1.1.1集合
- 格式:ppt
- 大小:325.00 KB
- 文档页数:28
集合1.1.1 集合的含义与表示第一课时集合的含义[新知初探]1.元素与集合的概念(1)元素:一般地,把研究对象统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素的特性:确定性、无序性、互异性.[点睛] 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物.2.元素与集合的关系[点睛] 对元素和集合之间关系的两点说明(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a ∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.常用的数集及其记法[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合.( )(2)新课标数学人教A版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )答案:(1)√(2)×(3)×2.下列元素与集合的关系判断正确的是( )A.0∈N B.π∈QC.2∈Q D.-1∉Z答案:A3.已知集合A中含有两个元素1,x2,且x∈A,则x的值是( )A.0 B.1C.-1 D.0或1答案:A4.方程x2-1=0与方程x+1=0所有解组成的集合中共有________个元素.答案:2集合的基本概[例1] 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④[解析] ①中“成绩优秀”没有明确的标准,所以不能构成一个集合;②③④中的对象都满足确定性,所以能构成集合.[答案] B1.给出下列说法:①中国的所有直辖市可以构成一个集合; ②高一(1)班较胖的同学可以构成一个集合; ③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合. 其中正确的有________.(填序号)解析:②中由于“较胖”的标准不明确,不满足集合元素的确定性,所以②错误;④中的所有整数能构成集合,所以④错误.答案:①③[例2] (1)下列关系中,正确的有( ) ①12∈R ;② 2∉Q ;③|-3|∈N ;④|-3|∈Q. A .1个 B .2个 C .3个D .4个(2)集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)由题意可得:3-x 可以为1,2,3,6,且x 为自然数,因此x 的值为2,1,0.因此A 中元素有2,1,0. [答案] (1)C (2)0,1,2元素与集合的关系[活学活用]2.已知集合A 中有四个元素0,1,2,3,集合B 中有三个元素0,1,2,且元素a ∈A ,a ∉B ,则a 的值为( ) A .0 B .1 C .2D .3解析:选D ∵a ∈A ,a ∉B ,∴由元素与集合之间的关系知,a =3. 3.用适当的符号填空:已知A ={x|x =3k +2,k ∈Z},B ={x|x =6m -1,m ∈Z},则有:17________A ;-5________A ;17________B.解析:令3k +2=17得,k =5∈Z. 所以17∈A.令3k +2=-5得,k =-73∉Z.所以-5∉A.令6m -1=17得,m =3∈Z , 所以17∈B. 答案:∈ ∉ ∈[例3] 已知集合A 含有两个元素a 和a 2,若1∈A ,则实数a 的值为________.集合中元素的特性及应用[解析] 若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,不符合元素的互异性,∴a≠1;当a=-1时,集合A含有两个元素1,-1,符合元素的互异性.∴a=-1.[答案] -1[一题多变]1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.解:因2∈A,则a=2或a2=2即a=2,或a=2,或a=- 2.2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?解:因A中有两个元素a和a2,则由a≠a2解得a≠0且a≠1.3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.解:由a∈A可知,当a=1时,此时a2=1,与集合元素的互异性矛盾,所以a≠1.当a=a2时,a=0或1(舍去).综上可知,a=0.根据集合中元素的特性求解字母取值(范围)的3个步骤层级一学业水平达标1.下列说法正确的是( )A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素解析:选C A项中元素不确定.B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D项中方程的解分别是x1=1,x2=x3=-1.由互异性知,构成的集合含2个元素.2.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈AC.0∈A D.-1∉A解析:选C 很明显3,1不满足不等式,而0,-1满足不等式.3.下面几个命题中正确命题的个数是( )①集合N*中最小的数是1;②若-a∉N*,则a∈N*;③若a∈N*,b∈N*,则a+b最小值是2;④x2+4=4x的解集是{2,2}.A.0 B.1 C.2 D.3解析:选C N*是正整数集,最小的正整数是1,故①正确;当a=0时,-a∉N*,且a∉N*,故②错;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为( )A.2 B.2或4C .4D .0解析:选B 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A.故选B.5.由实数-a ,a ,|a|,a 2所组成的集合最多含有的元素个数是( ) A .1 B .2 C .3 D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a≠0时,a 2=|a|=⎩⎪⎨⎪⎧a ,a>0,-a ,a<0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.6.下列说法中:①集合N 与集合N +是同一个集合; ②集合N 中的元素都是集合Z 中的元素; ③集合Q 中的元素都是集合Z 中的元素; ④集合Q 中的元素都是集合R 中的元素. 其中正确的有________(填序号).解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b________A ,ab________A .(填∈或∉).解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A. 答案:∉ ∈8.已知集合P 中元素x 满足:x ∈N ,且2<x<a ,又集合P 中恰有三个元素,则整数a =________. 解析:∵x ∈N,2<x<a ,且集合P 中恰有三个元素, ∴结合数轴知a =6. 答案:69.设A 是由满足不等式x<6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解:∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧a<6,3a<6,解得a<2.又a ∈N ,∴a =0或1.10.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值. 解:因为集合A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.层级二 应试能力达标1.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而B 、C 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选A.2.若以集合A 的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选A 由于a ,b ,c ,d 四个元素互不相同,故它们组成的四边形的四条边都不相等. 3.若集合A 中有三个元素1,a +b ,a ;集合B 中有三个元素0,ba ,b.若集合A 与集合B 相等,则b-a =( )A .1B .-1C .2D .-2解析:选C 由题意可知a +b =0且a≠0,∴a =-b , ∴ba=-1.∴a =-1,b =1,故b -a =2. 4.已知a ,b 是非零实数,代数式|a|a +|b|b +|ab|ab 的值组成的集合是M ,则下列判断正确的是( )A .0∈MB .-1∈MC .3∉MD .1∈M解析:选B 当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.5.不等式x -a≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 解析:因为3∉A ,所以3是不等式x -a<0的解,所以3-a<0,解得a>3. 答案:a>36.若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:(1)若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.(2)若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.(3)若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由(2)知不合题意.综上可知:a=0或a=1.答案:0或17.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.解:∵9∈A,∴2a-1=9或a2=9,若2a-1=9,则a=5,此时A中的元素为-4,9,25;B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.若a2=9,则a=±3,当a=3时,A中的元素为-4,5,9;B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去.当a=-3时,A中的元素为-4,-7,9;B中的元素为9,-8,4,符合题意.综上所述,满足条件的a存在,且a=-3.8.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.11 又∵2∈A ,∴11-2=-1∈A.∵-1∈A ,∴11--1=12∈A.∵12∈A ,∴11-12=2∈A.∴A 中必还有另外两个元素,且为-1,12.(2)若A 为单元素集,则a =11-a ,即a 2-a +1=0,方程无解. ∴a≠11-a ,∴集合A 不可能是单元素集.。
人教版A数学必修一第1章 1.1.1 集合的含义解答题若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集;(2)试写出一个含3个元素的可倒数集.【答案】(1)不是(2)A={1,2,}或{-1,2,}或{1,3,}【解析】试题分析:(1)根据定义,由于2的倒数为不在集合A 中,故集合A不是可倒数集.(2)若两个倒数互不相等,则“可倒数集”元素个数为偶数,因此必有一个元素的倒数等于其本身,即必有1或-1,再取其它两个互为倒数的数即得含3个元素的可倒数集.试题解析:(1)由于2的倒数为不在集合A中,故集合A不是可倒数集.(2)若a∈A,则必有∈A,现已知集合A中含有3个元素,故必有一个元素有a=,即a=±1,故可以取集合A={1,2,}或{-1,2,}或{1,3,}等.填空题已知P={x|2<x<k,x∈N,k∈R},若集合P中恰有3个元素,则实数k的取值范围是__________.【答案】【解析】x只能取3,4,5,故5<k≤6.选择题下列集合中,不同于另外三个集合的是()A. {x|x=1}B. {x|x2=1}C. {1}D. {y|(y-1)2=0}【答案】B【解析】{x|x2=1}={-1,1},另外三个集合都是{1},选B.填空题设a,b∈R,集合{1,a+b,a}=,则b-a=_________.【答案】【解析】显然a≠0,则a+b=0,a=-b,=-1,所以a=-1,b=1,b-a=2.解答题.用适当的方法表示下列集合,并指出它们是有限集还是无限集.(1)不超过10的非负质数的集合;(2)大于10的所有自然数的集合.【答案】(1);(2)【解析】试题分析:(1)可用列举法写出所求集合;(2)可用描述法表示所求集合.试题解析:(1)不超过10的非负质数有2,3,5,7,用列举法表示为{2,3,5,7},是有限集.(2)大于10的所有自然数有无限个,故可用描述法表示为{x|x>10,x∈N},是无限集.选择题设A,B为两个实数集,定义集合A+B={x|x1+x2,x1∈A,x2∈B},若A={1,2,3},B={2,3},则集合A+B中元素的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】当x1=1时,x1+x2=1+2=3或x1+x2=1+3=4;当x1=2时,x1+x2=2+2=4或x1+x2=2+3=5;当x1=3时,x1+x2=3+2=5或x1+x2=3+3=6.∴A+B={3,4,5,6},共4个元素.故选B.选择题已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. -4∉MD. 4∈M【答案】D【解析】当x>0,y>0,z>0时,代数式的值为4,所以4∈M,故选D.填空题用列举法写出集合=___________.【答案】【解析】∵∈Z,x∈Z,①∴3-x为3的因数.∴3-x=±1,或3-x=±3.∴=±3,或=±1.∴-3,-1,1,3满足题意.选择题在“①高一数学中的难题;②所有的正三角形;③方程x2-2=0的实数解”中,能够构成集合的是()A. ②B. ③C. ②③D. ①②③【答案】C【解析】①高一数学中的难题的标准不确定,因而构不成集合;②而正三角形标准明确,能构成集合;③方程x2-2=0的解也是确定的,能构成集合,故选C.选择题用列举法表示集合{x|x2-2x+1=0}为()A. {1,1}B. {1}C. {x=1}D. {x2-2x+1=0}【答案】B【解析】试题分析:集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.解答题已知集合A={x|ax2-3x+2=0}.(1)若A是单元素集合,求集合A;(2)若A中至少有一个元素,求a的取值范围.【答案】(1)当时,,当时,;(2)【解析】试题分析:将求集合中元素问题转化为方程根问题.(1)集合A为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax2-3x+2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.试题解析:(1)因为集合A是方程ax2-3x+2=0的解集,则当a =0时,A={},符合题意;当a≠0时,方程ax2-3x+2=0应有两个相等的实数根,则Δ=9-8a=0,解得a=,此时A={},符合题意.综上所述,当a=0时,A={},当a=时,A={}.(2)由(1)可知,当a=0时,A={}符合题意;当a≠0时,要使方程ax2-3x+2=0有实数根,则Δ=9-8a≥0,解得a≤且a≠0.综上所述,若集合A中至少有一个元素,则a≤.选择题已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为()A. 2B. 3C. 0或3D. 0或2或3【解析】因为2∈A,所以m=2或m2-3m+2=2,解得m =0或m=2或m=3.又集合中的元素要满足互异性,对m的所有取值进行一一检验可得m=3,故选B.选择题方程组的解集是()A. B. {x,y|x=3且y=-7}C. {3,-7}D. {(x,y)|x=3且y=-7}【答案】D【解析】解方程组得,用描述法表示为{(x,y)|x=3且y=-7},用列举法表示为{(3,-7)},故选D选择题已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC一定不是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【解析】由集合中元素的互异性知a,b,c互不相等,故选D.选择题下列六种表示法:①{x=-1,y=2};②{(x,y)|x=-1,y=2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x,y)|x=-1或y=2}.能表示方程组的解集的是()A. ①②③④⑤⑥B. ②③④⑤C. ②⑤D. ②⑤⑥【答案】C【解析】方程组的解是故选C.选择题已知集合A={x|x≤10},a=,则a与集合A的关系是()A. a∈AB. a∉AC. a=AD. {a}∈A【答案】A【解析】由于+<10,所以a∈A.故选A.。
1.1.1集合的概念与表示分层练习基础巩固一、单选题1.已知M 是由1,2,3三个元素构成的集合,则集合M 可表示为( ) A .{x |x =1} B .{x |x =2} C .{1,2} D .{1,2,3}【答案】D 【解析】 【分析】根据集合的知识确定正确选项. 【详解】由于集合M 是由1,2,3三个元素构成, 所以{}1,2,3M =. 故选:D2.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人 C .π的近似值D .倒数等于它本身的数【答案】D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.3.已知集合{}0,1A =,则集合{},B x y x A y A =-∈∈中元素的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】 【分析】根据,x A x B ∈∈,所以x y -可取1,0,1-,即可得解. 【详解】由集合{}0,1A =,{},B x y x A y A =-∈∈, 根据,x A y B ∈∈, 所以1,0,1x y -=-, 所以B 中元素的个数是3. 故选:C4.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1 B . {}1,0-C .{}0,1,2D .{}1,0,1-【答案】D 【解析】 【分析】通过解方程进行求解即可. 【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =, 所以{}1,0,1A =-, 故选:D5.给出下列四个关系:π∈R , 0∉Q ,0.7∈N , 0∈∅,其中正确的关系个数为( ) A .4 B .3C .2D .1【答案】D 【解析】 【分析】根据自然数集、有理数集、空集的含义判断数与集合的关系. 【详解】∵R 表示实数集,Q 表示有理数集,N 表示自然数集,∅表示空集, ∴π∈R ,0∈Q ,0.7∉N ,0∉∅, ∴正确的个数为1 . 故选:D .6.已知{1}A x x m =∈-<Z ∣,若集合A 中恰好有5个元素,则实数m 的取值范围为( )A .4<m ≤5B .4≤m<5C .3≤m<4D .3<m ≤4【答案】D 【解析】 【分析】由已知求出集合A ,进一步得到m 的范围. 【详解】由题意可知{}1,0,1,2,3A =-,可得3<m ≤4. 故选:D 二、多选题7.给出下列说法,其中正确的有( ) A .中国的所有直辖市可以构成一个集合;B .高一(1)班较胖的同学可以构成一个集合;C .正偶数的全体可以构成一个集合;D .大于2 011且小于2 016的所有整数不能构成集合. 【答案】AC 【解析】 【分析】根据集合的确定性依次判断每个选项得到答案. 【详解】中国的所有直辖市可以构成一个集合,A 正确;高一(1)班较胖的同学不具有确定性,不能构成集合,B 错误; 正偶数的全体可以构成一个集合,C 正确;大于2 011且小于2 016的所有整数能构成集合,D 错误. 故选:AC.8.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值可能是( )A .98B .1C .0D .23【答案】AC 【解析】 【分析】对a 进行分类讨论,结合A 有且只有一个元素求得a 的值. 【详解】当0a =时,{}2|3203A x x ⎧⎫=-+==⎨⎬⎩⎭,符合题意.当0a ≠时,9980,8a a ∆=-==,符合题意.故选:AC 三、填空题9.用符号∈或∉填空:3.1___N ,3.1___Z , 3.1____*N ,3.1____Q ,3.1___R . 【答案】 ∉ ∉ ∉ ∈ ∈ 【解析】 【分析】由元素与集合的关系求解即可 【详解】因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数, 所以有:3.1N ∉;3.1Z ∉;*3.1N ∉;3.1Q ∈;3.1R ∈. 故答案为:∉,∉,∉,∈,∈.10.设集合{}1A x xy xy =-,,,其中x ∈Z ,y Z ∈且0y ≠,若0A ∈,则A 中的元素之和为_____. 【答案】0 【解析】 【分析】根据元素与集合间的关系,列方程求解. 【详解】因为0A ∈,所以若0x =,则集合{}0,0,1A =-不成立.所以0x ≠. 若因为0y ≠,所以0xy ≠,所以必有0xy -1=,所以1xy =. 因为x ∈Z ,y Z ∈,所以1x y ==或1x y ==-. 若1x y ==,此时{}1,1,0A =不成立,舍去.若1x y ==-,则{}1,1,0A =-,成立.所以元素之和为1100-+=. 故答案为:0. 四、解答题11.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B . 【答案】B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.12.判断下列各组对象能否构成集合.若能构成集合,指出是有限集还是无限集;若不能构成集合,试说明理由. (1)北京各区县的名称; (2)尾数是5的自然数;(3)我们班身高大于1.7m 的同学. 【答案】(1)能;有限集; (2)能;无限集; (3)能;有限集. 【解析】 【分析】根据集合的基本概念即得. (1)因为北京各区县的名称是确定的,故北京各区县的名称能构成集合;因为北京各区县是有限的,故该集合为有限集; (2)因为尾数是5的自然数是确定的,故尾数是5的自然数能构成集合;因为尾数是5的自然数是无限的,故该集合为无限集; (3)因为我们班身高大于1.7m 的同学是确定的,故我们班身高大于1.7m 的同学能构成集合;因为我们班身高大于1.7m 的同学是有限的,故该集合为有限集.培优提升一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据集合的新定义确定集合中的元素. 【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =, 所以{0,1,2}A B ⊗=--, 故集合A B ⊗中的元素个数为3, 故选:C.2.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-【答案】A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A.3.已知x ,y ,z 为非零实数,代数式||||||||x y z xyz x y z xyz +++的值所组成的集合是M ,则下列判断正确的是( ) A .4∈M B .2M ∈ C .0M ∉ D .4M -∉【答案】A 【解析】【分析】分别对x ,y ,z 的符号进行讨论,计算出集合M 的所有元素,再进行判断. 【详解】根据题意,分4种情况讨论;①、x y 、、z 全部为负数时,则xyz 也为负数,则4||||||||x y z xyz x y z xyz +++=-; ②、x y 、、z 中有一个为负数时,则xyz 为负数,则0||||||||x y z xyz x y z xyz +++=; ③、x y 、、z 中有两个为负数时,则xyz 为正数,则0||||||||x y z xyz x y z xyz +++=; ④、x y 、、z 全部为正数时,则xyz 也正数,则4||||||||x y z xyz x y z xyz +++=; 则{4,0,4}M =-;分析选项可得A 符合. 故选:A. 二、填空题4.集合12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,的元素个数为_________. 【答案】12 【解析】 【分析】根据集合得表示可知:3x + 是12的因数,即可求解. 【详解】由12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,可知,3x + 是12的因数,故31,2,3,4,6,12x +=±±±±±± ,进而可得x 可取0,1,3,9,1,2,4,5,6,7,9,15--------,故答案为:125.若集合{}2210A xax x =-+=∣有且只有一个元素,则a 的取值集合为__________. 【答案】{}0,1##{}1,0 【解析】 【分析】讨论集合A 中的条件2210ax x -+=属于一次方程还是二次方程即可求解. 【详解】①若0a =,则210x -+=,解得12x =,满足集合A 中只有一个元素,所以0a =符合题意;②若0a =/,则2210ax x -+=为二次方程,集合A 有且只有一个元素等价于2=(2)410a --⨯⨯=∆,解得1a =.故答案为:{}0,1. 三、解答题6.已知{}2|20,R M x ax x x =-+=∈.根据下列条件,求实数a 的值构成的集合.(1)当M =∅;(2)当M 是单元素集(只含有一个元素的集合); (3)当M 是两个元素的集合. 【答案】(1)1,8⎛⎫+∞ ⎪⎝⎭(2)1,08⎧⎫⎨⎬⎩⎭(3)1,08a a a ⎧⎫<≠⎨⎬⎩⎭【解析】 【分析】(1)由判别式小于0可得(方程为一元二次方程); (2)由二次项系数为0或一元二次方程的判别式为0柯得; (3)由方程为一元二次方程,且判别式大于0可得. (1)M =∅,180a ∆=-<,18a >,所以a 的范围是1(,)8+∞;(2)0a =时,{2}M =,满足题意,180a ∆=-=,18a =,此时{4}M =,满足题意,(3)由题意方程有两个不等实根,0a ≠且0∆>,解得18a <且0a ≠,所以a 的范围是1{|8a a <,0}a ≠.拓展创新1.已知集合2{,}A m m =,若1A ∈,则实数m 的值是__________ 【答案】1-【解析】 【分析】由1A ∈,分1m =,21m =两种情况讨论,结合集合中元素的互异性分析,即得解 【详解】 由题意,1A ∈(1)若1m =,则{1,1}A =,和集合中元素的互异性矛盾,不成立; (2)若21m =,则1m =±,由(1)1m ≠ 若1m =-,则{1,1}A =-,1A ∈,成立 故实数m 的值是1- 故答案为:1- 2.已知*k N ∈,记集合{1101100112222,1,,,,01}k k k k k k k A x x a a a a a a a a ---==⨯+⨯++⨯+⨯==或,例如{{}110102,1,01}2,3A x x a a a a ==+===或,….现有一款名称为“解数学题获取软件激活码”网络游戏,它的激活码为集合A 2的各元素之和,则该游戏的激活码为________. 【答案】22 【解析】 【分析】由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1,由此求得集合{}24,5,6,7A =,故而可得答案. 【详解】解:由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1, 所以当100a a ==时,41+0+04x =⨯=; 当1010a a ==,时,41+21+06x =⨯⨯=; 当1001a a ==,时,41+20+115x =⨯⨯⨯=, 当1011a a ==,时,41+21+117x =⨯⨯⨯=,所以{}24,5,6,7A =,该游戏的激活码为4+5+6+722=, 故答案为:22.3.已知集合{}0,2A =,()()(){}21110B x ax x x ax =---+=,用符号A 表示非空集合A中元素的个数,定义,,A B A BA B B A A B ⎧-≥=⎨-<⎩※,若1A B =※,则实数a 的所有可能取值构成集合P ,则P =______.(请用列举法表示) 【答案】{}0,1,2- 【解析】 【分析】由集合的新定义结合题意求出a 的值,再用列举法表示即可 【详解】∵2A =,1A B =※, ∴1B =或3B =, 当1B =时,0a =或1a =.当3B =时,()()()21110ax x x ax ---+=有3个解,所以210x ax -+=只有一个解不为1和1a, 则240a ∆=-=,解得2a =±,当2a =时,2210x x -+=,则此时1x =,不符合题意; 当2a =-时,2210x x ++=,则此时1x =-,符合题意; 所以2a =-,11,,12B ⎧⎫=--⎨⎬⎩⎭,故{}0,1,2P =-. 故答案为:{}0,1,2-.4.用()C A 表示非空集合A 中元素的个数:定义()(),()()*()(),()()C A C B C A C B A B C B C A C B C A -≥⎧=⎨->⎩,若{1,2}A =,{}22()(2)0,B x x ax x ax x R =+++=∈,且*1A B =,设实数a 的所有可能取值构成集合S ,S =__________; 【答案】{0,22,2}- 【解析】 【分析】根据新定义得出集合B 中元素个数,再由方程根的个数分析求解. 【详解】由已知()2C A =,而*1A B =,则()1C B =或3,试卷第11页,共11页 11显然22()(2)0x ax x ax +++=的一个解是0x =, 若()1C B =,则0a =,满足题意;若()3C B =,则0a ≠,方程已有两个根0x =和x a =-,220x ax ++=有两个相等的实根且不为0和a -,280a ∆=-=,22a =±22a =220x ax ++=的解为342x x ==- 22a =-220x ax ++=的解为342x x ==.均满足题意. 综上{0,2,22}S =-. 故答案为:{0,2,2}-.12 试卷第12页,共1页。
1.1 集合1.1.1 集合的含义与表示整体设计教学分析集合语言是现代数学的基本语言,同时也是一种抽象的数学语言.教材将集合的初步知识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位.课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法.因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言.与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用.这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神.三维目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.课时安排1课时教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1 下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.)(3)个元素,则实数(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A ={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N,5__________N,16__________N;(2)-12__________Q,π__________Q,e__________∁R Q(e是个无理数);(3)2-3+2+3=__________{x|x=a+6b,a∈Q,b∈Q}.答案:(1)∈∉∈(2)∈∉∈(3)∈3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.解:∵2∈A,∴m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,不符合集合中元素的互异性,舍去.若m2-3m+2=2,求得m=0或3.m=0不合题意,舍去.∴m只能取3.4.用适当方法表示下列集合:(1)函数y=ax2+bx+c(a≠0)的图象上所有点的集合;(2)一次函数y=x+3与y=-2x+6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4. 列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧x =0,y =1, 此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围.活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意. (2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98. ∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根. 综合(1)(2),知a =0或a ≥98. 点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S ={x |x =m +2n ,m ,n ∈Z }.(1)若a ∈Z ,则a 是否是集合S 中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n 分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.设计感想本节教学设计是以数学课程标准的要求为指导,结合生活中的一些实例,重视引导学生积极思考,主动参与到教学中,体现了学生的主体地位.同时结合高考的要求适当拓展了教材,使学生的发散性思维得到拓展,最大限度地挖掘了学生的学习潜力,真正做到了对教材的“活学活用”.备课资料集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.17世纪,数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.19世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔把无穷集这一词汇引入数学.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合的所有人应该对这句话不会感到陌生.但在接受这句话时我们根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在的.这种关于无穷的观念在数学上被称为潜无限.18世纪数学王子高斯就持这种观点.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是不足为怪的.然而康托尔并未就此止步,他以前所未有的方式,继续正面探讨无穷.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应关系——也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了实数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.然而集合论前后经历二十余年,最终获得了世界公认.在1900年第二次国际数学家大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献.”。
1.1.1集合的概念教学目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的创始者-----康托尔(有关介绍可引用附录中的内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉(2)不属于:如果a不是集合A的元素,就说a不属于A,记作A要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集{Φ,}0{,0等符号的含义注:应区分Φ,}5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*课堂练习:教材第5页练习A、B小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1B第3题附录:集合论的诞生韩雪涛集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔的不朽功绩前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念.但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧.公理化集合论的建立集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.这个成就可能是这个时代所能夸耀的最伟大的工作.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一.注:整系数一元n次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.。
1.1 集合与集合的表示方法1.1.1 集合的概念1.通过实例了解集合的含义.(难点)2.掌握集合中元素的三个特性.(重点)3.体会元素与集合的“从属关系”,记住常用数集的表示符号并会应用.(重点、易混点)基础·初探]教材整理1元素与集合的相关概念阅读教材P3~P4“第7行”的部分,完成下列问题.1.集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用英语大写字母A,B,C,…来表示.2.元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记作∅.判断(正确的打“√”,错误的打“×”)(1)本班的“帅哥”组成集合.()(2)漂亮的花组成集合.()(3)联合国常任理事国组成集合.( )【解析】 (1)不正确.因为“帅哥”没有统一标准,即元素不确定,不能组成集合.(2)不正确.因为什么样的花是漂亮的花不确定,不能组成集合.(3)正确.因为联合国常任理事国是确定的,所以能组成集合.【答案】 (1)× (2)× (3)√教材整理2 元素与集合的关系阅读教材P 3“最后一行”~P 4“第6行”以上的内容,完成下列问题.1.属于:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A .2.不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A .用符号“∈”或“∉”填空:0__________∅,-12________Z ,π __________Q ,4________Q ,|-4|________N *.【解析】 根据常见数集及其记法进行判断.【答案】 ∉ ∉ ∉ ∈ ∈教材整理3 集合的特性及分类 阅读教材P 4“思考与讨论”以下~P 4“练习A ”以上的内容,完成下列问题.1.集合元素的特性:确定性、互异性、无序性.2.集合的分类(1)有限集:含有有限个元素的集合.(2)无限集:含有无限个元素的集合.3.常用数集及符号表示名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R已知集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为() A.0B.1C.-1 D.1或-1【解析】当x=0,1,-1时,都有x2∈A,但考虑到集合元素的互异性,x≠0,x≠1,故x=-1.【答案】 C小组合作型]集合的概念.①所有的正三角形;②比较接近1的数的全体;③某校高一年级所有16岁以下的学生;④平面直角坐标系内到原点距离等于1的点的集合;⑤所有参加2016年里约热内卢奥运会的年轻运动员;⑥2的近似值的全体.【导学号:60210000】【精彩点拨】判断一组对象能否组成集合的关键是看该组对象是否具有明确的标准,即给定的对象是“模棱两可”还是“确定无疑”.【自主解答】①能构成集合,其中的元素满足三条边相等;②不能构成集合,因为“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;③能构成集合,其中的元素是“某校高一年级16岁以下的学生”;④能构成集合,其中的元素是“平面直角坐标系内到原点的距离等于1的点”;⑤不能构成集合,因为“年轻”的标准是模糊的、不确定的,故不能构成集合;⑥不能构成集合,因为“2的近似值”未明确精确到什么程度,因此很难断定一个数是不是它的近似值,所以不能构成集合.【答案】①③④判断每个对象是否具有确定性是判断其能否构成集合的关键,而判断一个对象是不是确定的,关键就是要找到一个明确的衡量标准,同时还要注意集合中的元素的互异性、无序性.再练一题]1.下列各组对象中不能构成集合的是()A.佛冈中学高一班的全体男生B.佛冈中学全校学生家长的全体C.李明的所有家人D.王明的所有好朋友【解析】A中,佛冈中学高一班的全体男生,满足集合元素的确定性和互异性,故可以构成集合;B中,佛冈中学全校学生家长的全体,满足集合元素的确定性和互异性,故可以构成集合;C中,李明的所有家人,满足集合元素的确定性和互异性,故可以构成集合;D中,王明的所有好朋友,不满足集合元素的确定性,故不可以构成集合.故选D.【答案】 D元素与集合的关系给出下列6个关系:①22∈R,②3∈Q,③0∉N,④4∈N,⑤π∈Q,⑥|-2|∉Z.其中正确命题的个数为()A.4B.3C.2D.1【精彩点拨】首先明确字母R、Q、N、Z的意义,再判断所给的数与集合的关系是否正确.【自主解答】R、Q、N、Z分别表示实数集、有理数集、自然数集、整数集,所以①④正确,因为0是自然数,3,π都是无理数,所以②③⑤⑥不正确.【答案】 C1.判断一个元素是不是某个集合中的元素,关键是判断这个元素是否具有这个集合的元素的共同特性.2.解决本例及类似问题要准确记忆数集Q,N,R及Z的含义,防止因混淆其含义而出现失误.再练一题]2.用符号“∈”或“∉”填空.若A表示第一、三象限的角平分线上的点的集合,则点(0,0)________A,(1,1)________A,(-1,1)________A.【解析】第一、三象限的角平分线上的点的集合可以用直线y=x 表示,显然(0,0)、(1,1)都在直线y=x上,(-1,1)不在直线上.∴(0,0)∈A,(1,1)∈A,(-1,1) ∉A.【答案】∈∈∉探究共研型]集合中元素的特性探究1100米的楼能否组成一个集合?集合的定义中“某些确定的”含义是什么?【提示】“北京市的高楼”不能组成一个集合,因为“高楼”没有明确的标准,而“北京市高于100米的楼能组成一个集合,因为标准是确定的.集合的定义中“某些确定的”含义是集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.探究2“小于4的自然数”构成的集合中有哪些元素?甲同学的答案是0,1,2,3;乙同学的答案是3,2,1,0,他们的回答都正确吗?由此说明什么?【提示】两个同学的回答都是正确的.由此说明集合中的元素是没有先后顺序的,这就是集合中元素的无序性.探究3若a和a2都是集合A中的元素,则实数a的取值范围是什么?【提示】因为a和a2都是集合A中的元素,所以a≠a2,即a≠0且a≠1.若集合A中的三个元素分别是a-3,2a-1,a2-4,a∈Z且-3∈A,求实数a的值.【精彩点拨】按-3=a-3或-3=2a-1或-3=a2-4分三类分别求解实数a的值,注意验证集合A中元素是否满足互异性.【自主解答】(1)若-3=a-3,则a=0,此时集合A中的三个元素分别是-3,-1,-4,满足题意;(2)若-3=2a-1,则a=-1,此时集合A中的三个元素分别是-4,-3,-3,不满足题意;(3)若-3=a2-4,则a=±1.当a=1时,集合A中的三个元素分别是-2,1,-3,满足题意;当a=-1时,由(2)知,不满足题意.综上可知,a=0或a=1.1.本题按-3=a-3或-3=2a-1或-3=a2-4为标准分类,从而做到“不重不漏”;在解含字母的问题中,常常采用分类讨论的思想,注意分类标准的统一和明确.2.本题在求解的过程中,常因忽视检验集合中元素的互异性,导致产生增解-1.再练一题]3.若将本例中的条件“-3∈A”换成“a∈A”,求相应问题.【解】∵a∈A且a∈Z,∴a=a-3或a=2a-1或a=a2-4,解得a=1,此时集合A中有三个元素-2,1,-3,符合题意.故所求a的值为1.1.下列对象不能构成集合的是()①我国近代著名的数学家;②所有的欧盟成员国;③空气中密度大的气体.A.①②B.②③C.①②③D.①③【解析】 研究一组对象能否构成集合的问题,首先要考查集合中元素的确定性.①中的“著名”没有明确的界限;②中的研究对象显然符合确定性;③中“密度大”没有明确的界限.故选D.【答案】 D2.下列三个关系式:①5∈R ;②14∉Q ;③0∈Z .其中正确的个数是( )A .1B .2C .3D .0【解析】 ①正确;②因为14∈Q ,错误;③0∈Z ,正确.【答案】 B3.已知集合A 中只有一个元素1,若|b |∈A ,则b 等于( )【导学号:60210001】A .1B .-1C .±1D .0【解析】 由题意可知|b |=1,∴b =±1.【答案】 C4.a ,b ,c ,d 为集合A 的四个元素,那么以a ,b ,c ,d 为边长构成的四边形可能是( )A .矩形B .平行四边形C .菱形D .梯形【解析】 由于集合中的元素具有“互异性”,故a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等.【答案】 D5.关于x 的方程x 2+ax +b =0的解集,当a ,b 满足什么条件时,方程的解集含有一个元素?含有两个元素?【解】 当a 2-4b =0时,方程的解集含一个元素;当a2-4b>0时,方程的解集含两个元素.。