九年级数学上册 1.3《正方形的性质与判定》教案2 (新版)北师大版
- 格式:doc
- 大小:118.68 KB
- 文档页数:3
1.3.2正方形的性质与判定教学目标:1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力.3.经历“探索—发现—猜想—证明”的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题.4.通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣.教学重点与难点:重点:形成判定正方形的基本思路难点:综合应用菱形、矩形、正方形的性质定理和判定定理探索中点四边形形状课前准备:多媒体课件.教学过程:一、创设情境导入新课活动内容:回答下列问题.问题1:我们学习了平行四边形、矩形、菱形、正方形,那么请思考一下,它们之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流.问题2:如图,将一张长方形纸对折两次,然后剪下一个角,打开.怎样剪才能剪出一个正方形?问题3:议一议:满足什么条件的矩形是正方形?满足什么条件的菱形是正方形?与同伴交流一下.处理方式:问题1由学生尝试画出平行四边形、矩形、菱形、正方形之间的关系图,目的是让学生理清它们之间的联系和区别.对于问题2先让学生折纸,然后用剪刀剪出一个正方形,并引导学生思考怎样判定一个图形是正方形. 这也为新课的学习做好铺垫.设计意图:(1)以问题串的形式引入新课,让学生明确本节课所要解决的问题。
(2)让学生回忆平行四边形、矩形、菱形、正方形之间的关系,正方形性质和判定的探索过程及其得出的结论,目的是启发引导学生体会探索结论和证明结论的相互关系,即合情推理与演绎推理的相互依赖和相互补充的辨证关系。
二、探究学习,感悟新知学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法。
《正方形的性质与判定》教学设计第2课时一、教学目标1.理解并掌握正方形的判定定理,并会用正方形的判定定理进行证明和计算;2.经历正方形判定定理及中点四边形的探索过程,进一步发展合情推理能力.3.能够用综合法证明正方形的判定定理,进一步发展演绎推理能力.4.体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重难点重点:理解并掌握正方形的判定定理,会用正方形的判定定理进行证明和计算.难点:探究证明正方形的判定定理,探究并证明中点四边形.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:先提出问题让学生观察,然后再动画演示.问题:观察下列实物中的正方形,说一说什么是正方形?预设答案:一组邻边相等且有一个角是直角的平行四边形叫做正方形.追问:正方形具有哪些性质呢?预设答案:正方形的四个角都是直角,四条边相等.正方形的对角线相等并且互相垂直平分.【想一想】你是如何判断一个四边形是矩形、菱形?预设答案:追问:怎样判定一个四边形是正方形呢?【操作】如图,将一张长方形纸片对折两次,然后剪下一个角打开,只要剪口线与折痕成45°角,展开后的图形就是正方形.你知道这样做的道理吗?【合作探究】教师活动:研究正方形的判定方法,准备了两个探究活动,活动1是从矩形的基础上探究,活动2是从菱形的基础上探究,最后得出正方形的4种判定方法.活动1准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证.满足怎样条件的矩形是正方形?预设答案:【猜想1】当矩形的一组邻边相等时,会变成一个正方形.【猜想2】当矩形的对角线互相垂直时,会变成一个正方形. 【证明】猜想1:有一组邻边相等的矩形是正方形. 已知:四边形ABCD 是矩形,AB =BC . 求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是矩形∵∵A =90°,四边形ABCD 是平行四边形 又∵ AB =BC ,∵四边形ABCD 是正方形.猜想2:对角线互相垂直的矩形是正方形.已知:四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,AC ∵BD .求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是矩形∵OA =OC =OB =OD ,∵BAD =90°. 又∵ AC ∵BD ,∵∵AOB ∵ ∵AOD (SAS ). ∵AB = AD .∵四边形ABCD 是正方形.(正方形的定义).DAB C【归纳】正方形的判定定理1:有一组邻边相等的矩形是正方形.符号语言:∵四边形ABCD是矩形,AB=BC,∵四边形ABCD是正方形.正方形的判定定理2:对角线互相垂直的矩形是正方形.符号语言:∵四边形ABCD是矩形,AC∵BD,∵四边形ABCD是正方形.活动 2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状,量量看是不是正方形.满足怎样条件的菱形是正方形?预设答案:【猜想3】当菱形的有一个角是直角时,会变成一个正方形.【猜想4】当菱形的对角线相等时,会变成一个正方形. 【证明】猜想3:有一个角是直角的菱形是正方形. 已知:四边形ABCD 是菱形,∵A =90°. 求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是菱形∵AB =BC ,四边形ABCD 是平行四边形 又∵ ∵A =90°,∵四边形ABCD 是正方形.猜想4:对角线相等的菱形是正方形. 已知:四边形ABCD 是菱形,对角线AC 与BD 相交于点O ,AC =BD .求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是菱形 ∵OA =OC ,OB =OD ,AC ∵BD . 又∵ AC =BD ,∵OA =OC =OB =OD ,∵AOB =∵BOC = ∵COD =∵AOD =90°.∵∵AOB 、∵AOD 、∵BOC 、∵COD 都DAB C是等腰直角三角形.∵∵BAD=90°∵四边形ABCD是正方形(正方形的定义).【归纳】正方形的判定定理3:有一个角是直角的菱形是正方形.符号语言:∵四边形ABCD是菱形,∵A=90°,∵四边形ABCD是正方形.定理4:对角线相等的菱形是正方形.符号语言:∵四边形ABCD是矩形,AC=BD,∵四边形ABCD是正方形.【典型例题】思考:任意画一个正方形,以四边的中点为顶点可以组成一个怎样的图形呢?预设答案:猜想:正方形你能尝试证明吗?【证明】已知:如图,点A1,B1,C1,D1 分别是正方形ABCD各边的中点.求证:四边形A1B1C1D1 为正方形.证明:连接AC,BD,∵A1,B1分别是AB和BC边中点,∴A1B1∥AC且A1B1=12 AC,同理可证C1D1∥AC且C1D1 =12 AC,A1D1∥BD且A1D1 =12 BD,B1C1∥BD且B1C1 =12 BD.∴四边形A1B1C1D1 为平行四边形.又∵四边形ABCD是正方形,∴AC = BD(正方形的对角线相等)AC⊥BD(正方形的对角线互相垂直),∴A1B1= A1D1 =B1C1= C1D1,∠1 = 90°.∴四边形A1B1C1D1 是菱形,∠2 = 90°.∴四边形A1B1C1D1 为正方形.归纳:以正方形的四边中点为顶点可以组成一个正方形.【议一议】教师活动:做一做环节从任意的四边形和正方形角度探究了中点四边形,议一议主要从矩形和菱形的角度探究,得出猜想并证明,最后得出决定中点四边形的形状的主要因素是:原四边形的对角线的长度和位置关系.问题1:菱形的中点四边形会是什么形状?预设答案:猜想:菱形的中点四边形是矩形.问题2:矩形的中点四边形会是什么形状?预设答案:猜想:矩形的中点四边形是菱形.请尝试证明这两个猜想?【证明】已知:如图,点E,F,G,H分别是菱形ABCD各边的中点.求证:四边形EFGH为矩形.证明:连接AC,BD,∵E,F分别是AB和BC边中点,∴EF∥AC,同理可证HG∥AC,EH∥BD,FG∥BD.∴EF∥HG,EH∥FG,∴四边形EFGH,PFQO为平行四边形.又∵四边形ABCD是菱形∴AC⊥BD(菱形的对角线互相垂直),∴∠1 = 90°. ∴四边形PFQO 为矩形.∴∠2=90°.∴四边形EFGH是矩形(矩形的定义)归纳:以菱形的四边中点为顶点可以组成一个矩形.已知:如图,点E,F,G,H分别是矩形ABCD各边的中点.求证:四边形EFGH为菱形.证明:连接AC,BD,∵E,F分别是AB和BC边中点,∴EF∥AC且EF = 12AC,同理可证HG∥AC且HG =12 AC,EH∥BD且EH=12BD,FG∥BD且FG=12BD.∴四边形EFGH为平行四边形.又∵四边形ABCD是矩形∴AC=BD(矩形的对角线相等),∴EF =EH∴四边形EFGH是菱形(菱形的定义)归纳:以矩形的四边中点为顶点可以组成一个菱形.追问:决定中点四边形形状的关键因素是什么?预设答案:决定中点四边形的形状的主要因素是:原四边形的对角线的长度和位置关系.教师给出练习,随时观察学生完成情况并相应H分别在它的四条边上,且AE= BF = CG = DH. 四边形EFGH是什么特殊四边形?你是如何判断的?答案:1.证明: 在正方形ABCD中,BE=DF,易证∵CEB∵∵AEB∵∵AFD∵∵CFD,即CE=AE=AF=FC,∵四边形AECF是菱形.2. 解:四边形EFGH是正方形.∵在正方形ABCD中,AE=BF=CG=DH,易证∵AEH∵∵DHG∵∵CGF∵∵BFE,即EH=HG=GF=FE,且∵AHE=∵DGH.∵∵DGH+∵DHG=90°,∵∵EHG=180°-(∵AHE+∵DHG)=90°,∵四边形EFGH是正方形.思维导图的形式呈现本节课的主要内容:教科书第25页。
1.3 正方形的性质与判定第1课时【教学目标】了解正方形的有关概念,理解并掌握正方形的性质定理.【教学重难点】重点:探索正方形的性质定理.难点:掌握正方形的性质的应用方法,把握正方形既是矩形又是菱形这一特性来学习本节课内容.【教学过程】一、探究导入【显示投影片】显示内容:展示生活中有关正方形的图片,幻灯片(多幅).【活动方略】教师活动:操作投影仪,边展示图片,边提出下面的问题:1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?四个角呢?正方形是矩形吗?是菱形吗?为什么?正方形具有哪些性质呢?学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).实验活动:教师拿出矩形按左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的矩形就是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊菱形也是正方形.教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质;它又是菱形,所以它又具有菱形的一切性质,归纳如下:正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 正方形性质:(1)边的性质:对边平行,四条边都相等.(2)角的性质:四个角都是直角.(3)对角线的性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角.(4)对称性:是轴对称图形,有四条对称轴.【设计意图】采用合作交流、发现、归纳的方式来解决重点问题,突破难点.二、探究新知【课堂演练】(投影显示)演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于0,MN//AB,且分别与OA、OB相交于M、N.求证:(1)BM=CN;(2)BM⊥CN.分析:本题是证明BM=CN,根据正方形性质,可以证明BM、CN所在ΔBOM 与ΔCON是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5 + ∠CMG= 90°就可以了.【活动方略】教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流.学生活动:课堂演练,相互讨论,解决演练题的问题.证明:(1) ∵四边形ABCD是正方形,∴∠COB=∠BOM= 90°,OC=OB.∵MN//AB,∴∠1=∠2, ∠ABO= ∠3,又∵∠1= ∠ABO= 45°,∴∠2=∠3,∴OM =ON,∴ΔCON≌ΔBOM,∴BM=CN.(2)由(1)知ΔBOM ≌ΔCON,∴∠4= ∠5,∵∠4+∠BMO=90°,∴∠5+∠BMC=90° , ∴∠CGM=90°, ∴BM ⊥CN.演练题2:如图,正方形ABCD 中,点E 在AD 边上,且AE= AD ,F 为AB 的中点,求证: ΔCEF 是直角三角形.分析:本题要证∠EFC= 90°,从已知条件分析可以得到只要利用勾股定理逆定理,就可以解决问题.这 里应用到正方形性质.【活动方略】教师活动:用投影仪显示演练题2,组织学生应用正方形和勾股定理逆定理分析,并请同学上讲台分析思路,板演.学生活动:先独立分析,找到证明思路是利用勾股定理的逆定理解决问题. 证明:设AB = 4a ,在正方形ABCD 中,DC=BC=4a ,AF=FB = 2a ,AE=a ,DE=3a.∵∠B=∠A=∠D=90°,由勾股定理得:EF2 +CF2= (AE2 +AF2) + (CB2 +BF2)= (a2 + 4a2) + (16a2+4a2)=25a2, CE2=CD2+DE2= (4a)2 + (3a)2=25a2,∴EF2 +CF2=CE2.由勾股定理的逆定理可知ΔCEF 是直角三角形.【设计意图】补充两道关于正方形性质应用的演练 题,提高学生的应用能力. 41三、范例点击例:已知:如图,四边形ABCD是正方形,矩形PECF的顶点P在正方形ABCD 的对角线BD上,E在BC上,F 在CD 上,连接AC、AP、PC、EF,若EC= 4,CF=3,求PA的长.分析:本题运用矩形对角线相等的性质可得EF=PC,运用正方形的性质可得AP=PC,进而可得AP=EF.因此,只要求出EF的值即可.解:∵四边形PECF是矩形,∴PC=EF.在RtΔEFC中,EC=4,CF=3, ∴EF='∴PC=5. ∵四边形ABCD是正方形,∴BD⊥AC且BD平分AC,即BD是AC的垂直平分线. ∵点P在BD 上,∴PA=PC=5.【方法归纳】与矩形对角线有关的计算问题,主要运用矩形的对角线相等和正方形的对角线的性质,借助第三条线段作“媒介”求线段的长.四、巩固练习教材P21随堂练习五、课堂小结本节课应掌握:正方形的概念:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.正方形的性质正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.正方形既是轴对称图形,也是中心对称图形.六、布置作业教材P22习题1.7第1、2、3题第2课时【教学目标】1.知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.2.经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.3.理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.【教学重难点】重点:掌握正方形的判定条件.难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.【教学过程】―、创设情境,引入新课我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.1.怎样判断一个四边形是平行四边形?2.怎样判断一个四边形是矩形?3.怎样判断一个四边形是菱形?4.怎样判断一个平行四边形是矩形、菱形?议一议:你有什么方法判定一个四边形是正方形?二、探究新知1.探索正方形的判定条件:学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法. (1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断.2.正方形判定条件的应用例1:判断下列命题是真命题还是假命题?并说明理由.(1)四条边相等且四个角也相等的四边形是正方形;⑵四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形.师生共析:是真命题,因为四条边相等的四边形是菱形,又四个角相等,根据四边形内角和定理知每个角为90°,所以由有一个角是直角的菱形是正方形可以判定此命题是真命题.⑵真命题,由四个角相等可知每个角都是直角,是矩形,由对角线互相垂直可判定这个矩形是菱形,所以根据是既是矩形又是菱形的四边形是正方形,可判定其为真.(3)假命题,对角线平分的四边形是平行四边形,对角线垂直的四边形是菱形,所以它不一定是正方形. 如下图①,满足.AO=CO,BO=DO且AC⊥BD但四边形ABCD不是正方形(4)假命题,它可能是任意四边形.如上图②,AC⊥BD 且AC=BD,但四边形ABCD不是正方形.方法一:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线垂直的平行四边形是菱形,所以是矩形又是菱形的四边形是正方形.可判定其为真.方法三:由对角线互相垂直平分可知是菱形,由对角线平分且相等可知是矩形,而既是菱形又是矩形的四边形就是正方形.总结:通过辨析,掌握判定正方形的各种方法和思路,从题中所给各种不同条件出发,寻找命题成立的判定依据,以便灵活应用.例2:如图,E、F分别在正方形ABCD的边BC、CD 上,且∠AFE= 45°,试说明EF=BE+DF.师生共析:要证EF=BE+DF,如果能将DF移到EB延长线或将BE移到FD延长线上,然后就能证明两线段长度相等。
1.3 正方形的性质与判定
教学目标:
1、知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关
的论证和计算.
2、经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,
逐步掌握说理的基本方法.
3、理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.
教学重点:掌握正方形的判定条件.
教学难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.
教学过程:
一、创设问题情景,引入新课
我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.
通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.
1、怎样判断一个四边形是矩形?
2、怎样判断一个四边形是菱形?
3、怎样判断一个四边形是平行四边形?
4、怎样判断一个平行四边形是矩形、菱形?
议一议:你有什么方法判定一个四边形是正方形?
二、讲授新课
1.探索正方形的判定条件:学生活动:四人一组进行讨
论研究,老师巡回其间,进行引导、质疑、解
惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形
的基本方法.
(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;
(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;
(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.
后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组
邻边相等的矩形是正方形;有一个角是直角的菱形是正方形. 上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断
2.正方形判定条件的应用
【例1】判断下列命题是真命题还是假命题?并说明理由.
(1) 四条边相等且四个角也相等的四边形是正方形;
(2) 四个角相等且对角线互相垂直的四边形是正方形;
(3) 对角线互相垂直平分的四边形是正方形;
(4) 对角线互相垂直且相等的四边形是正方形;
(5) 对角线互相垂直平分且相等的四边形是正方形.
师生共析:
(1) 是真命题,.因为四条边相等的四边形是菱形,又四个角相等,根据四边形内
角和定理知每个角为90°,所以由有一个角是直角的菱形是正方形可以判定
此命题是真命题.
(2) 真命题,由.四个角相等可知每个角都是直角,是矩形,由对角线互相垂直可
判定这个矩形是菱形,所以根据是矩形又是菱形的四边形是正方形,可判定
其为真.
(3) 假命题,对角线平分的四边形是平行四边形,对角线垂直的四边形是菱形,
所以它不一定是正方形.如下图,满足AO=CO ,BO=DO 且AC ⊥BD 但四边形ABCD
不是正方形
.
(4) 假命题,它可能是任意四边形.如上图,AC ⊥BD 且AC=BD ,但四边形ABCD 不
是正方形.
(5) 真命题。
方法一:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线垂直的平行四边形是菱形,所以是矩形又是菱形的四边形是正方形.可判定其为真.
方法二:对角线平分 平行四边形 对角线垂直
平行四边形
对角线相等
方法三:由对角线互相垂直平分可知是菱形,由对角线平分且相等可知是矩形,而既是菱形又是矩形的四边形就是正方形.
总结:通过辨析,掌握判定正方形的各种方法和思路,从题中所给各种不同条件出发,寻找命题成立的判定依据,以便灵活应用.
【补充例题】如下图,E 、F 分别在正方形ABCD 的边BC 、CD 上,且∠
EAF=45°,试说明EF=BE+DF.
形 形 正方形
师生共析:要证EF=BE+DF,如果能将DF移到EB延长线或将BE移到FD延长线上,然后就能证明两线段长度相等。
此时可依靠全等三角形来解决.
像这种在EB上补上DF或在FD补上BE的方法叫做补短法.
解:将△ADF旋转到△ABC,则△ADF≌△ABG
∴AF=AG,∠AD F=∠BAG,DF=BG
∵∠EAF=45°且四边形是正方形,
∴∠ADF﹢∠BAE=45°,
∴∠GAB﹢∠BAE=45°,
即∠GAE=45°,
∴△AEF≌△AEG(SAS),
∴EF=EG=EB﹢BG=EB﹢DF。
讨论:你能从一张彩色纸中剪出一个正方形吗?说出你的做法.
你怎么检验它是一个正方形呢?小组讨论一下.
三、随堂练习
教材P24
通过练习进一步巩固正方形的判定方法的应用.
四、课时小结
师生共同总结,归纳得出正方形的判定方法,同时展示下图,通过直观感受进一步加深理解正方形判定方法的应用.
五、课后作业
习题 1.8的 1-3题.
六、板书设计:
(课题)
复习:判定方法:讨论:
例1.
正方形与矩形例2. 补例.
正方形与菱形。