自感和互感现象
- 格式:ppt
- 大小:271.50 KB
- 文档页数:4
电磁感应自感现象与互感现象的原理电磁感应是指当一个导体处于磁场中,导体内部会产生感应电流的现象。
电磁感应现象是基于法拉第电磁感应定律,即磁通量的变化率与感应电动势成正比。
在电磁感应中,存在两种重要的现象,即自感现象和互感现象。
一、自感现象的原理自感现象是指当电流在一个闭合线圈中发生变化时,产生的感应电动势激发出的电流会阻碍原有电流变化的现象。
这是由于闭合线圈中的磁场变化引发的自感效应。
自感现象可以通过法拉第电磁感应定律来解释。
当电流变化时,电流激发出的磁场也会发生变化,从而产生感应电动势。
根据Lenz定律,感应电动势的方向会使得感应电流产生的磁场与引起感应电动势的磁场方向相反。
这样,感应电流会阻碍原有电流变化。
二、互感现象的原理互感现象是指当两个或多个线圈相互靠近时,其中一个线圈中的电流变化会引起其他线圈中感应电动势的产生。
互感现象是自感现象的一种推广。
互感现象可以通过互感系数来描述,互感系数是指两个线圈中每个线圈分别通过在另一个线圈上的总磁链与通过自身的总磁链之比。
如果两个线圈的互感系数不为零,当其中一个线圈的电流发生变化时,另一个线圈中感应电动势的大小和方向也会发生变化。
互感现象的原理可以用法拉第电磁感应定律和Laplace-Neumann定律来解释。
根据法拉第电磁感应定律,当线圈中的磁通量变化时,其上会产生感应电动势。
而根据Laplace-Neumann定律,感应电动势的方向会使得感应电流产生的磁场与引起感应电动势的磁场方向相反。
总结:电磁感应自感现象和互感现象都是基于法拉第电磁感应定律的。
自感现象是闭合线圈内部电流变化引发的感应电动势阻碍原有电流变化;互感现象是不同线圈之间的电流变化引发的感应电动势相互作用的现象。
这两个现象在电磁学和电路中具有重要的应用价值,例如变压器、电感器等。
通过深入理解电磁感应自感现象与互感现象的原理,我们可以更好地应用它们于实际生活与工作中,从而推动现代科技的发展。
第6节 互感和自感1.知道什么是互感现象和自感现象.2.观察通电自感和断电自感实验现象,理解自感电动势在自感现象中的作用.(重点+难点)3.知道自感电动势的大小与什么有关,理解自感系数和自感系数的决定因素.(重点)【基础梳理】一、互感现象1.互感:两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫互感. 2.应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的. 3.危害:互感现象能发生在任何两个相互靠近的电路之间.在电力工程和电子电路中,互感现象有时会影响电路的正常工作. 二、自感现象当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势,这种现象称为自感.由于自感而产生的感应电动势叫做自感电动势.三、自感电动势与自感系数1.自感电动势:E =L ΔI Δt,其中L 是自感系数,简称自感或电感.单位:亨利,符号:H .2.自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关.四、自感现象中磁场的能量1.线圈中电流从无到有时:磁场从无到有,电源把能量输送给磁场,储存在磁场中.2.线圈中电流减小时,磁场中的能量释放出来转化为电能.【自我检测】判断正误 (1)两个线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象.( )(2)自感现象中,感应电流一定与原电流方向相反.( )(3)线圈的自感系数与电流大小无关,与电流的变化率有关.( )(4)线圈中电流最大的瞬间可能没有自感电动势.( )提示:(1)× (2)× (3)× (4)√探究思考 断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?试从能量的角度加以解释.提示:开关断开后,线圈中储存的能量释放出来转化为电能,故灯泡发光会持续一段时间.对互感现象的理解和应用1.互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间.2.互感现象可以把能量由一个电路传到另一个电路.变压器就是利用互感现象制成的.3.在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时需要设法减小电路间的互感.在同一铁芯上绕着两个线圈,单刀双掷开关原来接在点1,现把它从1扳向2,如图所示,试判断在此过程中,在电阻R上的电流方向是()A.先由P→Q,再由Q→PB.先由Q→P,再由P→QC.始终由Q→PD.始终由P→Q[解析]单刀双掷开关接在点1上时,A线圈中的电流恒定不变,在铁芯中产生的磁场方向是沿铁芯自右向左.在单刀双掷开关由点1扳向点2的过程中,通过线圈A中的电流,先沿原方向减小到零,再由零增大到原电流值,所以B中产生的感应电流分两个阶段分析:(1)在A中电流沿原方向减小到零的过程中,A产生的磁场自右向左也跟着减弱,导致穿过线圈B的磁通量在减小.由楞次定律知,线圈B中会产生右上左下的感应电流,即流过电阻R的电流方向是P→Q.(2)在A中电流由零增大到原方向的电流的过程中,A产生的磁场自右向左也跟着增强,导致穿过线圈B的磁通量在增大.由楞次定律知,线圈B中会产生左上右下的感应电流,即通过电阻R的电流方向是Q→P.综上分析知,全过程中流过电阻R的电流方向先是P→Q,然后是Q→P,所以A对.[答案] A(多选)如图所示是一种延时装置的原理图,当S1闭合时,电磁铁F将衔铁D吸下,C线路接通,当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放.则()A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变化解析:选BC.线圈A中的磁场随开关S1的闭合而产生,随S1的断开而消失.当S1闭合时,线圈A中的磁场穿过线圈B,当S2闭合,S1断开时,线圈A在线圈B中的磁场变弱,线圈B中有感应电流,B中电流的磁场继续吸引D而起到延时的作用,所以选项B正确,A错误;若S2断开,线圈B中不产生感应电流而起不到延时作用,所以选项C正确,D错误.对自感现象的理解1.自感现象的特点(1)自感现象是由于通过导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势的作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用.(3)自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势与原来电流方向相反;当原来电流减小时,自感电动势与原来电流方向相同,同样遵循“增反减同”的规律.2.通电自感与断电自感比较与线圈串联的灯泡与线圈并联的灯泡电路图通电时电流逐渐增大,灯泡逐渐变亮电流立刻变大,灯泡变亮,然后逐渐变暗断电时电流逐渐减小灯泡逐渐变暗电流方向不变电路中稳态电流为I1、I2①若I2≤I1,灯泡逐渐变暗②若I2>I1,灯泡闪亮后逐渐变暗两种情况灯泡中电流方向均改变命题视角1对自感电动势的理解(2019·南昌高二检测)关于线圈中自感电动势大小的说法中正确的是()A.电感一定时,电流变化越大,自感电动势越大B.电感一定时,电流变化越快,自感电动势越大C.通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大[思路点拨] 影响自感电动势大小的两个因素:(1)线圈自感系数越大产生的自感电动势越大.(2)电流变化越快产生的自感电动势越大.[解析] 电感一定时,电流变化越快,ΔI Δt 越大,由E =L ΔI Δt知,自感电动势越大,A 错,B 对;线圈中电流为零时,电流的变化率不一定为零,自感电动势不一定为零,故C 错;当通过线圈的电流最大时,电流的变化率为零,自感电动势为零,故D 错.[答案] B命题视角2 对通电自感现象的分析(2019·长沙一中高二检测)如图所示,电路中自感线圈电阻很小,可以忽略不计.R 的阻值和L 的自感系数都很大,A 、B 为两个完全相同的灯泡,电源为理想电源,当S 闭合时,下列说法正确的是( )A .A 比B 先亮,然后A 灭B .B 比A 先亮,然后A 灯逐渐变亮C .A 、B 一起亮,然后A 灭D .A 、B 一起亮,然后B 灭[思路点拨] S 闭合瞬间,含电感线圈的支路相当于断路;稳定后,自感线圈相当于导体.[解析] S 闭合时,由于与A 灯串联的线圈L 的自感系数很大,故在线圈上产生很大的自感电动势,阻碍电流的增大,所以B 比A 先亮,由于L 的直流电阻很小,所以稳定后A 灯的电流变大,A 灯逐渐变亮,故A 、C 、D 错误,B 正确.[答案] B命题视角3 对断电自感现象的分析(2019·济南外国语学校高二检测)如图甲、乙中,自感线圈L 的电阻很小,接通S ,使电路达到稳定,灯泡A 发光,下列说法正确的是( )A .在电路甲中,断开S ,A 将立即熄灭B.在电路甲中,断开S,A将先变得更亮,然后逐渐变暗C.在电路乙中,断开S,A将逐渐变暗D.在电路乙中,断开S,A将先变得更亮,然后渐渐变暗[思路点拨][解析]甲图中,灯泡A与电感线圈L在同一个支路中,流过的电流相同,断开开关S 时,线圈L中的自感电动势的作用使得支路中的电流瞬时不变,以后渐渐变小,A、B错误;乙图中,灯泡A所在支路的电流比电感线圈所在支路的电流要小(因为电感线圈的电阻很小),断开开关S时,电感线圈的自感电动势要阻碍电流变小,此瞬间电感线圈中的电流不变,电感线圈相当于一个电源给灯泡A供电.因此反向流过A的电流瞬间要变大,然后逐渐变小,所以灯泡要先更亮一下,然后渐渐变暗,C错误,D正确.[答案] D自感问题的分析技巧(1)当电路接通瞬间,自感线圈相当于断路;当电路稳定时,相当于电阻,如果线圈没有电阻,相当于导线(短路);当电路断开瞬间,自感线圈相当于电源,电流逐渐减小.(2)断开开关后,灯泡是否瞬间变得更亮,取决于电路稳定时两支路中电流的大小关系,即由两支路中电阻的大小关系决定.(3)若断开开关后,线圈与灯泡不能组成闭合回路,则灯泡会立即熄灭.(4)电流减小时,自感线圈中电流大小一定小于原先所通的电流大小,但自感电动势可能大于原电源电动势.(5)在线圈中产生自感电动势,自感电动势阻碍电流的变化,但“阻碍”不是“阻止”,“阻碍”实质上是“延缓”.1.关于自感现象,下列说法正确的是( )A .感应电流一定和原电流方向相反B .线圈中产生的自感电动势较大时,其自感系数一定较大C .对于同一线圈,当电流变化越快时,线圈中的自感系数较大D .对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大解析:选D.自感现象中感应电动势的方向遵从楞次定律.当原电流减小时,自感电动势和自感电流与原电流方向相同;当原电流增大时,自感电流与原电流方向相反,所以选项A 错误;自感电动势的大小E 自=L ΔI Δt,所以自感电动势大不一定是由自感系数大引起的,有可能是电流的变化率很大引起的,所以选项B 错误;线圈自感系数的大小,由线圈本身决定,与线圈中有无电流以及电流变化的快慢无关,所以选项C 错误;由E 自=L ΔI Δt知,对于同一线圈,自感系数L 确定,当电流变化较快时,线圈中产生的自感电动势也越大,所以选项D 正确.2.(多选)如图是用电流传感器(相当于电流表,其内阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R ,L 是一个自感系数足够大的自感线圈,其直流电阻值也为R .坐标图是某同学画出的在t 0时刻开关S 切换前后,通过传感器的电流随时间变化的图象.关于这些图象,下列说法正确的是( )A .图甲是开关S 由断开变为闭合,通过传感器1的电流随时间变化的情况B .图乙是开关S 由断开变为闭合,通过传感器1的电流随时间变化的情况C .图丙是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况D .图丁是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况解析:选BC.开关S 由断开变为闭合,电源与传感器2组成的回路立即有电流,而线圈这一支路,由于线圈阻碍电流的增加,通过线圈的电流要慢慢增加,所以干路电流(通过传感器1的电流)也要慢慢增加,故A错误,B正确.开关S由闭合变为断开,通过传感器1的电流立即消失,而电感这一支路,由于电感阻碍电流的减小,该电流又通过传感器2,只是电流的方向与以前相反,且通过传感器2的电流逐渐减小,故C正确,D错误.3.(多选)如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法正确的是()A.合上开关S接通电路时,A2先亮,A1后亮,最后一样亮B.合上开关S接通电路时,A1和A2始终一样亮C.断开开关S切断电路时,A2立刻熄灭,A1过一会儿才熄灭D.断开开关S切断电路时,A1和A2都要过一会儿才熄灭解析:选AD.由于自感现象,合上开关时,A1中的电流缓慢增大到某一个值,故过一会儿才亮;断开开关时,A1中的电流缓慢减小到零,线圈产生感应电动势,相当于新电源;A1、A2串联,其电流始终相等,故两灯都是过一会儿才熄灭,故选项A、D正确.4.在如图所示的电路中,两个相同的电流表G1和G2的零点均在刻度盘中央,当电流从“+”接线柱流入时,指针向左摆;当电流从“-”接线柱流入时,指针向右摆.在电路接通后再断开开关S的瞬间,下列说法中正确的是()A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.两表指针都向右摆D.两表指针都向左摆解析:选B.当开关S闭合时,流经电感线圈L的电流方向自左向右.当断开开关S的瞬间,通过线圈L的电流将变小,根据楞次定律可知,感应电流方向与原电流方向相同,也将是自左向右流,以阻碍原电流减小的变化.在由L、G2、R及G1组成的闭合回路中,感应电流将从G2的负接线柱流入,因而G2的指针向右摆;感应电流将从G1的正接线柱流入,因而G1的指针向左摆.故B正确.(建议用时:30分钟)【A组基础巩固】1.关于线圈的自感系数,下面说法正确的是()A.线圈的自感系数越大,自感电动势就一定越大B.线圈中电流等于零时,自感系数也等于零C.线圈中电流变化越快,自感系数越大D.线圈的自感系数由线圈本身的性质及有无铁芯决定解析:选D.自感系数是由线圈的大小、形状、圈数、有无铁芯等因素决定的,故B、C 错,D对;自感电动势不仅与自感系数有关,还与电流变化快慢有关,故A错.2.(多选)下列说法正确的是()A.当线圈中电流不变时,线圈中没有自感电动势B.当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C.当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D.当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反解析:选AC.由法拉第电磁感应定律可知,当线圈中电流不变时,不产生自感电动势,选项A正确;当线圈中电流反向时,相当于电流减小,线圈中自感电动势的方向与线圈中原电流的方向相同,选项B错误;当线圈中电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,选项C正确;当线圈中电流减小时,自感电动势阻碍电流的减小,线圈中自感电动势的方向与线圈中电流的方向相同,选项D错误.3. 在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是()A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线产生的感应电流相互抵消C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消D.以上说法都不对解析:选C.由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股导线中的电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B、D错误,只有C正确.4.(多选)一个线圈中的电流如果均匀增大,则这个线圈的()A.自感电动势将均匀增大B.磁通量将均匀增大C.自感系数也均匀增大D.自感系数和自感电动势都不变解析:选BD.线圈的自感系数L确定,当线圈中的电流均匀增大时,电流的变化率恒定知,自感电动势恒定不变,所以选项A、C错误,选项D正确;电流均匀不变,由E=LΔIΔt增大时,产生的磁场均匀增强,穿过线圈的磁通量也均匀增大,选项B正确.5.(2019·浙江诸暨中学月考)如图所示,电感线圈L的直流电阻R L=3.0 Ω,小灯泡A 的电阻R=6.0 Ω,闭合开关S,待电路稳定后再断开开关,则在断开开关S的瞬间,小灯泡A()A.不熄灭B.立即熄灭C.逐渐熄灭D.闪亮一下再逐渐熄灭解析:选D.因为电感线圈的直流电阻R L<R,当电流达到稳定时,小灯泡中的电流小于线圈中的电流,开关S断开瞬间,线圈L产生自感电动势,L中电流要逐渐变小,灯泡中的电流与L中的电流变化一致,由于电流比灯泡原来的电流大,所以灯泡要闪亮一下再逐渐熄灭,故D正确,A、B、C错误.6.(多选)如图所示,电池的电动势为E,内阻不计,线圈自感系数较大,直流电阻不计.当开关S闭合后,下列说法正确的是()A.a、b间电压逐渐增加,最后等于EB.b、c间电压逐渐增加,最后等于EC.a、c间电压逐渐增加,最后等于ED .电路中电流逐渐增加,最后等于E R解析:选BD.由于线圈自感系数较大,当开关闭合瞬间,a 、b 间近似断路,所以a 、b 间电压很大,随着电流的增加,a 、b 间电压减小,b 、c 间电压增大,最后稳定后,a 、b 间电压为零,b 、c 间电压等于E ,电流大小为I =E R,选项B 、D 对,A 、C 错. 7.如图所示电路,多匝线圈的电阻和电池的内电阻可以忽略,电源的电动势为E ,两个电阻的阻值都是R ,开关S 未闭合时,电流I 0=E 2R,现闭合开关S 将一电阻短路,于是线圈中有自感电动势产生,该自感电动势( )A .有阻碍电流减小的作用,最后电流由I 0减小到零B .有阻碍电流减小的作用,最后电流小于I 0C .有阻碍电流增大的作用,因而电流保持为I 0不变D .有阻碍电流增大的作用,但电流最后还是要增大到2I 0解析:选D.开关S 闭合后,电路中电流增大,由于线圈产生自感电动势,阻碍电流增大,但阻碍不是阻止,最终结果不受影响,电流最后还是要增大到2I 0.8.如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A .灯A 立即熄灭B .灯A 慢慢熄灭C .灯A 突然闪亮一下再慢慢熄灭D .灯A 突然闪亮一下再突然熄灭解析:选A.当开关S 断开时,由于通过自感线圈的电流从有变到无,线圈将产生感应电动势,但由于线圈L 与灯A 在S 断开后,不能形成闭合回路,因此灯A 在开关断开后,电流为零,立即熄灭.【B 组 素养提升】9.(多选)用电流传感器可以清楚地演示自感对电路中电流的影响,不一定要用两个灯泡作对比.电流传感器的作用相当于一个电流表,实验就用电流表的符号表示.它与电流表的一个重要区别在于,传感器与计算机相结合能够即时反映电流的迅速变化,并能在屏幕上显示电流随时间变化的图象.先按图甲连接电路,测一次后,可以拆掉线圈,按图乙再测一次,得到如图a、b所示的图象.则下列说法正确的是()A.a图象是对应甲测得的B.a图象是对应乙测得的C.b图象是对应甲测得的D.b图象是对应乙测得的解析:选AD.电路甲中电流在开关闭合后,由于自感电动势作用,逐渐增至最大;电路乙中电流在开关闭合后,立即增至最大,所以选项A、D正确.10.如图所示,L为一纯电感线圈(即电阻为零),A是一灯泡,下列说法正确的是()A.开关S接通瞬间,无电流通过灯泡B.开关S接通后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S接通瞬间及接通稳定后,灯泡中均有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流解析:选B.开关S接通瞬间,灯泡中的电流从a到b,线圈由于自感作用,通过它的电流将逐渐增大.开关S接通后,电路稳定时,纯电感线圈对电流无阻碍作用,将灯泡短路,灯泡中无电流通过.开关S断开的瞬间,由于线圈的自感作用,线圈中原有向右的电流将逐渐减小,该线圈与灯泡形成回路,故灯泡中有从b到a的瞬间电流.11.如图所示为测定自感系数很大的线圈L直流电阻的电路,L的两端并联一个电压表,用来测量自感线圈的直流电压.在测量完毕后,将电路拆解时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电压表解析:选B.若先断开S1或先拆除电流表,线圈与电压表组成闭合回路,这时,流过电压表的电流与原来方向相反,电压表的指针将反向偏转,容易损坏电压表.按操作要求,应先断开开关S2,再断开开关S1,然后拆除器材.故选项B正确.12.(多选)(2019·南京高二测试)如图所示的电路中,a、b、c为三盏完全相同的灯泡,L 是一个自感系数很大、直流电阻为零的自感线圈,E为电源,S为开关.关于三盏灯泡,下列说法正确的是()A.合上开关,c、b先亮,a后亮B.合上开关一会后,a、b一样亮C.断开开关,b、c同时熄灭,a缓慢熄灭D.断开开关,c马上熄灭,b闪一下后和a一起缓慢熄灭解析:选AB.闭合开关S时,由于线圈L的自感作用,流过a灯的电流逐渐增大,所以a灯后亮,b、c灯与电源构成回路,所以b、c灯先亮,故A正确;合上开关一会后,电路稳定,L是一个直流电阻为零的自感线圈,可视为导线,a、b灯完全相同,并联电压相同,故a、b灯一样亮,故B正确;断开开关瞬间,a、b灯与线圈构成闭合回路.由于L的自感作用,a、b灯的电流要逐渐减小,故c灯马上熄灭,a、b灯缓慢熄灭,C错误;由于电路稳定时,a、b灯中电流相同,故b灯无闪亮现象,D错误.13.(多选)如图所示的电路中,电感L的自感系数很大,电阻可忽略,D为理想二极管,则下列说法正确的有()A.当S闭合时,L1立即变亮,L2逐渐变亮B.当S闭合时,L1一直不亮,L2逐渐变亮C.当S断开时,L2立即熄灭D.当S断开时,L1突然变亮,然后逐渐变暗至熄灭解析:选BD.当S闭合时,因二极管加上了反向电压,故二极管截止,L1一直不亮;通过线圈的电流增加,感应电动势阻碍电流增加,故使得L2逐渐变亮,选项B正确,A错误;当S断开时,由于线圈自感电动势阻碍电流的减小,故通过L1的电流要在L2→L1→D→L 之中形成新的回路,故L1突然变亮,然后逐渐变暗至熄灭,选项C错误,D正确.14.(2019·河南南阳一中月考)在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是()解析:选B.闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明R L=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至达到电流为I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.。
电磁感应中的自感与互感自感(自感应)和互感(互感应)是电磁感应中的两个重要概念。
它们描述了电流变化所产生的磁场对电路中其他线圈或电流的影响。
本文将详细介绍自感和互感的定义、原理及应用。
一、自感(自感应)自感是指电流通过线圈时,在线圈内部产生的磁场引起的感应电动势。
当电流通过一个线圈时,线圈内部的磁场变化,产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与电流的变化率成正比。
自感系数L用来描述线圈的自感大小,单位为亨利(H)。
自感现象在电路中具有重要的作用。
首先,自感限制了电流的变化速度。
当电路开关打开或关闭时,线圈内的自感会阻碍电流变化,导致电流的“冲击”效应。
这也是为什么要在开关电路中使用电感等元件的原因之一。
其次,自感也影响电路中的交流信号。
交流信号在线圈中产生交变的磁场,从而引起感应电动势。
自感使得线圈对不同频率的交流信号具有不同的阻抗。
在高频电路中,自感对电路的阻抗有显著影响。
二、互感(互感应)互感是指当两个或更多的线圈靠近时,其中一个线圈中的变化电流在其他线圈中引起感应电动势。
互感现象的存在基于电磁感应定律,即磁场的变化会导致感应电动势的产生。
互感是电磁感应的重要应用之一。
它在变压器中起着关键作用,实现了电压和电流的变换。
变压器由两个或更多线圈组成,当其中一个线圈中的交流电流变化时,产生的磁场被其他线圈感应,从而在这些线圈中引起电压的变化。
此外,互感还广泛应用于电子领域中的滤波器、耦合电容器等元件中。
通过合理设计线圈之间的互感关系,可以实现信号的转换、过滤和传递等功能。
总结:电磁感应中的自感和互感是描述线圈中磁场变化对电路的影响的重要概念。
自感影响电路中电流的变化速度和交流信号的阻抗,而互感实现了电压和电流的转换。
它们在电路设计和电子技术中有着广泛的应用,对于实现各种功能和优化电路性能起着关键作用。
注:本文内容仅供参考,如需详细了解电磁感应中的自感和互感,请参考相关教材或专业资料。
电磁感应中的互感与自感现象解析电磁感应是电磁学中的一个重要概念,它描述了电流变化所引起的磁场变化,以及磁场变化所引起的电流变化。
在电磁感应的过程中,互感与自感是两个重要的现象。
互感是指两个或多个线圈之间通过磁场相互作用而产生的电压变化的现象。
当一个线圈中的电流变化时,它所产生的磁场会穿过另一个线圈,从而引起另一个线圈中的电流变化。
这种现象在变压器中得到了广泛应用。
变压器的原理就是利用互感现象,通过改变线圈的匝数比例来改变电压大小。
自感是指一个线圈中的电流变化所引起的自身电压变化的现象。
当一个线圈中的电流变化时,它所产生的磁场会穿过自身,从而引起自身的电压变化。
这种现象在电感器中得到了广泛应用。
电感器可以根据电流的变化来测量电流的大小。
互感和自感是相互关联的,它们都是由于电流变化所引起的磁场变化。
互感是线圈之间的相互作用,而自感是线圈内部的自身作用。
它们都遵循法拉第电磁感应定律,即磁通量的变化率等于感应电动势。
在实际应用中,互感和自感有着广泛的应用。
除了变压器和电感器之外,它们还被应用于电动机、发电机、无线电通信等领域。
在电动机中,互感和自感的相互作用使得电能转化为机械能;在发电机中,互感和自感的相互作用使得机械能转化为电能;在无线电通信中,互感和自感的相互作用使得电信号的传输成为可能。
除了实际应用外,互感和自感还有着深刻的物理原理。
它们揭示了电磁场的本质和电磁波的传播规律。
通过对互感和自感的研究,科学家们深入理解了电磁感应的机制,为电磁学的发展做出了重要贡献。
总之,互感和自感是电磁感应中的重要现象,它们描述了电流变化所引起的磁场变化,以及磁场变化所引起的电流变化。
互感和自感在实际应用中有着广泛的应用,同时也揭示了电磁场的本质和电磁波的传播规律。
通过深入研究互感和自感,我们可以更好地理解电磁学的基本原理,推动科学技术的发展。
电感的自感与互感现象电感是电路中常见的元件,它具有自感和互感两种重要的物理现象。
本文将详细介绍电感的自感和互感现象。
一、自感现象自感是指电流在电感中产生的磁通量对电流自身的感应作用。
当电流通过一个线圈时,会形成一个磁场,这个磁场会将一部分能量储存起来,形成磁能。
当电流发生变化时,线圈的磁场也随之变化,产生电动势。
这种电动势的方向与电流变化的方向相反,试图阻止电流变化。
这种现象称为自感现象。
自感现象的数学表达式为:ε = -L * dI/dt其中,ε表示自感电动势,L表示电感的自感系数,dI/dt表示电流变化的速率。
根据这个公式,我们可以看出,自感电动势与电流变化的速率呈线性关系。
二、互感现象互感是指两个或者多个线圈之间通过磁场相互感应产生的电动势现象。
当一个线圈中的电流发生变化时,将会生成一个磁场,这个磁场会穿过另一个线圈,从而在另一个线圈中产生电动势。
这种现象称为互感现象。
互感现象的数学表达式为:ε = -M * dI1/dt其中,ε表示互感电动势,M表示互感系数,dI1/dt表示第一个线圈电流的变化速率。
互感系数M与线圈的结构有关,正比于线圈的匝数和相对位置。
互感现象不仅存在于两个线圈之间,还可以存在于一个线圈的不同部分。
当线圈自身的一部分对另一部分产生感应时,也会发生互感现象。
三、电感对电路的影响电感具有阻碍电流变化的特性,这对电路有着重要的影响。
1. 自感对电路的影响:在直流电路中,自感会形成一个扼流圈,阻碍电流的变化。
这可以用来稳定直流电压,避免电流的突变。
在交流电路中,自感会引起电路的阻抗变化。
阻抗由电阻和电感共同决定,而电感对不同频率的电流具有不同的阻抗。
这使得电感在交流电路中可以用作滤波器、隔直流器等。
2. 互感对电路的影响:互感在变压器、电感耦合放大器等电路中起着重要作用。
变压器利用互感现象将电压变换到合适的水平,实现电能传输和变压变流。
电感耦合放大器则通过互感将信号传递到输出电路,增加信号的幅度。
电磁感应中的自感与互感现象电磁感应是电磁学中的重要概念之一,它描述了磁场和电场之间的相互作用。
在电磁感应中,自感和互感是两个重要的现象。
本文将探讨自感和互感的概念、原理以及其在实际应用中的重要性。
一、自感的概念与原理自感是指电流在变化时所产生的电动势。
当电流通过一个线圈时,线圈本身就会产生一个磁场。
当电流发生变化时,磁场也会发生变化,从而产生一个自感电动势。
自感电动势的大小与电流的变化速率成正比,而与线圈的形状和材料有关。
自感现象可以用法拉第定律来描述,即自感电动势等于自感系数乘以电流的变化率。
自感系数取决于线圈的形状和材料,通常用亨利(H)来表示。
自感系数越大,线圈的自感效应越强。
二、互感的概念与原理互感是指两个或多个线圈之间通过磁场相互作用而产生的电动势。
当一个线圈中的电流变化时,它所产生的磁场会穿过附近的另一个线圈,从而在另一个线圈中产生一个互感电动势。
互感电动势的大小与电流变化率以及线圈之间的耦合系数有关。
互感现象可以用法拉第定律来描述,即互感电动势等于互感系数乘以电流的变化率。
互感系数取决于线圈之间的物理距离、线圈的形状和材料,通常用亨利(H)来表示。
互感系数越大,线圈之间的互感效应越强。
三、自感与互感的应用自感和互感在电磁学中有着广泛的应用。
其中一个重要的应用是变压器。
变压器利用互感现象将交流电能从一个线圈传输到另一个线圈。
当一个线圈中的电流变化时,它所产生的磁场会穿过另一个线圈,从而在另一个线圈中产生一个互感电动势。
通过合理设计线圈的匝数比例,可以实现电压的升降。
另一个重要的应用是感应电动机。
感应电动机利用自感和互感现象将电能转化为机械能。
当电流通过线圈时,线圈本身会产生一个磁场,这个磁场会与定子产生的磁场相互作用,从而产生一个力矩,驱动电动机转动。
此外,自感和互感还应用于电子设备中的滤波器、变频器等电路中。
通过合理设计线圈的参数,可以实现对电流和电压的调节和控制。
总结电磁感应中的自感和互感是两个重要的现象。
什么是自感、互感?他们有什么区别与特点磁电感应与电磁感应,是电气领域广泛应用的能量转换方式。
比如电动机、变压器、整流器等,其转换过程离不开自感和互感两种方式。
什么是自感与互感呢?你清楚吗?很多电工虽然略懂一二,但只知皮毛。
并不能全面解释概念与熟知原理,下面我们将进行一一解答。
希望为你夯实电工基础提供支持与帮助!一、什么是自感、互感?1、自感:指当电流通过导体时,自身在电流变化的状态下,其周围产生电磁感应现象,叫做自感现象。
自感的产生与大小,与磁通匝数、自感系数、自感磁能、自感电压四个方面的因素所影响。
自感在电工、电器、无线电技术应用广泛,比如我们常见的接触器线圈、电磁阀、电感元件、电控锁等。
2、互感:当一个线圈产生电流变化时,临近线圈也随之产生电压电流变化。
人们把这种磁量转换的方式,称为互感现象。
互感的产生与大小,会受单线圈自感系数与互感系数(两个线圈的几何形状,大小,相对位置)所影响。
通过互感现象,能量可以从一次线圈传递给二次线圈。
如我们常见的变压器、感应线圈、稳压器等。
二、自感与互感的区别有哪些?1、自感是单线圈电磁感应,互感是双线圈电磁感应。
是两种不同的能量转换方式,但都是电磁感应的原理。
2、自感为电能转为磁能的性能方式,互感可实现一种电压电流转为另一种电压电流的方式。
3、自感为自身电磁感应,互感会受自感的影响因素而发生变化。
4、两种感应方式,在电子、电器中与其他电气元件相互连接,所实现的功能差异较大。
一般自感用于调频、谐振、电磁感应等作用。
互感则用于电路变压器、电压电流调节、电源稳压等用途。
通过上述内容,我们基本了解了自感、互感的含义解释与区别差异。
希望你潜心学习,应用掌握,不断巩固与提升自身的电气技术能力。
电磁感应中的自感和互感电磁感应是一种重要的物理现象,指的是在磁场或电场的作用下导体中产生电流或电压的现象。
而在电磁感应中,自感和互感是两个重要的概念,它们在电路中起到了关键的作用。
本文将详细介绍电磁感应中的自感和互感的概念、特性及其在实际应用中的重要性。
一、自感自感是指电流在闭合回路中产生的磁场对自身产生的感应作用。
当电流在导线中流动时,会形成一个磁场,这个磁场会产生感应电动势,阻碍电流的变化。
这种阻碍电流变化的现象就是自感现象。
自感的大小与电流变化的速率及线圈的结构有关。
根据法拉第电磁感应定律,电流变化越快,自感现象越显著。
此外,线圈匝数越多、线圈面积越大、线圈材料磁导率越大,自感现象也越明显。
自感的应用非常广泛,例如变压器的初级线圈和次级线圈之间,由于自感带来的电势差,使得能够实现电能的传递。
另外,自感还被广泛应用于电磁继电器、变频器等电子设备中,起到了强调和保护电路的作用。
二、互感互感是指两个或多个线圈之间由于磁场的相互作用而产生的电感现象。
当一个线圈的电流变化时,产生的磁场会影响到另一个线圈,并在其中产生感应电动势。
这种电动势即为互感电动势,而产生这种电动势的现象即为互感现象。
互感的大小与两个线圈之间的匝数、线圈的结构以及磁性材料的特性有关。
匝数越多、线圈结构越密集,互感现象越显著。
而在铁芯材料较好的情况下,互感现象进一步增强。
互感在电力系统和通信系统中有着广泛的应用。
在电力系统中,互感是变压器工作的基础,通过改变线圈的匝数比,可以实现电压的升降。
而在通信系统中,互感则用于传输信号,实现电信号的双向传输。
三、自感与互感的区别与联系自感和互感是电磁感应中的两个重要概念,它们在电磁场中产生的感应作用有着一定的区别和联系。
首先,自感只涉及一个线圈的磁场对自身的感应作用,而互感则涉及两个或多个线圈之间的磁场相互作用,因此互感是一种相对于自感的更复杂的感应现象。
其次,自感主要取决于线圈的匝数、电流的变化速率和线圈的结构,而互感则还与线圈之间的相对位置以及磁性材料的特性有关。
第6节互感和自感1.当一个线圈中的电流变化时,会在另一个线圈中产生感应电动势,这种现象叫互感,互感的过程是一个能量传递的过程。
2.当一个线圈中的电流变化时,会在它本身激发出感应电动势,叫自感电动势,自感电动势的作用是阻碍线圈自身电流的变化。
3.自感电动势的大小为E =L ΔI Δt,其中L 为自感系数,它与线圈大小、形状、圈数,以及是否有铁芯等因素有关。
4.当电源断开时,线圈中的电流不会立即消失,说明线圈中储存了磁场能。
一、互感现象1.定义两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势的现象。
产生的电动势叫做互感电动势。
2.应用互感现象可以把能量由一个线圈传递到另一个线圈,变压器、收音机的“磁性天线”就是利用互感现象制成的。
3.危害互感现象能发生在任何两个相互靠近的电路之间。
在电力工程和电子电路中,互感现象有时会影响电路正常工作。
二、自感现象和自感系数1.自感现象 当一个线圈中的电流变化时,它产生的变化的磁场在它本身激发出感应电动势的现象。
2.自感电动势 由于自感而产生的感应电动势。
3.自感电动势的大小E =L ΔI Δt,其中L 是自感系数,简称自感或电感,单位:亨利,符号为H 。
4.自感系数大小的决定因素 自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关。
三、磁场的能量1.自感现象中的磁场能量(1)线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中。
(2)线圈中电流减小时:磁场中的能量释放出来转化为电能。
2.电的“惯性” 自感电动势有阻碍线圈中电流变化的“惯性”。
1.自主思考——判一判(1)两线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象。
(×)(2)在实际生活中,有的互感现象是有害的,有的互感现象可以利用。
(√)(3)只有闭合的回路才能产生互感。
(×)(4)线圈的自感系数与电流大小无关,与电流的变化率有关。
电磁感应中的互感与自感在电磁学中,互感和自感是两个非常重要的概念。
它们在电磁感应现象中起着重要作用,对于理解电路和电磁场的相互作用具有关键意义。
本文将详细介绍互感和自感的概念、工作原理和应用。
一、互感互感是指两个或多个线圈之间通过磁场耦合产生的电感。
当其中一个线圈通电时,通过互感,其产生的磁场会影响到其他线圈中的电流。
这种现象被称为互感现象。
互感的数学表达式可以通过法拉第定律得到:ε2 = -M * dI1/dt其中,ε2表示第二个线圈中感应出的电动势,M为互感系数,dI1/dt为第一个线圈中电流的变化速率。
互感的大小与线圈的匝数、线圈之间的距离以及磁性材料的性质密切相关。
在实际应用中,互感常被用于变压器、电感和共振电路等领域。
变压器利用互感的原理将电能从一个线圈传输到另一个线圈,实现了电能的有效转换和传输。
二、自感自感是指线圈本身通过磁场产生的电感。
当线圈中的电流变化时,由于自感的存在,会在线圈本身产生感应电动势,阻碍电流变化的过程。
这种现象被称为自感现象。
自感的数学表达式同样可以通过法拉第定律得到:ε = -L * dI/dt其中,ε表示线圈中感应出的电动势,L为自感系数,dI/dt为线圈中电流的变化速率。
自感的大小与线圈的匝数、线圈的形状以及磁环境等因素息息相关。
自感可以产生一系列重要的电磁现象,例如感应电流、自感电压峰值等。
在实际应用中,自感常被用于电感元件的设计和选取,以及电路中的稳压、滤波等功能。
三、互感与自感的区别与联系虽然互感和自感都涉及到磁场和电感的概念,但它们有着明显的区别和联系。
首先,互感是指线圈之间通过磁场相互影响产生的电感,而自感是指线圈本身通过磁场产生的电感。
其次,互感和自感都可以通过数学模型进行描述,它们的计算方式和电动势表达式也存在差异。
互感与不同线圈的关系紧密相连,而自感与线圈自身的特性有关。
最后,互感和自感在实际应用中有着不同的用途。
互感主要用于能量的转换和传输,例如变压器中的能量传递;自感主要用于电路的稳定和控制,例如滤波电路中的稳定电流。
电磁感应理解互感和自感现象的应用在我们日常生活中,电磁感应是一种非常常见的物理现象,它是指导线中电流变化产生的磁场经过导线圈内、外环境产生的一种电动势。
通过对电磁感应的研究,我们可以更好地理解互感和自感现象,并将其应用于各个领域。
一、互感现象互感现象是指当两个电路存在磁耦合时,其中一个电路中的电流或电压的变化会引起另一个电路中的电流或电压的变化。
互感现象在电子通信、电力传输和电路设计中有着广泛的应用。
电子通信:互感现象在无线通信系统中起着重要的作用。
例如,手机中的天线将电信号作为电磁波发送出去,而天线接收到的电磁波也会通过互感现象转换成电信号。
同时,在通信线路中使用的变压器也利用了互感现象进行信号的传输和接收。
电力传输:变压器是电力传输系统中的重要设备,它利用了互感现象进行电能的传输。
变压器中的两个线圈通过磁耦合,通过改变输入线圈的电流来实现输出线圈电流和电压的变化。
这种方式可以实现电能从发电厂向用户的传输,提高了电力传输的效率。
电路设计:互感器在电路设计中也有着广泛的应用。
例如,互感输入电流传感器可以测量电路中的电流,并将其转换为与电流成正比的输出电压。
另外,交流耦合电感器可以将输入信号与输出信号在电路中进行耦合,以实现信号放大或滤波。
二、自感现象自感现象是指导线自身的电阻率变化引起的感应电动势。
自感现象在电子元件和电路设计中也有着重要的应用。
电子元件:电感器是利用自感现象制造的电子元件之一。
电感器通过将导线绕制成线圈,利用自感现象将变化的电流转换成感应电动势。
这种感应电动势可以用于各种电路中,例如滤波器、调谐电路和振荡电路。
电路设计:自感现象也广泛应用于电路设计中。
例如,为了抑制电路中的高频噪声,可以使用自感元件制造一个自感环,通过自感现象将高频噪声转变为热能。
另外,在配电线路中使用的电感线圈也可以通过自感现象过滤电路中的谐振电流。
三、电磁感应的其他应用除了互感和自感现象的应用之外,电磁感应还具有其他一些重要的应用。
电感的自感与互感现象电感是电路中常见的一种元件,其具有自感和互感的特性。
本文将围绕电感的自感与互感现象进行论述,探讨其原理和应用。
一、电感的自感现象在电路中,电感是由线圈或线圈状元件构成的。
当通过电感的电流变化时,电感内部会产生自激励电动势。
这种现象即为电感的自感现象。
自感现象可以通过法拉第定律来解释,即自感电动势与电流变化率成正比。
自感现象使得电感对电流变化有惯性,即电流变化缓慢时自感电动势产生较小,而电流变化快速时自感电动势产生较大。
这导致了电感对直流电具有阻碍作用,而对交流电具有阻抗作用。
电感的自感现象在电路中的应用非常广泛。
例如,自感电动势的阻碍作用可以用于直流电阻的调节和稳压。
此外,自感现象还被广泛应用于工业和通信领域,用于抑制噪声和滤波。
二、电感的互感现象当两个电感线圈非常接近时,它们之间会发生互感现象。
互感现象是指一个线圈中的电流变化会在另一个线圈中诱发出电动势。
这种现象是由于线圈之间的磁场相互作用所引起的。
互感现象使得两个电感之间存在一种相互影响的关系。
当一个线圈中电流变化时,会产生相应的感应电动势,在另一个线圈中引起电流变化。
这种现象被广泛应用于变压器和电感耦合放大器等电路中。
变压器是利用电感的互感现象来改变电压的装置。
通过将输入电流与输出电流在互感装置中传递,可以实现电流变压比例的调节。
这使得变压器广泛应用于电力系统、电子设备和通信系统中。
三、电感与电路中的应用除了自感和互感现象,电感在电路中还有其他重要的应用。
首先,电感可以用作频率选择性电路的关键元件。
通过选择适当的电感值和电容值,可以实现对特定频率的信号进行选择性放大或抑制。
这被广泛应用于无线电接收器和滤波器中。
其次,电感可以用于储能和能量转移。
当电感内的电流变化时,会在磁场中储存能量。
这使得电感可以用于电源和储能装置中,如电感式电源、脉冲电源和电感励磁器等。
此外,电感还可以用于抑制电磁干扰和滤波。
在电路中引入适当的电感元件,可以有效地减小或屏蔽外界电磁场对电路的影响。