胡广书《现代信号处理教程》第二章PPT课件
- 格式:ppt
- 大小:642.00 KB
- 文档页数:33
33及 ∑+==NL n nx x d 122),(α(1.7.8)此即信号正交分解的最小平方近似性质。
我们在有限项傅立叶级数的近似中曾经遇到过[19]。
现推导(1.7.7)及(1.7.8)两式。
将(1.7.6)式展开,有∑∑∑∑+-==jj Li i i nnn n x n x x x d 2122))()()((2|)(|),(βϕβ (1.7.9)将上式对k β求偏导,并使之为零,则有02)()(2),(2=+-=∑∂∂k n k x x d n n x kβϕβ及k nk k n n x αββ==∑)()(将此结果代入(1.7.9)式,即得(1.7.8)式。
若空间X 由向量N ϕϕϕ,......,,21张成,即},......,,{21N span X ϕϕϕ=,并有},......,,{211L span X ϕϕϕ=及},......,,{212N L L span X ϕϕϕ++=,我们称1X 和2X 是X 的子空间。
如果:1.021=X X ,即1X 和2X 没有交集;2.21X X X =,即X 是1X 和2X 的并集;这时,我们称X 是1X 和2X 的直和,记作:21X X X ⊕=(1.7.10)这些概念我们将在小波变换中用到。
性质5:将原始信号x 经正交变换后得到一组离散系数N ααα,......,,21。
这一组系数具有减少x 中各分量的相关性及将x 的能量集中于少数系数上的功能。
相关性去除的程度及能量集中的程度取决于所选择的基函数}{n ϕ的性质。
这一性质是信号与图像压缩编码的理论基础。
有关这一点,我们在本节还要继续讨论。
作为正交变换的最后一个性质,由于其重要性,我们现用定理的方式给出:定理 1.2:)(t ϕ是一个原型函数,其傅立叶变换为)(ΩΦ,若)}({k t -ϕ,Z k ∈是一组正交基,则34∑=+ΩΦkk 1|)2(|2π(1.7.11)若)(1k t -ϕ,)(2k t -ϕ是两组正交基,即0)(),(2211>=--<k t k t ϕϕ 21,k k ∀则0)2()2(*21=+Φ+Φ∑kk k πωπω(1.7.12)证明[13,21,8]:因为}),({Z k k t ∈-ϕ是一正交基,设x 是它构成空间中的一个元素,则x 可表示为)(k t -ϕ的线性组合,即∑-=kk k t a x )(ϕ(1.7.13)由性质3,有∑=kkax 22||||||,对(1.7.13)式两边作傅立叶变换,有∑∑⎰Ω-Ω-ΩΦ=-=Ωkjk k ktj k e a j dt ek t a j X )()()(ϕ(1.7.14)注意,该式是傅立叶变换(FT )和离散时间傅立叶变换(DTFT )的混合表达式。
第二章噪声中信号波形的检测假设检验理论-------->信号波形的检测输入的是信号加噪声,此任务就是按某一准则来设计最佳检测器或称为最佳接收机。
这种最佳检测器常常用匹配滤波器来构造。
故匹配滤波器的概念是很重要的。
通信中许多接收机都可以,用此模型来表示。
滤波器可实现滤波、平滑和预测等信息处理的基本任务。
如果滤波器的输出是滤波器输入的线性函数,则称为线性滤波器;否则为非线性滤波器。
若滤波器的冲激响应是无限长,称为无限冲激响应滤波器,反之,为有限冲激响应滤波器。
如果滤波器是在时间域、频率域或空间域实现,则分别称为时域、频域、空间域滤波器。
简单地说,滤波器就是信号抽取器,它的作用是从被噪声污染的信号中抽取出原来的信号,因此,信号的提取必须满足一定的优化准则,对于连续时间滤波器有两种最优化设计准则。
一种准则是:使滤波器的输出到达最大的信噪比,称为匹配滤波器;另一种是使输出滤波器的均方估计误差为最小,称为Wiener滤波器。
§2-1匹配滤波器在波形检测中,经常用匹配滤波器来构造最佳检测器,匹配滤波器理论在信号检测理论中占有独特的重要地位。
在通信系统中,许多常用的接收机,均可简化成由一个线性滤波器和一个判决电路两部分组成,如下图所示线性滤波器的作用是对接收机的信号进行某种方式的加工处理,使之增加正确的判决概率。
而判决电路一般为一个非线性装置,最简单的判决电路就是一个门限电路。
为了增大信号相对于噪声的强度,以利于判决,要求线性滤波器是最优的。
若输入信号已知,且线性时不变滤波器的输入为加性平稳噪声(白噪声),此时,输出信噪比为最大的滤波器,就是一个与输入信号相匹配的最佳滤波器――匹配滤波器。
())12()(.----=⎰∞∞--dt et h H tj ωω())22()(21.----=⎰∞∞-dt eH t h tj ωωπ滤波器输入为:Z (t )=s (t )+n (t )-----(2-3)其中s (t )是有用的已知信号,n (t )-零均值平稳噪声.利用叠加原理可以分别计算出s 0(t ), n 0(t ) .若输入信号的傅氏变换存在())42()(.----=⎰∞∞--dt et s S tj ωω())52()()(21.0----=⎰∞∞-dt e S H t s tj ωωωπ若s 0(t )在t 0处出现峰值,即:())62()()(210.00----=⎰∞∞-dt e S H t s t j ωωωπ输入噪声n (t ) 的功率谱密度为P n (ω) 输出噪声n 0(t )的功率谱密度为P n 0(ω)()())72()(20----=ωωωn n P H P滤波器输出噪声的平均功率为:())82()()(21)(21][202----==⎰⎰∞∞-∞∞-ωωωπωωπd P H d P t n E n n 定义:输出信噪比=输出信号峰值功率/输出噪声平均功率[])92()()(21)()(21)()(222002000-⎭⎬⎫⎩⎨⎧==⎰⎰∞∞-∞∞-ωωωπωωωπωd P H d e S H t n E t S SNR n tj要使此式达到最大值,可利用Schwarz 不等式⎰⎰⎰∞∞∞∞∞∞-∙≤---)102..()()(*)()(*)()(*2dx x x dx x F x F dx x x F θθθF (x ),θ(x )为两个复函数,*-共轭且当θ(x )=αF (x ), α为任意常数时,上式中等号成立。
81 为了看清图3.3.4中交叉项的行为,我们将该图作了旋转,因此,水平方向为频率,垂直方向为时间。
图3.3.3 例3.3.3的WVD 图3.3.4 例3.3.4的WVD例3.3.5 令 ()2142t x t e ααπ-⎛⎫= ⎪⎝⎭(3.3.5)可求出其WVD 为 ()22,2exp[]x W t t ααΩ=--Ω(3.3.6)这是一个二维的高斯函数,,且是恒正的,如图3.3.5所示。
()Ω,t W x 由该图可以看出,该高斯信号的WVD 的中心在处,峰值为2。
参数控()()0,0,=Ωt α制了WVD 在时间和频率方向上的扩展。
越大,在时域扩展越小,而在频域扩展越大,反α之亦然。
其WVD 的等高线为一椭圆。
当WVD 由峰值降到时,该椭圆的面积。
1-e π=A 它反映了时-频平面上的分辨率。
如果令 ,,则的谱图()2142t h t e ααπ-⎛⎫=⎪⎝⎭()2142t x t eββπ-⎛⎫= ⎪⎝⎭()t x ()⎥⎦⎤⎢⎣⎡Ω+-+-+=Ω2221exp 2,βαβααββααβt t STFT x82(3.3.7)图3.3.5 例3.3.5的WVD,(a )高斯信号,(b )高斯信号的WVD它也是时-频平面上的高斯函数。
当其峰值降到时,椭圆面积。
这一结果说明,1-e π2=A WVD 比STFT 有着更好的时-频分辨率。
如果令 ()()tj et t x t x 001Ω-=(3.3.8)式中是(3.3.5)式的高斯函数。
是的时移加调制,其WVD 是:()t x ()t x 1()t x (3.3.9)()12200,2exp[()()/]x W t t t ααΩ=---Ω-Ω它将(3.3.6)式的由移至处。
其WVD 图形请读者()Ω,t W x ()()0,0,=Ωt ()()00,,Ω=Ωt t 自己画出。
83例3.3.6令 ()2201422j tt j t z t ee e αβαπΩ-⎛⎫=⎪⎝⎭(3.3.10)它是由(3.3.5)式的与()t x ()202j t j t y t Aee βΩ=(3.3.11)相乘而得到的(在(3.3.9)式中,A=1)。
现代信号处理教程-胡广书(清华)jtt2g t, g,ed qt2q(4.4.2)式中g t,由(4.3.7)式定义。
由(4.3.8)和(4.3.9)及上式结果,有Cx t,21jxu2xu2qt u2qt u2dued,则上式变成令u2,u2Cx t,1j x x qt qt ed d21j jx qt ed x qt ed(4.4.3)221Xq2于是结论得证。
式中Xq是x t乘上窗函数q t后的傅立叶变换。
该式说明,如果g,是某一函数的模糊函数,那么用此g,所得到的Cx t,等效于谱图。
因此,谱图也是Cohen类成员。
2.P1,实值性,即Cxt,R,t,,Q1:g,g,证明:由(4.1.1)式,t,Cx12j t u xu2xu2g,ed du d 令,,则上式变为t,Cx12j t uxu2xu2g,ed dud显然,如要求t,Cx t,,必有g,g,Cx3、时移:P2:若s t x t t0,则Cs t,Cx t t0,Q2: g,不决定于t证明:因为g 4、频移:,处于,域,和t无关,所以它不影响分布的时移性质;若sP3:t x t ej t,则Cs t,Cx t,0Q3:g,与无关性质P2与P3称为Cohen类时-频分布的“移不变”性质,它包含了时移和频移。
5、时间边缘条件,即12Ct,d xtP4:x2Q4:g,0 1证明:将(4.1.1)式两边对积分,有Cx t,d12j t uxu2xu2g,edud d dx u2x u2g,e j t u dud d x u g,0e j t u dud2欲使上式的积分等于x t,必有欲使该式成立,必有j(t u)g(,0)ed2(t u)01,也就是说,为保证C t,具有WVD的边界性质,g,xg,在轴上始终为1。
6、频率边缘条件,即P5: Q5:Cx t,dt Xg0, 12其证明请读者自己完成。
112前已述及,为了有限的抑制AF中远离,0,0的互项,希望g,应为,平面上的2-D低通函数。