高炉煤气加热的特点分析
- 格式:doc
- 大小:12.50 KB
- 文档页数:2
高炉煤气、转炉煤气和焦炉煤气的区别?冶金企业煤气安全知识一、高炉煤气高压鼓风机鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产生的是二氧化碳和一氧化碳,二氧化碳又和炙热的焦炭产生一氧化碳,一氧化碳在上升的过程中,还原了铁矿石中的铁元素,使之成为生铁,这就是炼铁的化学过程。
铁水在炉底暂时存留,定时放出用于直接炼钢或铸锭。
这时候在高炉的炉气中,还有大量的过剩的一氧化碳,这种混和气体,就是高炉煤气。
每炼一吨铁可产生2100-2200立方米的高炉煤气。
这种含有可燃一氧化碳的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气,如加热热轧的钢锭、预热钢水包等。
也可以供给民用,如果能够加入焦炉煤气,就叫做“混和煤气”,这样就提高了热值。
高炉煤气为炼铁过程中产生的副产品,主要成分为:CO, C02, N2、H2、CH4等,其中可燃成分CO含量约占25%左右,H2、CH4的含量很少,CO2, N2的含量分别占15%,55 %,热值仅为3500KJ/m3左右。
高炉煤气的成分和热值与高炉所用的燃料、所炼生铁的品种及冶炼工艺有关,现代的炼铁生产普遍采用大容积、高风温、高冶炼强度、高喷煤粉量的生产工艺,采用这些先进的生产工艺提高了劳动生产率并降低能耗,但所产的高炉煤气热值更低,增加了利用难度。
高炉煤气中的CO2, N2既不参与燃烧产生热量,也不能助燃,相反,还吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。
高炉煤气的着火点并不高,似乎不存在着火的障碍,但在实际燃烧过程中,受各种因素的影响,混合气体的温度必须远大于着火点,才能确保燃烧的稳定性。
高炉煤气的理论燃烧温度低,参与燃烧的高炉煤气的量很大,导致混合气体的升温速度很慢,温度不高,燃烧稳定性不好。
燃烧反应能够发生的另一条件是气体分子间能够发生有效碰撞,即拥有足够能量的相互之间能够发生氧化反应的分子间发生的碰撞,大量的C02,N2的存在,减少了分子间发生有效碰撞的几率,宏观上表现为燃烧速度慢,燃烧不稳定。
新形势下高炉煤气利用的技术途径与前景分析1. 引言1.1 煤气利用的重要性煤气作为高炉生产中的重要副产品,在工业生产中具有重要的意义。
煤气利用的重要性主要体现在以下几个方面:煤气利用可以提高能源利用效率,实现资源的有效利用。
随着资源日益紧缺,煤气的利用可以将原本被浪费的资源转化为有用的能源,提高煤炭利用率,实现资源的循环利用。
煤气利用对于促进工业生产的可持续发展、改善环境质量、提高经济效益具有重要的意义。
加强高炉煤气利用技术研究,提高煤气利用效率,具有重要的现实意义和深远的发展前景。
1.2 新形势下高炉煤气利用的现状分析一、资源利用情况:当前我国煤炭资源依然是主要的能源之一,高炉煤气作为煤炭的副产品,其利用率仍有待提高。
目前,我国高炉煤气利用率偏低,存在很大的发展空间。
部分企业在高炉煤气利用上投入力度不够,导致煤气浪费现象普遍存在。
二、技术水平:虽然我国在高炉煤气利用技术方面取得了一定进展,但与国际先进水平相比仍有差距。
目前,我国高炉煤气利用技术多以传统的焚烧、回收为主,尚未实现全面的资源化利用。
三、政策支持:政府对高炉煤气利用方面给予了一定的政策支持,包括一些财政补贴和税收优惠等措施。
但是在政策实施和执行层面还存在一些问题,制约了高炉煤气利用的发展。
新形势下高炉煤气利用仍面临一些挑战,需要加大技术研发力度、加强政策支持力度,不断提高资源利用效率,实现高炉煤气利用的可持续发展。
2. 正文2.1 煤气利用的技术途径煤气利用的技术途径包括传统技术和创新技术两大类。
传统技术主要包括煤气发电、煤气制热以及煤气化工等领域。
在煤气发电方面,通过燃烧煤气发电可以实现能源的高效利用,同时减少对环境的污染。
在煤气制热方面,利用煤气进行集中供热,能够提高供热效率,并降低能源消耗。
在煤气化工方面,利用煤气生产石化产品、化肥等化工产品,可以实现资源的综合利用,促进产业转型升级。
创新技术方面,随着科技的进步和社会的需求,新型煤气利用技术不断涌现。
高炉煤气和转炉煤气热值概述说明以及解释1. 引言1.1 概述高炉煤气和转炉煤气是在冶金工业中产生的两种重要燃料气体。
它们在冶金过程中起着至关重要的作用,广泛应用于铁矿石冶炼、钢铁制造等领域。
本文将对这两种煤气的热值进行概述,探讨其成分与形成过程,并比较它们在工业应用中的优缺点。
1.2 文章结构本文主要分为五个部分:引言、高炉煤气、转炉煤气、高炉煤气与转炉煤气的比较以及结论。
首先,在引言部分,我们将简要介绍全文的大致内容和结构。
1.3 目的本文旨在全面了解和比较高炉和转炉产生的两种不同类型的提纯合成气体,即高炉煤气和转炉焦化气。
通过深入了解它们的组成成分、形成过程以及应用领域中存在的优缺点,我们可以更好地理解它们在冶金行业中的作用,并对未来技术的发展提出建议。
请注意,本文将使用传统高炉和转炉技术的相关概念和术语,并重点讨论其在工业应用中的现状和趋势。
2. 高炉煤气2.1 热值概述高炉煤气是在高炉冶炼过程中产生的一种副产品。
它是由焦碳在高温下与空气和其他物质反应而形成的混合气体。
高炉煤气主要包含一氧化碳、二氧化碳、氮以及少量的水蒸汽、甲烷和其他杂质。
它具有较高的能量价值,通常用于加热和提供能源供应。
2.2 形成过程与组成高炉煤气的形成与高炉冶金过程密切相关。
当焦碳进入高温高压环境时,它会发生部分氧化反应,生成一氧化碳和二氧化碳等物质。
同时,在还原条件下,焦碳也可以与其他材料(如铁矿石)反应,生成一些挥发性有机物质。
这些物质通过裂解、重整和改性等过程生成了最终的高炉煤气。
根据不同的冶金工艺和原料特性,高炉煤气的组成可能会有所差异。
然而,通常情况下,一氧化碳和二氧化碳的含量是最高的,占总体组成的一大部分。
其他主要成分包括氮、水蒸汽和甲烷等。
2.3 应用与优缺点高炉煤气有广泛的工业应用。
首先,它可以被直接利用作为能源供应。
通过合理设计和调整供气参数,高炉煤气可以用于加热锅炉、发电设备以及其他需要燃料的工艺装置中。
单位内部认证焦炉调温工知识考试(试卷编号191)1.[单选题]正常生产中,主蒸汽温度控制在( )。
A)540±10℃B)550±10℃C)530±10℃答案:A解析:2.[单选题]当作业场所空气中有害化学品气体的浓度超过国家规定标准时,工人必须使用适当的()。
A)预防药品B)个人防护用品C)保健品答案:B解析:3.[单选题]拦焦车高压风机采用( )方式起动。
A)Y-△B)△-YC)Y-Y答案:A解析:4.[单选题]提供相同的热量,( )产生的废气最多。
A)焦炉煤气B)高炉煤气C)发生炉煤气答案:B解析:5.[单选题]一般情况下,在小烟道废气出口处测得的a值( )。
A)1.1~1.2B)0.5~1.0C)1.5~1.6答案:A解析:6.[单选题]燃烧室内所有火道所测温度在换向后20秒不得超出(___)℃,不得低于(___)℃C)1200、850答案:A解析:7.[单选题]炼焦速度的提高会使焦炭裂纹率增大,(___)焦炭块度A)降低B)增大C)不变答案:A解析:8.[单选题]炼焦煤的( )是近年来的新工艺。
A)先配合后粉碎B)先粉碎后配合C)选择性粉碎答案:C解析:9.[单选题]正常时炉头温度应调节到不低于( )最合适。
A)950℃B)1000℃C)1050℃答案:C解析:10.[单选题]拦焦车刮板机突然停转要进行检查严禁( )。
A)不检查就起动B)强行起动C)起动答案:B解析:11.[单选题]测温工记录在加热制度台帐上的煤气压力是( )。
A)绝对压力B)表压C)差压答案:B解析:12.[单选题]焦炉修补原则是( )。
C)对小故障先不修理,待其发展到影响焦炉加热或推焦时再进行修理答案:B解析:13.[单选题]一级冶金焦抗碎强度应为( )%。
A)≥76B)≥80C)≥85答案:B解析:14.[单选题]炉门着大火时,应(___)A)水熄灭B)压缩空气熄灭C)灭火器熄灭答案:B解析:15.[单选题]为使全炉炉温分布比较均匀,焦炉多采用( )。
高炉煤气特点高温高压高炉煤气是高炉生产过程中产生的一种副产品,具有高温高压的特点。
高炉煤气的主要成分是一氧化碳(CO),氢气(H2),氮气(N2)和一些杂质气体,如二氧化碳(CO2),甲烷(CH4)等。
高炉煤气经过净化和冷却后,可以作为燃料供给高炉本身的预热和还原反应。
高炉煤气具有以下特点:一、高温高压:由于高炉煤气是高炉炼化煤焦炭的产物,它在高炉炉腔内经过高温高压的作用,因此具有非常高的温度和压力。
一般情况下,高炉煤气的温度可达到500°C以上,压力可达到5-8 MPa。
高温高压的特点使得高炉煤气能够提供足够的能量,满足高炉炉内的热需求。
二、丰富的可燃成分:高炉煤气主要成分是一氧化碳(CO)和氢气(H2),它们是优良的燃料。
一氧化碳在高炉内可以与铁矿石进行还原反应,从而得到纯铁。
而氢气则可以作为燃料提供热能。
此外,高炉煤气中还含有一定比例的二氧化碳、甲烷等可燃成分,提供了多样化的燃料选择。
三、高炉煤气的热值高:由于高炉煤气中含有丰富的可燃成分,加之高温高压的特点,因此其热值较高。
一般情况下,高炉煤气的低位热值可达到6000-8000千卡/立方米。
这意味着少量的高炉煤气就能提供大量的热能,实现高炉内的高效热利用。
四、高炉煤气含有一定的杂质:高炉煤气中含有一定比例的杂质气体,如二氧化碳、甲烷等。
这些杂质气体不仅降低了高炉煤气的热值,同时还会对高炉燃烧系统和相关设备产生一定的腐蚀和封堵作用。
因此,在利用高炉煤气作为燃料时,需要对其进行净化处理,以提高其可利用性和稳定性。
总的来说,高炉煤气具有高温高压、丰富的可燃成分、高热值和含杂质等特点。
充分利用高炉煤气作为燃料不仅可以减少能源消耗,降低生产成本,还可以减少对环境的污染,是一种可持续发展的能源利用方式。
同时,对于高温高压的处理要求也提高了高炉煤气的安全使用难度,需要在使用过程中加强监测和控制,确保高炉煤气的安全使用和生产效率的提高。
高炉煤气品质及压力对蓄热式推钢炉运行的重要性文章介绍了高炉煤气品质及压力在蓄热式推钢炉中的重要性,以及高炉煤气品质及压力会影响加热炉的哪些方面。
标签:高炉煤气;推钢炉;蓄热式1 前言蓄热式加热炉是利用蓄热式燃烧技术,实现高温低氧燃烧的加热炉,它具有高效余热回收、高温预热空、煤气及低NOx排放等优点。
在蓄热式燃烧系统中煤气是非常重要的一个组成部分,煤气品质的优劣以及压力的稳定性对加热炉的正常生产有着至关重要的作用。
2 工程概况我公司对某钢厂推钢炉进行改造,将原用高焦混合煤气常规燃烧的推钢式加热炉改为燃高炉煤气的双蓄热推钢式加热炉。
改造后的加热炉基本参数见表1。
表1该加热炉经过改造投产后正常运行5个月停炉时发现炉内氧化铁皮量较大,蓄热式烧嘴内的蜂窝体孔洞有被熔融物堵塞的现象,同时炉压波动较大。
经过多次更换蜂窝体以及加强空燃比控制调节等手段都没有很好的改善炉况,后经技术人员在现场跟踪加热炉生产一段时间发现该加热炉煤气总管压力波动非常大,煤气管网没有净化措施,从高炉出来后直接进入用户使用。
针对该加热炉较有代表性的正常生产一小时进行记录发现:加热炉煤气压力最低值为3500pa,最高值为12500pa,煤气压力波动在这个范围内很频繁。
炉膛压力最低的时候为-80pa,最高的时候已经超出了元件检测的最大范围。
这两个指标在短短的一个小时内就如此频繁波动,而且波动幅度非常巨大。
3 原因分析针对以上现象,分析煤气品质及压力波动对推钢式加热炉有以下影响:①对钢坯氧化烧损的影响煤气压力频繁波动,会导致各段加热炉调节阀为了满足预设的空燃比而频繁调节,同时调节阀的开合有个时间滞后性,在频繁波动的煤气压力下很难保证能将空燃比按照设计值进行控制,当空气量大于煤气需要时,炉内会有多余的高温空气存在,钢坯表面与这些富余的空气接触会发生氧化,长时间有富余空气存在于炉内时,炉内的钢坯氧化铁皮会急剧增多。
推钢式加热炉每次推钢机都会推动整炉钢在炉内向出料侧前进,钢坯在炉底水管上的震动大表面的氧化铁皮在震动的过程中会剥落,钢坯新的表层会和富余的空气接触形成新的氧化,多次恶性循环会导致炉内的氧化铁皮剧增。
高炉煤气:高压鼓风机(罗茨风机)鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产生的是二氧化碳和一氧化碳,二氧化碳又和炙热的焦炭产生一氧化碳,一氧化碳在上升的过程中,还原了铁矿石中的铁元素,使之成为生铁,这就是炼铁的化学过程。
铁水在炉底暂时存留,定时放出用于直接炼钢或铸锭。
这时候在高炉的炉气中,还有大量的过剩的一氧化碳,这种混和气体,就是“高炉煤气”。
这种含有可燃一氧化碳的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气,如加热热轧的钢锭、预热钢水包等。
也可以供给民用,如果能够加入焦炉煤气,就叫做“混和煤高炉气”,这样就提高了热值。
成分高炉煤气为炼铁过程中产生的副产品,主要成分为:CO、CO2、N2、H2、CH4等,其中可燃成分CO含量约占25%左右,H2、CH4的含量很少,CO2、N2的含量分别占15%、55 %,热值仅为3500KJ/m³左右。
高炉煤气的成分和热值与高炉所用的燃料、所炼生铁的品种及冶炼工艺有关,现代的炼铁生产普遍采用大容积、高风温、高冶炼强度、高喷煤粉量的生产工艺,采用这些先进的生产工艺提高了劳动生产率并降低能耗,但所产的高炉煤气热值更低,增加了利用难度。
高炉煤气中的CO2, N2既不参与燃烧产生热量,也不能助燃,相反,还吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。
高炉煤气的着火点并不高,似乎不存在着火的障碍,但在实际燃烧过程中,受各种因素的影响,混合气体的温度必须远大于着火点,才能确保燃烧的稳定性。
高炉煤气的理论燃烧温度低,参与燃烧的高炉煤气的量很大,导致混合气体的升温速度很慢,温度不高,燃烧稳定性不好。
燃烧反应能够发生的另一条件是气体分子间能够发生有效碰撞,即拥有足够能量的相互之间能够发生氧化反应的分子间发生的碰撞,大量的C02、N2的存在,减少了分子间发生有效碰撞的几率,宏观上表现为燃烧速度慢,燃烧不稳定。
高炉煤气中存在大量的CO2L、N2,燃烧过程中基本不参与化学反应,几乎等量转移到燃烧产生的烟气中,燃高炉煤气产生的烟气量远多于燃煤。
高炉煤气加热的特点分析
高炉煤气需要预热
同体积的高炉煤气的发热量较焦炉煤气低得多,一般为3300—4200KJ/m3。
热值低的高炉煤气是不容易燃烧的,为了提高燃烧的热效应,除了空气需要预热外,高炉煤气也必须预热。
因此使用高炉煤气加热时,燃烧系统上升气流的蓄热室中,有一半用来预热空气,另一半用来预热煤气。
煤气与空气一样,经过斜道进入燃烧室立火道进行燃烧。
燃烧系统的阻力大
用高炉煤气加热时,耗热量高(一般比焦炉煤气高15%左右),产生的废气多,且密度大,因而阻力也较大。
而上升气流虽然供入的空气量较少,但由于上升气流仅一半蓄热室通过空气,因此上升气流空气系统和阻力仍比焦炉煤气加热时要大。
高炉煤气燃烧火焰较长
高炉煤气中的惰性气体约占60%以上。
因而火焰较长,焦饼上下加热的均匀性较好。
由于通过蓄热室预热的气体量多,因此蓄热室、小烟道和分烟道的废气温度都较低。
小烟道废气出口温度一般比使用焦炉煤气加热时低40--60℃。
高炉煤气毒性大
高炉煤气中CO的含量一般为25%--30%,为了防止空气中CO含量超标,必须保持煤气设备严密。
高炉煤气设备在安装时应严格按规定达到试压标准,如果闲置较长时间再重新使用前,必须再次进行打压试漏,确认管道、设备严密后才能改用高炉煤气加热。
日常操作中,还应对交换旋塞定期清洗加油,对水封也应定期检查,保持满流状态,蓄热室封墙,小烟道与联接管处的检查和严密工作应经常进行高炉煤气进入交换开闭器后即处于负压状态。
一旦发现该处出现正压,应立即查明原因组织人力及时处理,确保高炉煤气进入交换开闭器后处于负压状态。
高炉煤气含尘量大
焦炉所用的高炉煤气含尘量要求最大不超过15mg/m3。
近年来由于高压炉顶和洗涤工艺的改善,高炉煤气含尘量可降到5mg/m3以下,但长期使用高炉煤气后,煤气中的灰尘也会在煤气通道中沉积下来,使阻力增加,影响加热的正常调节,因而需要采取清扫措施。
另外,高炉煤气是经过水洗涤的,它含有饱和水蒸汽。
煤气温度越高,水分就越多,会使煤气的热值降低。
从计算可知,煤气温度由20℃升高到40℃时,要保持所供热量不变,
煤气的表流量约增加12%。
因此要求高炉煤气的温度不应超过35℃。
当煤气温度发生一定变化时,交换机工应立即立即调整加热煤气的表流量,以保证供给焦炉的总热量的稳定。