体育专业单招数学试题分类--解析几何
- 格式:doc
- 大小:123.00 KB
- 文档页数:2
B’DB体育专业单招数学试题----立体几何:1.(2011)13.正三棱锥的底面边长为1。
2.(2011)8. 已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是【】(A)6π(B)12π(C)18π(D)36π3.(2012)12. 已知圆锥侧面积是底面积的3倍,高为4cm,则圆锥的体积是cm34.(2012)6. 下面是关于三个不同平面,,αβγ的四个命题1:,pαγβγαβ⊥⊥⇒∥,2:,pαγβγαβ⇒∥∥∥,3:,pαγβγαβ⊥⊥⇒⊥,4:,pαγβγαβ⊥⇒⊥∥,其中的真命题是()A.12,p p B.34,p p C.13,p p D.24,p p(2013)9 若四面体的棱长都相等且它的体积为9a3,则此四面体的棱长为()A.32a B。
a2C。
3a2D。
239a6.(2013)12. 已知圆锥的母线长为13,地面周长为10π,则该圆锥侧面展开图的圆心角的弧度数为-----7.(2014).7.已知A,B为球O的球面上两点,平面AOB截球面所得圆上的劣弧AB的长为10π,且OA OB⊥,则球O的半径等于()A. 40B. 30C. 20D.10.2. (2011)(本题满分18分)如图正方体''''ABCD A B C D-中,P是线段AB上的点,AP=1,PB=3 (I)求异面直线'PB与BD的夹角的余弦值;(II)求二面角'B PC B--的大小;(III)求点B到平面'PCB的距离5.(2012真题)如图,已知正方形ABCD—A1B1C1D1的棱长为1,M是B1D1的中点.(Ⅰ)证明;BM AC⊥(Ⅱ)求异面直线BM与CD1的夹角;ACA1(Ⅲ)求点B 到平面A B 1M 的距离.8. (2013真题)(2014)19.如图,已知长方体ABCD —A B C D 中,AB = 6 ,BC = 4 ,AA = 3, M 为AB 中点。
单独考试招生文化考试数学卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知1是2a 与2b 的等比中项,又是a1与b1的等差中项,则22b a b a ++的值是( )(A )1或21(B )1或21-(C )1或31 (D )1或31-2.以下命题正确的是( )(A )βα,都是第一象限角,若βαcos cos >,则βαsin sin > (B )βα,都是第二象限角,若βαsin sin >,则βαtan tan > (C )βα,都是第三象限角,若βαcos cos >,则βαsin sin > (D )βα,都是第四象限角,若βαsin sin >,则βαtan tan >3.已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=AD a ,=BE b ,则AC 是( ) (A )b a 3234+(B )b a 3432+ (C )b a 3234- (D )b a 3432-4.若10<<a ,则下列不等式中正确的是( ) (A )2131)1()1(a a ->- (B )0)1(log )1(>+-a a (C )23)1()1(a a +>-(D )1)1(1>-+a a5、化简3a a 的结果是( )A 、aB 、12aC 、41aD 、83a 6、角2017°是在那个象限内( )A 、第一象限角B 、第二象限角C 、第三象限角 B 、第四象限角 7、直线132yx的倾斜角为( )A 、90°B 、180°C 、120° B 、150°8210y 与直线230xy 的位置关系是( )A 、两线平行B 、两线垂直C 、两线重合 B 、非垂直相交9、在圆:22670x y x 内部的点是( )A 、(1) B 、(-7,0) C 、(-2,7) B 、(2,1)10. 函数2()|1|x f x x 的定义域为( )A 、[-5,+∞)B 、(-5,+∞)C 、[-2,-1)∪(-1,+∞) B 、(-2,-5)∪(-1,+∞)11、设集合M={1,2,3,4,5} ,集合N={1,4,5},集合T={4,5,6},则N T M )(= ( ) A 、{2,4,5,6} B 、{1,4,5} C 、{1,2,3,4,5,6} D 、{2,4,6}12、已知集合{|3A x x n ==+2,N n ∈,},{6,8,10,12,14}B =,则集合A B 中的元素个数为( ) A 、5 B 、4 C 、3 D 、2 13、已知集合A{}12x x =-<<,{03}B x x =<<,则A B = ( )A 、(-1,3)B 、(-1,0)C 、(0,2)D 、(2,3) 14、已知集合A {}2,1,0,1,2=--,{}(1)(2)0B x x x =-+<,则A B ( )A 、{-1,0}B 、{0,1}C 、{-1,0,1}D 、{0,1,2} 15、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ( ) A 、}23|{<<-x x B 、}25|{<<-x x C 、}33|{<<-x x D 、}35|{<<-x x 16、已知集{1,2,3},B {1,3}A ,则A B =( ) A 、{3} B 、{1,2} C 、{1,3} D 、{1,2,3} 17、已知集合{}{}3,2,3,2,1==B A ,则( ) A 、A=B B 、=B A ∅ C 、B A ⊆ D 、A B ⊆18、若集合{}1,1M =-,{}2,1,0N =-,则M N = ( ) A 、{0,-1} B 、{1} C 、{-2} D 、{-1,1}19、设A,B 是两个集合,则“A B A =”是“A B ⊆”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件20、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( ) A 、0 B 、1 C 、2 D 、5 二、填空题:(共20分) 1.tana=0.5,求=_______ 2.若sina=,则=______.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 1.已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F . (1)求证:点F 为11B C 中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --,求111A M AB .2.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.观察下列三角形数表,假设第n 行的第二个数为),2(+∈≥N n n a n(1)依次写出第六行的所有6个数;(2)试猜想1+n a 与n a 的关系式,并求出{}n a 的通项公式.设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===(1)求角C ; (2)求c 边的长度. 3、解:(1)由题知5,4,35===b a S设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===(1)求角C ; (2)求c 边的长度.参考答案: 一、选择题 1-5题答案:DDAAB; 6-10题答案:CCDDC. 11-15题答案:BDAAA; 16-20题答案:CDBCD. 二、填空题 1. 答案:解析:2.答案:三、解答题1、【解答】(1)证明:连结DE ,在正方体1111ABCD A B C D -中,11//CD C D ,11C D ⊂平面1111A B C D ,CD ⊂/平面1111A B C D , 则//CD 平面1111A B C D ,因为平面1111A B C D 平面CDEF EF =,所以//CD EF ,则11//EF C D ,故1111////A B EF C D ,又因为1111//A D B C ,所以四边形11A B FE 为平行四边形,四边形11EFC D 为平行四边形,所以11A E B F =,11ED FC =, 而点E 为11A D 的中点,所以11A E ED =,故11B F FC =,则点F 为11B C 的中点; (2)解:以点1B 为原点,建立空间直角坐标系,如图所示, 设正方体边长为2,设点(,0,0)M m ,且0m <,则(0,2,2)C -,(2,1,0)E -,(0,1,0)F ,故(2,0,0),(0,1,2),(,1,0)FE FC FM m =-=-=-,设平面CMF 的法向量为(,,1)m a b =,则00m FM m FC ⎧⋅=⎪⎨⋅=⎪⎩,即020ma b b -=⎧⎨-=⎩,所以2a m =,2b =,故2(,2,1)m m =,设平面CDEF 的法向量为(,,1)n x y =,则00n FE n FC ⎧⋅=⎪⎨⋅=⎪⎩,即2020x y -=⎧⎨-=⎩,所以0x =,2y =,故(0,2,1)n =,因为二面角M CF E --,则|||cos ,|||||4m n m n m n ⋅<>===,解得1m =±,又0m <,所以1m =-,故11112A M A B =.【点评】本题考查了立体几何的综合应用,涉及了线面平行的性质定理的应用,二面角的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题. 2、题,参考答案:(1,4);(0,7) 3、题:参考答案:C ab S sin 21=Csin 542135⨯⨯=∴23sin =∴C又 C 是ABC ∆的内角3π=∴C 或32π=C(2)当3π=C 时,3cos 2222πab b a c -+=215422516⨯⨯⨯-+=21=21=∴c当32π=C 时,22222cos 3c a b ab π=+- 215422516⨯⨯⨯++==6161=∴c。
单独考试招生文化考试数学卷(满分120分,考试时间120分钟)一、选择题:(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.圆221:40C xy x +-=与圆222:610160Cx y x y ++++=的公切线有( )(A )1条 (B )2条 (C )3条 (D )4条 2.已知圆22670xy x +--=与抛物线22(0)ypx p =>的准线相切,则p 为( )(A )1 (B )2 (C )3 (D )43.在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么( )(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外4.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C =0中的A 、B 、C ,若A 、B 、C 的值互不相同,则不同的直线共有( )(A )25条 (B )60条 (C )80条 (D )181条 5、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ( ) A.}23|{<<-x x B.}25|{<<-x x C.}33|{<<-x xD.}35|{<<-x x6.已知0>>b a ,全集=I R ,集合}2|{ba xb x M +<<=,}|{a x ab x N <<=,=P {x b x <|≤ab},则P 与NM ,的关系为 ( )(A ))(N C M p I = (B )N M C p I )(= (C )N M P = (D )N M P = 7.函数x x f a log )(= 满足2)9(=f ,则)2log (91--f 的值是 ( )(A )2 (B )2(C )22 (D )2log 38. 函数的图象如图所示,则最大、最小值分别为 ( )A. B.C. D.9. 设,,,其中为自然对数的底数,则,,的大小关系是( )A. B. C. D.10. 设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是( )A. B.C. D.二、填空题:(共30分.)1.函数y=3-2cos(x-)的最大值为__,此时x=_______.2.函数f(x)=3cos(2x+)的最小正周期为___.3.函数f(x)=sin2x的图像可以由g(x)=sin 2x-号)的图像向左平移___个单位得到.4. 在中,,,,则______.5. 若向量,的夹角为,则——————随机抽取 100名年龄在 ,,, 年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于 岁的人中按年龄段分层抽样的方法随机抽取 8人,则在 年龄段抽取的人数为_____.三、解答题:(本题共3小题,每小题10分,共30分.解答应写出文字说明、证明过程或演算步骤.)1.为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可确定所有样本都是阴性的,若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数; ②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X 的分布列和数学期望()E X ;(2)若采用“5合1检测法”,检测次数Y 的期望为()E Y ,试比较()E X 和()E Y 的大小.(直接写出结果)2.求经过两点(10)A -,、(32)B ,,且圆心在y 轴上的圆的方程. 3设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,3a b S ===(1)求角C ; (2)求c 边的长度.参考答案:一、选择题答案: 参考答案1-5题:DBABA 参考答案6-10题:ACCDC 二、填空题答案: 1.答案:5;(k ∈Z)解析: 2.答案:π 解析: 3.答案: 解析:由的图像向左平移0.25个单位,可得函数 的图像。
(完整版)体育单招:数学考试大纲
体育单招:数学考试大纲
体育单招数学考试主要内容为代数、几何、解析几何三个分科,起考试内容的知识要求、能力要求和个性品质要求有一下内容:
(一)。
考试知识要求
对知识的要求由低到高分为三各层次:了解、理解和掌握、灵活和综合应用。
1、了解:要求对所学只是内容有初步的了解、感性认识,知道内容是什么,并在相关的问题中识别它。
2、理解和掌握:要求对所学只是有较深刻的掌握、能够推理、变形和推断,并能利用只是解决有关问题.
3、灵活和综合运用:要求系统地掌握只是的内在联系,能运用只是解决和分析教复杂的问题。
(二).考试内容
1、平面向量考试内容:向量、向量的加减法、实数与向量的积、平面向量的坐标表示,线段的定比分点、平面向量的数量积、平面两点的距离、平移
2、集合,简易逻辑考试内容:集合、子集、交集、补集、交集、并集
3、函数,映射、函数的单调性、奇偶性,反函数及图像关系,对数的运算、对数函数
4、不等式的基本性质、证明、解法,含绝对值的不等式
5、三角函数,单位圆中的三角函数、正余弦函数、正切函数及其图像,正弦定理、余弦定理。
6、数列:等差、等比数列及其通向公式,前N项和公式
7、直线和圆的方程,直线的倾斜角和斜率,点斜式和两点式、一般式平行线与垂直的关系,点到线的距离。
8、圆锥曲线方程:椭圆的几何性质和参数方程,双曲线、抛物线的标准方程和基本性质。
9、直线、平面、简单几何体,直线和平面的判定,距离,三垂线定理。
10、排列组合:排列、数列数公式,组合、组合数公式,二项式定理展开式。
11、概率,随机事件的概率、可能性事件的概率。
1.〔2021年第9题〕假设四面体的棱长都相等且它的体积为9a3,那么此四面体的棱长是〔〕A.32a B.2aC.32aD.239a2.〔2021年第12题〕4.圆锥的母线长为13,底面周长为10 ,那么该圆锥侧面展开图的圆心角的弧度数为.3.〔2021年第12题〕圆锥的侧面积是底面积的3倍,高为4cm,那么圆锥的体积是 cm3.〔2021年第8题〕圆锥的母线长为5,底面周长为6 ,那么圆锥的体积是〔A.6 B .12 C .18 D .365.〔2021年第13题〕〕正三棱锥的底面边长为1,高为6,那么侧面面积是.66.〔2021年第6题〕一个圆锥的母线长为13cm,高为12cm,那么此圆锥的内切球的外表积Scm3.(轴截面如下列图)7.〔2021年第16题〕外表积为180的球面上有A、B、C三点,AC6,BC8,AB10,那么球心到ABC所在平面的距离为.〔2021年第7题〕关于空间中的平面和直线,有以下四个命题:p1:m l,n l mPn,p2:mP,nP mPn,p1:mPl,l m ,p1:l其中的真命题是〔〕A.p1,p3 B .p2,p4,m与l相交C .p3m.D .p49.〔2021年第6题〕正三棱锥的底面边长为2,体积为3,那么正三棱锥的高是.10.〔2021年第16题〕用平面截球,截得小圆的面积为,假设球心到平面的距离为2,那么球的外表积是.11.〔2004年第14题〕正方体的全面积是a2,它的顶点都在一个球面上,这个球的外表积是.12.〔2004年第6题〕在正方体ABCD A1B1C1D1中,E、F分别是AB、C1D1的中点,那么在正方体的各外表正方形所代表的6个面中,和EF成45A.0个B.2个C.4个角的共有〔D .6个〕〔2021年第6题〕下面是关于三个不同的平面,,的四个命题p1:,P ,p2:P,P P ,p1:,,p1:,P.其中的真命题是〔〕A.p1,p2B.p3,p4 C .p1,p3 D .p2,p414.〔2021年第7题〕下面是关于两条直线m,n和两个平面〔m,n均不在p1:mP,nP mPn,p2:mP , P , 上〕的四个命题:mP ,p3:mP,nP,P mPn,p4:mPn,n,m P .其中的真命题是〔〕A.p1,p3B.p1,p4 C .p2,p3 D .p2,p415.〔2021年第19题18分〕如图,长方体ABCD A1B1C1D1中,AB 6,BC 4,AA13,M为AB中点,求(Ⅰ)二面角M B1C1 A1的大小;(Ⅱ)点D1到平面MB1C1的距离。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
体育对口单招数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称()(A )62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 2.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k的值为()(A )-6(B )6(C )3(D )-33.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为()(A )0(B )-1(C )1(D )24、函数)32(log )(22-+=x x x f 的定义域是()A.[]1,3- B.()1,3-C.(][)+∞-∞-,13, D.()()+∞-∞-,13, 5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A.c b a <<B.b c a <<C.ca b << D.ac b <<6.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是()GD31GD34GD32GD337.在ABC △中,若2AB BC CA === ,则AB BC ⋅等于()A.3- B.3C.-2D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为()(A )240(B )120(C )60(D )3010.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba 11<成立的充分条件的个数是()(A )1(B )2(C )3(D )311、已知54cos ,0,2=⎪⎭⎫⎝⎛-∈x x π,则x tan =()A 、34B 、34-C 、43D 、43-12、在∆ABC 中,AB=5,BC=8,∠ABC=︒60,则AC=()A 、76B 、28C 、7D 、12913、直线012=+-y x 的斜率是();A 、-1B 、0C 、1D 、214、点P(-3,-2)到直线4x-3y+1=0的距离等于()A 、-1B 、1C 、2D 、-215、过两点A (2,)m -,B(m ,4)的直线倾斜角是45︒,则m 的值是()。
单独招生考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、选择题:(本题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是( ) (A )π98(B )π2197(C )π2199(D )π1002.下列命题中,错误的命题是( )(A )在四边形ABCD 中,若AD AB AC +=,则ABCD 为平行四边形 (B )已知b a b a +,,为非零向量,且b a +平分a 与b 的夹角,则||||b a = (C )已知a 与b 不共线,则b a +与b a -不共线(D )对实数1λ,2λ,3λ,则三向量1λ-a 2λb ,2λ-b 3λc ,3λ-c 1λa不一定在同一平面上3.四个条件:a b >>0;b a >>0;b a >>0;0>>b a 中,能使ba 11<成立的充分条件的个数是( )(A )1 (B )2 (C )3 (D )4 4.点M (2,0),N 是圆221xy +=上任意一点,则线段MN 中点的轨迹是( )(A )椭圆 (B )直线 (C )圆 (D )抛物线5、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( ) A .6 B .8 C .2 D .5 6.过点(1,2)总可作两条直线与圆2222150xy kx y k ++++-=相切,则实数k 的取值范围是( )(A )2k > (B )32k -<< (C )3k <-或2k > (D )都不对 7.共轭双曲线的离心率分别为1e 和2e ,则1e 和2e 关系为( )(A )1e =2e (B )121e e⋅=(C )12111e e += (D )2212111e e +=8. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( )A. {-1,1}B. {-2}C. {3}D. ∅9. 不等式x2-4x ≤0的解集为( ) A. [0,4]B. (1,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)10. 已知函数f (x )=ln(x −2)+1x−3的定义域为( )A. (2,+∞)B. [2,+∞)C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)11. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗B. DB⃗⃗⃗⃗⃗C. AC⃗⃗⃗⃗⃗D. CA⃗⃗⃗⃗⃗ 12. 下面函数以π为周期的是( ) A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法总数是( ) A. 420B. 200C. 190D. 24014. 已知直线的倾斜角为60°,则此直线的斜率为( ) A. −√33B. −√3C. √3D.√3315. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限B. 第二象限C. 第三象限D.第四象限二、填空题:(本题共5小题,每小题6分,共30分.)1.函数f(x)=a “+3的图象一定过定点 P ,则P 点的坐标是_______.2.函数f(x)=x+3x -4的零点是_______.3.曲线y=x+x 在点A(1.2)处的切线方程是____4.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A _____;5、042=-x 是x+2=0的 ____条件.三、解答题:(本题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)1、已知椭圆2222:1(0)x y E a b a b +=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点(0,3)P -的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交3y =-于点M 、N ,若||||15PM PN +,求k 的取值范围.2、求经过点),(24-,且与直线033=+-y x 平行的直线方程。
2023年全国体育单招数学真题、参考答案与解析1.已知集合A={-2,0,1},集合B={w|-2<x<1,x∈Z},则A U B中元素的个数为A.D.41B.2C.3【参考答案】D【解析】B={w|-2<x<1,x∈Z},B是c的集合,x满足比-2大、比1小,而且z属于Z、整数,所以B是-1和0的集合,A U B ={-2,-1,0,1},共4个元素。
2.已知函娄则C.√3D.3A.-B.11【参考答案】B【解析】本题考查分段函数,,代入下面的关系式,,),-1小于0,代入上面的关系式,,(-1)²=13.记Sn为等差数列{am}的前n项和.若ag=5,S=36,则ao=A.17C.2B.191D.23【参考答案】B【解析】S g=a j+a z+a a+a q+a s+a c,a n+a g=+a z+a s=a3+a,S ₆=3×(a g+a)=36,a g+a4=12,a g=5,a4=7,d=2,a n=a₃+7d=5+7×2=19提示:当算出ag=5,a4=7,也可以把数列的每个数一个一个列出来,即a g=5,a q=7,a s=9,a g=11,a r=13,a g=15,a g=17,a10 =19所以展开式中α7的系数为1807.已知向量a =(1,1),b=(-2,0),则a与b的夹角为A . 30°B . 45°C .120°【参考答案】D【解析】本题考查数量积公D . 135°式a =(1,1),|a l =√I ²+I ²=√2b =(-2,0),|b l =√(-2)²+O ²=2a ·b =(1,1)(-2,0)=1×(-2)+1×0=-28.正三棱柱ABC -A,BiC底面三角形的边长为1,点P为AB的中点,P C =P A i ,则A . AA i =1B .D .△A B I C 的面积为【参考答案】C . t a m P A i C =1C【解析】根据题意作图,如图勾股定理得:A ,A ²+A P ²=A ,P 2,A 错勾股定理得:A 1C ²=A C ²+A 1A ²。
体育专业单招数学试题-----解析几何:
1.(2011)7.已知直线l 过点(1,1)-,且与直线230x y --= 垂直,则直线l 的方程是( )
A.210x y +-=
B. 230x y +-=
C.230x y --=
D.210x y --=
2.(2012)7.直线20(0)x y m m -+=>交圆于A ,B 两点,P 为圆心,若△PAB 的面积是25, 则m= ( )
A.2
B. 1
D.2 3.(2012)10.过抛物线的焦点F 作斜率为 与 的直线,分别交抛物线的准线于点A ,B.若△FAB 的面积是5,则抛物线方程是( ) A. 212
y x = B. 2y x = C. 22y x = D. 24y x = 4.(2013)3.若直线L 过点(-2,3),且与直线2x + 3y + 4 = 0垂直,则L 的方程为( )
A .2x – 3y + 13 = 0 B.3x –2y + 12 = 0
C. 2x + 3y- 5 = 0
D.3x + 2y = 0
5.(2014)8. 双曲线12222=-b y a x
( a>0, b>0)的两条渐近线互相垂直,则双曲线的离心率为( )
A .2 B.2 C. 2
23 D. 22 6.(2014)9. 已知圆r y x 2
22=+与圆r y x 222)3()1(=+++外切,则半径r 为( ) A. 22 B. 210 C. 5 D. 10
7.(2011)已知椭圆两个焦点为1(1,0)F -与2(1,0)F ,离心率13
e =,则椭圆的标准方程是 8. (2013)16. 已知过点A (-1,2)的直线与圆
)2()3(22+-+y x = 1 相交于M ,N 两点,则AM .AN = ---- 9.(2013)15. 已知椭圆12322
=+y x 的焦点F ,F ,过F 斜率为1的直线交椭圆于点A ,B ,
则FAB ∆的面积为-----
10.(2014)14. 过圆10)2()1(22=++-y x 与y 轴正半轴的交点作该圆的切线,切线的方程是---
11.(2014)15.抛物线y =x 42的准线方程是----
12.(2011)19.(本题满分18 分)设F(c,0)(c>0)是双曲线2
212
y x -=的右焦点,过点F(c,0)的直线l 交双曲线于P,Q 两点,O 是坐标原点。
(I )证明1OP OQ ⋅=-;
(II) 若原点O 到直线l 的距离是
32
,求OPQ ∆的面积。
13.( 2012)18.设F 是椭圆2
212
x y +=的右焦点,半圆221(0)x y x +=≥在Q 点的切线与椭圆交于A ,B 两点. (Ⅰ)证明:.AF AQ +为常数
(Ⅱ)设切线AB 的斜率为1,求△OAB 的面积(O 是坐标原点).
14.(2013)18.设F F 分别为双曲线116922
=-y x 的左,右焦点,M 为双曲线右支上一点,且
︒=∠60FMF ,求
(1)MFF ∆的面积 (2)点M 的坐标
15.(2014)18. 已知椭圆C 的中心在原点,焦点在x 轴上,离心率为
21,且C 过点(-1,23)。
(1)求C 的方程
(2)如果直线L :y = kx – 2与C 有两个交点,求k 的取值范围。