倒推法解题
- 格式:docx
- 大小:16.34 KB
- 文档页数:6
第12讲倒推法解题讲义专题简析倒推法解题是从最后的结果出发,运用加和减、乘和除之间的互逆关系,从后往前一步一步地推算,直到找到最初的数据,这种方法又常被称为“还原法”。
适合用倒推法解题的数学问题常满足以下条件:已知最后的结果和到达最后结果时的每一步具体的过程。
例1、筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还剩500米。
这段公路全长多少米?练习:1、一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走。
这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多3公顷,还剩下35公顷没有耕。
这块地共有多少公顷?3、一批水泥,第一天用去多1吨,第二天用去余下的少2吨,还剩下16吨。
原来这批水泥有多少吨?例2、王大伯屋后有一棵桃树。
他孙子每天从树上摘下一些桃子和邻居的小伙伴分着吃,第一天摘下桃子总个数的合,以后8天分别摘下当天树上现有桃子的、、、…、,摘了9天,树上还留下10个桃子。
树上原来有多少个桃子?练习:1、把一根绳子对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米。
这根绳子原来长多少米?2、《九章算术》中有一道题:“今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五斗。
问持米几何?”题意是:有人背米过关卡,经过外关时,用全部米的纳税,过中关时用所余米的纳税,经过内关时用再余米的纳税,最后还剩下5斗米。
这个人原来背多少斗米出关?3、仓库里存粮若干吨,第一次运出总数的又4吨,第二次运出余下的又3吨,第三次运出余下的又5吨,最后还剩下12吨。
这个仓库原有粮食多少吨?例3、有甲、乙两桶油,从甲桶中倒出的油给乙桶后,又从乙桶中倒出的油给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有油多少千克?练习:1、小华拿出自己画片张数的给小强,小强再从自己现有的画片张数中拿出给小华,这时两人各有画片12张。
原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出自己所有钱的给乙后,乙又拿出现在自己所有钱的给甲,这时他们各有90元。
倒推法解题 F12-1提示有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步的推算,这种思考问题的方法叫倒推法。
举例1 筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?【创造力思维】从“还剩500米”入手倒着往前推,它占余下的(1-72)=75,第一天修后还剩下(500÷75)=700米,如果第一天正好修全长的51,还余下(700+100)=800米,这800米占全长的(1-51)=54,这段路全长是(800÷54)=1000米。
列式为: [500÷(1-72)+100]÷(1-51)=1000(米) 答:这段路全长1000米。
快练11.一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了21多1吨,第二天用去了余下的31少2吨,还剩下16吨,原来这批水泥有多少吨?举例2王大伯屋后有一棵桃树,他调皮的孙子每天从树上摘下一些桃子和邻居的小伙 伴分着吃,第一天摘下了桃子总个数的101,以后8天分别摘下当天树上现有桃子的91,81,71,……,31,21,摘了9天,树上还留下10个桃子,树上原来有多少个桃子? 【创造力思维】从树上还留下10个桃子入手倒着往前推,它占第8天后余下的1-21=21,第8天后余下10÷(1-21)=20个,这20个占第7天后余下的1-31=32,第7天后余下20÷(1-31)=30个。
依此类推 10÷(1-21)÷(1-31)÷(1-41)÷(1-51)÷(1-61)÷(1-71)÷(1-81)÷(1-91)÷(1-101) =10×2×23×34×45×56×67×78×89×910 =100(个)答:树上原来有100个桃子。
数学倒推法的解题技巧数学倒推法是一种常用的解题技巧,它通常被用于解决需要逆向思维的问题。
该方法的基本思想是从问题的结果逆推回问题的起始点,通过分析问题中的各个因素和条件,逐步推导出正确的答案。
在实际应用中,数学倒推法可以帮助我们更加深入地理解问题,从而更加准确地解决问题。
以下是一些常见的数学倒推法的解题技巧:1. 确定问题的终点:在使用数学倒推法解题时,首先需要明确问题中需要求解的终点,即最终的结果。
只有明确了问题的终点,才能够从结果中逆推回问题的起始点。
2. 确定逆推方向:在确定问题的终点后,需要根据问题的具体情况确定逆推的方向。
有些问题需要从终点向前逆推,有些问题需要从前面的条件向后逆推。
在逆推方向确定后,我们就可以开始逐步推导出正确的答案。
3. 分析问题中的条件:在使用数学倒推法解题时,需要对问题中的各个条件进行分析和综合。
通过对条件的分析,我们可以找出问题中的规律和关系,从而更加准确地推导出答案。
4. 确定逆推的步骤:在逆推过程中,需要根据问题的具体情况确定逆推的步骤。
有些问题需要逐步推导,有些问题可以直接得到答案。
在逆推的过程中,需要注意每一步的正确性和逻辑性,避免出现错误。
5. 检验答案的正确性:在使用数学倒推法解题后,需要对答案的正确性进行检验。
这可以通过反向验证和多种方法的比较来实现。
只有在经过严密的验证后,我们才能够确定答案的正确性。
总之,数学倒推法是一种重要的解题技巧,它可以帮助我们更加深入地理解问题,从而更加准确地解决问题。
在使用这种方法时,需要注意逆推方向的确定、条件的分析、逆推步骤的确定和答案的验证等问题,避免出现错误。
第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
?页
第二天第一天剩下60页余下的2
5全书的1
3?米
第三次用去19米
第二次用去的
第一次用去的最后剩下5米8米2米
余下的一半全长的一半倒推法解题
【本讲要点】
倒推法是指题目中只交代了发展过程和最后结果,要求最初状态的一类应用
题。
这既是重要的数学思想方法,也是培养我们数学思维必不可少的方面。
这一讲我们要学会用画线段图、列表法等解决较复杂的倒推法问题。
【例题与分析】
例1一本童话,小张第一天看了全书的13,第二天看了余下的2
5,还剩下
60页,这本书共有多少页?
思路分析:我们把线段图与倒推法结合起来,先画出线段图。
从图中可以看出,“剩下60页”占余下的1-25=35。
第一天看后还剩下60÷35
=100(页),又因为第一天看了全书的13
,那么这100页就占全书的1-13=23,所以这本书共有100÷23
=150(页)。
48÷(1-35)÷(1-13
)=100÷23
=150(页)
答:这本书共有150页。
例2 一根绳子,第一次用去全长的一半多2米,第二次用去余下的一半少8米,第三次用去19米,最后还剩下5米,这根绳子原来有多少米?
思路分析:我们把线段图与倒推法结合起来,先画出线段图。
从图上可以看出,最后剩下的5米和第三次用去的19米合起来就是用完两次以后剩下的米数,用这个米数减去8米就得到第一次用后余下米数的一半,
乘以2就得到第一次用后余下的米数。
第一次用后余下的米数加上
2米就是整根绳子长度的一半,再乘2就得到绳子的全长。
倒推法解题一、考点、热点回顾用倒推法解题,就是根据题目的叙述过程,从最后结果入手,采用倒推的方法,逐步找到题目的答案,采用倒推法解题时,原来加的用减,原来减的用加,原来乘的用除,原来除的用乘。
二、典型例题例1、某农妇有一筐鸡蛋,第一次卖出一半又半个,第二次卖出余下的一半又半个,第三次又卖出余下的一半又半个,这是筐里还剩下1个鸡蛋,问:筐里原来有多少个鸡蛋?例2、一瓶酒精,第一次倒出1/3,然后又倒回瓶中40克,第二次倒出瓶中剩下酒精的5/9,第三次倒出180克,瓶中还剩下60克,原来瓶中有多少克酒精?例3、一只猴子偷吃桃子,第一天偷吃了树上桃子的1/10,以后的8天每天偷吃当天树上的1/9,1/8,1/7,…,1/2,这时树上还剩下10个桃子,问:树上原来有多少个桃子?例4、甲、乙二人分16个苹果,分完后,甲将自己所得苹果数的1/3分给了乙,乙又将自己苹果数的1/3还给甲,最后甲又将自己现有苹果数的1/3分给了乙,这时两人苹果数恰好相等,问:最初甲分得多少个苹果?三、课堂练习1、有一堆桃子,第一只猴子拿走了这堆桃子的一半多半个,第二只猴子又拿走了剩下桃子的一半多半个,第三只猴子也拿走了剩下桃子的一半多半个,桃子正好被拿完,问:这堆桃子原来有几个?2、工地上有一堆沙子,第一次用去这堆沙子的一半多0.5吨,第二次用去剩下沙子的一半多0.5吨,第三次又用去剩下沙子的一半多0.5吨,这时工地上还有20吨沙子,工地上原来有多少吨沙子?3、小明的存钱盒中有一些钱,小明每次用去盒中钱数的一半多1元,这样一共用了5次,盒中还剩下4元钱,小明的存钱盒中原来有多少元?4、一瓶橘子汁,第一次倒出1/3后又倒回瓶中50克,第二次倒出瓶中剩下橘子汁的2/5,第三次倒出150克,这时瓶中还剩下120克,原来瓶中有橘子汁多少克?5、修一段公路,第一次修了全长的1/2多2千米,第二天修了余下的1/2少1千米,这时还剩下20千米没有修,这段公路长多少千米?6、一堆西瓜,第一次卖出总个数的1/4又6个,第二次又卖出余下的1/3又4个,第三次卖出余下的1/2又3个,这时正好卖完,这堆西瓜原来有多少个?7、一只猴子偷吃桃子,第一天偷吃了树上桃子的1/10,以后的8天每天偷吃当天树上的1/9,1/8,1/7,…,1/2,这时树上还剩下15个桃子,问:树上原来有多少个桃子?8、水缸中盛有满满的一缸水,妈妈第一天用去了缸中水的1/4,第二天用去了缸中水的1/3,第三天用去了缸中水的1/5,这时缸中还有水20千克,这缸水原来有多少千克?9、三位渔民在河中打了一些鱼,第一位渔民拿走了总数的1/5,第二位渔民拿走了剩下鱼的1/3,第三位渔民拿走了第二位渔民拿走后剩下的1/2,这时还剩下12条鱼,这三位渔民一共打了多少条鱼?10、甲、乙各有若干元钱,甲拿出1/5分给乙后,乙拿出现有钱的1/4给甲,这时他们各有180元钱,他们原来各有多少钱?11、A、B、C三个桶中各装有一些水,先将A桶中1/3的水倒入B桶,再将B桶中现有水的1/5倒入C桶,最后将C桶中现有水的1/7倒回A桶,这时三个桶中的水都是12升,问:三个桶中原来各有水多少升?12、三堆苹果共有48个,先从第一堆中拿出与第二堆个数相同的苹果放入第二堆,再从第二堆中拿出与第三堆个数相同的苹果放入第三堆,最后从第三堆中拿出与这时第一堆个数相同的苹果放入第一堆,结果三堆苹果个数完全相等,问:原来三堆苹果各有多少个?四、课后作业1、山顶上有棵橘子树,一只猴子偷吃橘子,它第一天偷吃了1/10,以后8天分别偷吃了当天现有橘子的1/9,1/8,1/7,…,1/2,偷吃了9天后,树上还留下了4个橘子,问:树上原有多少个橘子?2、筐子里有一些苹果,第一个人拿了苹果数的一半多半个,第二个人拿了第一个人拿后剩下苹果数的一半多半个,第三个人拿了第二个人拿后剩下苹果数的一半多半个,第四个人拿了第三个人拿后剩下的一半多半个,这时筐子里的苹果恰好拿完,且每个人拿到的苹果树都是整数个,问:原来筐子里一共有多少个苹果?3、袋中有若干个球,小明每次拿出其中的一半再放回1个球,一共这样做了5次,袋中还有3个球,问:袋中原来有多少个球?4、甲、乙两人各有若干元钱,甲拿出1/6给乙后,乙又拿出现有钱数的1/5给甲,这是他们各有240元,两人原来各有多少元?5、将48个苹果分给甲、乙两个小朋友,分完后,甲将自己所得苹果数的1/3分给乙,然后乙又将自己现有的苹果数的1/3还给甲,最后甲又将自己现有苹果数的1/3给了乙,这时两人苹果数恰好相等,问:最初甲分得多少个苹果?6、甲、乙、丙三人共有若干枚棋子,甲先拿出自己棋子数的1/2平分给乙、丙,然后乙拿出自己现有棋子数的1/3平分给甲、丙,最后丙把自己现有棋子数的1/4平分给甲、乙,这时三人的棋子数恰好相等,问:他们三人至少共有多少棋子?。
倒推法解题【知识点】有些应用题如果按照一般方法, 顺着题目的要求一步一步地列出算式求解, 过程比较繁琐, 量与量之间的关系也不好找。
对于这种类型的应用题, 解题时, 我们可以从最后的结果出发, 运用加与减、乘与除之间的互逆关系, 从后往前一步一步推算, 这种思考问题的方法就叫倒推法。
运用这种方法, 反向倒推过去, 反而易于解决问题。
【练习题】1. 张大爷提篮去卖蛋, 第一次卖了全部的一半又半个, 第二次卖了余下的一半又半个, 第三次卖了第二次余下的一半又半个, 第四次卖了第三次余下的一半又半个。
这时, 鸡蛋都卖完了。
问张大爷篮中原来有鸡蛋多少个?(15)2.三只猴子去吃篮里的桃子, 第一只猴子吃了, 第二只猴子吃了剩下的, 第三只猴子吃了第二只剩下的, 最后篮子里还剩下6只桃子。
原有桃子多少只?(18)3.一捆电线, 第一次用去全长的一半多3米, 第二次用去余下的一半少10米, 第三次用去15米, 最后还剩7米。
这捆电线原有多少米?(54)4.修一段路, 第一天修全路的还多2千米, 第二天修余下的少1千米, 第三天修余下的还多1千米, 这样还剩下20千米没有修完, 求公路的全长?(85)5.一只猴子偷吃桃子, 它第一天偷吃了树上桃子的, 以后的8天每天偷吃树上桃子的、、……, 这时树上还剩下10个桃子。
问树上原来有多少个桃子?(100)6. 甲、乙二人分16个苹果, 分完后, 甲将自己所得苹果数的分给了乙, 乙又将自己现有苹果数的还给甲;最后甲又将自己现有苹果数的给了乙, 这时两人苹果数恰好相等。
问: 最初甲分得几个苹果?(15)一瓶酒精, 第一次倒出, 然后倒回瓶中40克, 第二次倒出瓶中剩下酒精的, 第三次倒出180克, 瓶中还剩下60克。
问原来瓶中有酒精多少克?(750)8、甲、乙、丙三人共有人民币168元, 第一次甲拿出与乙相等的钱给乙;第二次乙拿出与丙相等的钱给丙;第三次丙拿出与甲相等的钱给甲, 这时, 三人的钱刚好相等。
例1马小虎在读一个小数时,由于看丢了小数点,结果读成了四万零八十,不过原来的小数要读出两个“零”。
你知道原来的小数是多少吗?根据“马小虎看丢了小数点后读作四万零八十”,可把看丢了小数点后的数写作40080。
由于这个数原本是一个小数,如果将小数点点在4的右下角,则读作四点零零八零,此时读出了3个零,不符合题意;如果将小数点点在左起第1个0的右下角,则读作四十点零八零,正好读出两个零,可见原来的小数是40.080。
例2一个小数的小数点先向右移动三位、再向左移动两位后是30.6,这个小数是多少?根据此小数的小数点“再向左移动两位后是30.6”,可知它的小数点向左移动两位前是30.6×100=3060;再根据此小数的小数点“先向右移动三位”,可知它的小数点向右移动三位前是3060÷1000=3.06。
运用倒推法解题□封国云小朋友,当题中已知现在的情况、要知道原来的情况时,我们可以采用倒推法来解决问题,即从题目的结果出发,一步步倒着推理,抽丝剥茧,直到问题解决。
下面,我们一起试着运用倒推法来解决“小数的意义和性质”中的几个问题。
19根据此小数的小数点“先向右移动三位”,可知这个小数乘了1000;再根据它的小数点“再向左移动两位”,可知这个小数又除以了100,总体上看,这个小数乘了1000÷100=10。
而它乘了10后是30.6,则原来这个小数是30.6÷10=3.06。
例3一个三位小数精确到十分位后得到的近似数是6.8,则这个三位小数最大是多少,最小是多少?求小数的近似数时,通常用“四舍五入法”。
题中是一个三位小数,我们可以用□.□□□表示。
精确到十分位,就是要保留一位小数,必须看它的百分位满不满5:如果它的百分位满5,就必须向十分位进1,8-1=7,可见此时这个小数的十分位是7,则它的个位是6,因此这个小数可能是6.7□□;如果它的百分位不满5,直接舍去尾数,此时这个小数的十分位必定是8,个位是6,因此这个小数也可能是6.8□□,可见在“四舍”的情况下,这个小数最大;在“五入”的情况下,这个小数最小。
倒推法解题知识要点运用倒推法(还原法)解题的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。
对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。
例1.某数加上6,乘以6,减去6,除以6,最后结果等于6,求某数。
解答:(6×6+6)÷6-6=1例2.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?解答:[(7+15-10)×2+3]=54(米)例3.小明在计算一道加法计算时,把一个加数个位上的1看作7,把一个加数十位上的8看作3,这样所得的和是1955,原来两数相加的正确答案是多少?解答:1995+50-6=1999例4.袋子里装着若干个乒乓球,小明每次拿出其中的一半再放回一个球,这样共拿了5次,袋子里还有5个球。
袋中原有多少个乒乓球?解答:例5.甲、乙、丙三人各有小球若干个,甲先拿出自己的小球的一部分给乙和丙,使乙、丙每人的小球数增加一倍;然后乙也把自己的小球的一部分分给甲丙,使甲和丙每人的小球数增加一倍;最后丙也把自己小球的一部分分给甲和乙,使甲和乙每人的小球数增加一倍。
这时甲乙丙都有48个小球。
原来甲乙丙各有小球多少个?解答:习题:1.一位老人说,把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。
这位老人现在有多少岁?解答:(100÷10+15)×4-12=88(岁)2.百货商店出售手机,上午售出总数的一半多20部,下午售出剩下的一半多15部,还剩下75部。
商店原有手机多少部?解答:[(75+15)×2+20]×2=400(部)3.做一道减法算式,把减数的个位1看作3,把被减数十位上的2看作了5,这样结果等于200,差应该是多少?解答:200+(3-1)-(50-20)=1724.甲、乙、丙、丁四人共有画片80张,甲给乙13张,乙给丙18张,丙给丁16张,丁给甲2张后,四人画片张数相等。
专题简析:有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
例题1。
一本文艺书,小明第一天看了全书的13,第二天看了余下的35,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35=25。
第一天看后还剩下48÷25=120页,这120页占全书的1-13=23,这本书共有120÷23=180页。
即48÷(1-35)÷(1-13)=180(页)答:这本书共有180页。
练习11.某班少先队员参加劳动,其中37的人打扫礼堂,剩下队员中的58打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的38,第二天走了余下的23,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的16,乙拿走了余下的25,丙拿走这时所剩的34,丁拿走最后剩下的15个,这堆苹果共有多少个?例题2。
筑路队修一段路,第一天修了全长的15又100米,第二天修了余下的27,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27=57,第一天修后还剩500÷57=700米,如果第一天正好修全长的15,还余下700+100=800米,这800米占全长的1-15=45,这段路全长800÷45=1000米。
列式为:【500÷(1-27)+100】÷(1-15)=1000米答:这段公路全长1000米。
练习21.一堆煤,上午运走27,下午运的比余下的13还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的13又2公顷,第二天耕的比余下的12多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了12多1吨,第二天用去了余下13少2吨,还剩下16吨,原来这批水泥有多少吨?例题3。
有甲、乙两桶油,从甲桶中倒出13给乙桶后,又从乙桶中倒出15给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出15给甲桶时,乙桶内有油24÷(1-15)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出13给了乙桶,可见甲桶原有的油为18÷(1-13)=27千克,乙桶原有的油为48-27=21千克。
甲:【24×2-24÷(1-15)】÷(1-13)=27(千克)乙:24×2-27=21(千克)答:甲桶原有油27千克,乙桶原有油21千克。
练习31.小华拿出自己的画片的15给小强,小强再从自己现有的画片中拿出14给小华,这时两人各有画片12张,原来两人各有画片多少张?2.甲、乙两人各有人民币若干元,甲拿出15给乙后,乙又拿出14给甲,这时他们各有90元,他们原来各有多少元?3.一瓶酒精,第一次倒出13,然后倒回瓶中40克,第二次再倒出瓶中酒精的59,第三次倒出180克,瓶中好剩下60克,原来瓶中有多少克酒精?例题4。
甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?【思路导航】根据题意,由最后甲钱数是168÷3=56元可推出:第一次甲拿出与乙同样的钱数给乙后,甲剩下的钱是56÷2=28元,这28元就是原来甲比乙多的钱数。
168÷3÷2=28元答:原来甲比乙多28元。
练习41.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。
再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。
原来甲班比乙班多多少人?2.甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个放入丙盒后,三个盒子内的小球个数相等。
原来乙盒比丙盒多几个球?3.甲、乙、丙三个仓库面粉袋数的比是6:9:5,如果从乙仓库拿出400袋平均分给甲、丙两仓库,则甲、乙两个仓库的数量相等。
这三个仓库共存面粉多少袋?例题5。
甲、乙两个仓库各有粮食若干吨,从甲仓库运出14到乙仓库后,又从乙仓库运出14到甲仓库,这时甲、乙两仓库的粮食储量相等。
原来甲仓库的粮食是乙仓库的几分之几?【思路导航】解题关键是把两个仓库粮食的和看作“1”,由题意可知,从乙仓库运出14到甲仓库,乙仓库最后占两仓库和的12。
①当乙仓库没有往甲仓库运时,乙仓库占两仓库和的几分之几?12÷(1-14)=23②甲仓库占两仓库和的几分之几? 1-23=13③甲仓库原来占两仓库和的几分之几?13÷(1-14)=49④原来甲仓库时乙仓库的几分之几? 4÷(9-4)=4 5答:原来甲仓库的粮食是乙仓库的45。
练习51.甲、乙两个仓库各有粮食若干吨,从甲仓库运出13到乙仓库后,又从乙仓库运出13到甲仓库,这时甲、乙两仓库的粮食储量相等。
原来甲仓库的粮食是乙仓库的几分之几?2.甲、乙两个仓库各有粮食若干吨,从甲仓库运出15到乙仓库后,又从乙仓库运出14到甲仓库,这时甲、乙两仓库的粮食储量相等。
原来甲仓库的粮食是乙仓库的几分之几?3.甲、乙两个仓库各有粮食若干吨,从甲仓库运出13到乙仓库后,又从乙仓库运出25到甲仓库,这时乙仓库的粮食是甲仓库的910。
原来甲仓库的粮食是乙仓库的几分之几?答案:练11.12÷(1-58)÷(1-37)=56人2.250÷(1-23)÷(1-38)=1200千米3.15÷(1-34)÷(1-25)÷(1-16)=120个练21.(14+6)÷(1-13)÷(1-27)=42吨2.【(35+3)÷(1-12)+2】÷(1-13)=117公顷3.【(16-2)÷(1-13)+1】÷(1-12)=44吨练31、小华:【12×2-12÷(1-14)】÷(1-15)=10张小强:12×2-10=14张2、甲:【90×2-90÷(1-14)】÷(1-15)=75元乙:90×2-75=105元3、【(60+180)÷(1-59)-40】÷(1-13)=750元练41、144÷3÷2=24人2、8×2-4=12个3、(400+400÷2)÷(9-6)×(9+6+5)=4000袋练51、a:把甲、乙两仓库粮食总吨数看作“1”,先求甲原来占两仓库和的几分之几?【1-12÷(1-13)】÷(1-13)=38b:原来甲仓库是乙仓库的几分之几?3÷(8-3)=3 52、a:【1-12÷(1-14)】÷(1-15)=512b:5÷(12-5)=5 73、 a:【1-910+9÷(1-25)】÷(1-13)=619b“6÷(19-6)=6 13。