+a 2-b 2-a 2-b 2+2ab=2ab ,当a=-3,b=12时,原式=2×(-3)×12=-3.16.【解析】(1)△ABC ≌△BAD ,△AOE ≌△BOE ,△AOC ≌△BOD ;(2)OE ⊥AB.理由如下:因为在Rt △ABC 和Rt △BAD 中,AC BD BAC ABD AB BA =⎧⎪∠=∠⎨⎪=⎩,,, 所以△ABC ≌△BAD ,所以∠DAB=∠CBA ,所以OA=OB ,因为点E 是AB 的中点,所以OE ⊥AB.17.【解析】(1)因为情境a :小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③符合,所以只有③符合情境a ;因为情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,所以只有①符合.答案:③ ①(2)图象②是小芳离开家不久,休息了一会儿,又走回了家.18.【解析】(1)如图,△A 1B 1C 1是△ABC 关于直线l 的对称图形.(2)由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4.所以11BB C C S 四边形=12(BB 1+CC 1)×4, =12×(4+2)×4=12.19.【解析】(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31155=. (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84147=. (3)若甲先摸,则“锤子”“石头”“剪子”“布”四种卡片都有可能被摸出. 若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71142=; 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42147=; 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63147=;若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为5.14故甲先摸出“锤子”获胜的可能性最大.。