届中考数学一轮专题复习第11讲反比例函数知识梳理及自主测试浙教版【含解析】
- 格式:doc
- 大小:273.51 KB
- 文档页数:5
浙教版2021年中考数学一轮复习专题——反比例函数的图象与性质及应用一、单选题1.若反比例函数y=kx(k≠0)的图象经过点(2,−3),则k的值为()A. 5B. −5C. 6D. −62.对于反比例函数y= 6x的图象的对称性叙述错误的是( )A. 关于原点中心对称B. 关于直线y=x对称C. 关于直线y=-x对称D. 关于x轴对称3.若点A(-1,y1),B(2,y2),C(-3,y3)在反比例函数y= 6x的图象上,则y1,y2,y3的大小关系是( )A. y3<y2<y1B. y2<y1<y3C. y1<y3<y2D. y1<y2<y34.下列函数.y是x的反比例函数的是()A. y=2xB. y=−23x﹣1 C. y=−22x−1D. y=﹣x5.如图,在轴正半轴上依次截取OA1=A1A2=A2A3=...=A n−1A p=1,过点A1、A2、A3、......A n分别作x轴的垂线,与反比例函数y=2x(x>0)交于点P1、P2、P3、......P n,连接P1P2、P2P3...P n−1P n过点P2、P3、......P n分别向P1A1、P2A2、...、Pn-1A n−1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()A. 2nB. n−1n C. 2n+1 D. n+22n6.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度p也随之改变.p与V在一定范围内满足,它的图象如图所示,则该气体的质量m为()A. 1.4kgB. 5kgC. 6.4kgD. 7kg7.如图,在平面直角坐标系中,将一块含有45°的直角三角板按照如图方式摆放,顶点A、B的坐标为(1,4)、(4,1),直角顶点C的坐标为(4,4),若反比例函数y=kx(x>0)的图象与直角三角板的边有交点,则k的取值范围为()A. 4≤k≤8B. 254≤k≤8 C. 4≤k≤16 D. 254≤k≤168.如图,点A,点B分别在反比例函数y=2x (x>0)和反比例函数y=−4x(x<0)的图象上,AB∥x轴,交y轴与点C,且∠AOB=90°,则AC:CB等于()A. 1:2B. 1:3C. 1:4D. 1: √29.如图,平行于x轴的直线与函数y=k1x (k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为()A. 12B. ﹣12C. 6D. ﹣6二、填空题10.如果反比例函数y=2−kx(k为常数)的图象在二、四象限,那么k的取值范围是________11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则眼镜度数与镜片焦距之间的函数关系式为________.12.如图,已知点C为反比例函数y=−6x上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为________.13.若反比例函数y1=k(k>0,x>0)的图象与直线y2=x﹣1在第一象限内的交点为A,点A的横坐标x为m,且满足2<m<3,则k的取值范围是________.14.如图,正比例函数与反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影面积的和是________.(k>0)相交于A,B两点,BC⊥x轴。
2021年中考数学一轮复习(通用版)第11章反比例函数考点梳理考点一反比例函数的概念、图象和性质1.反比例函数的概念一般地,函数y=(k为常数,且k≠0)叫做反比例函数.【点拨】(1)函数y=kx-1或xy=k都是反比例函数;(2)反比例函数中自变量的取值范围是x≠0. 2.反比例函数的图象和性质(1)反比例函数y=kx(k为常数,且k≠0)的图象是.(2)反比例函数的图象无限接近,但永不与相交.(3)反比例函数的图象和性质第一、三象限第二、四象限一象限,再结合每个象限内反比例函数图象的增减性来比较,解决这种问题的一个有效办法是画出草图,标上各点,再比较大小.3.确定反比例函数的表达式(1)求反比例函数的表达式可用待定系数法.由于反比例函数的表达式中只有一个待定系数,因此只需已知一组对应值即可.(2)求反比例函数表达式的一般步骤:①设反比例函数的表达式;①把已知的一组对应值代入函数表达式,建立方程;①解方程求得待定系数的值.4.反比例函数的系数k的几何意义如图,设点P(x,y)是反比例函数y=kx图象上任一点,过点P作x轴的垂线,垂足为A,则①OP A的面积=12OA·P A=12|xy|=12|k|,这就是反比例函数的系数k的几何意义.【点拨】根据比例系数k的几何意义,求k值时,要根据双曲线所在的象限正确确定k的符号.考点二反比例函数的应用1.反比例函数与一次函数的综合应用(1)求函数解析式一般先通过一个已知点求出反比例函数解析式,再由反比例函数的解析式求出另一个交点的坐标,再将这两点的坐标代入一次函数的解析式中,解方程(组)即可.(2)求交点坐标将一次函数的解析式与反比例函数的解析式联立成方程组求解即可;对于正比例函数与反比例函数,其均关于原点对称,只要知道一个交点的坐标,就可以求出其关于原点对称的另一个交点的坐标.(3)求面积①当有一边在坐标轴上时,通常将坐标轴上的边作为底边,再利用点的坐标求得底边上的高,然后利用面积公式求解;①当两边均不在坐标轴上时,一般可采用割补法将其转化为一边在坐标轴上的两个三角形面积的和或差来求解.此外,求面积时要充分利用“数形结合”的思想,即用“坐标”求“线段”,用“线段”求“坐标”.(4)比较两个函数值的大小,求自变量的取值范围2.反比例函数的实际应用利用反比例函数解决实际问题,首先要建立反比例函数的数学模型,这也是关键一步,一般地,建立反比例函数模型有两种思路:(1)题目中明确指出变量间存在反比例函数关系,在这种情况下,可利用待定系数法求反比例函数的解析式.(2)题目中未指出变量间存在反比例函数关系,在这种情况下可利用基本数量关系求反比例函数的关系式,反比例函数模型建立后,进一步地可利用反比例函数的图像及性质解决问题.重难点讲解考点一正确理解反比例函数的概念,会求k值和反比例函数的解析式方法指导:因为反比例函数的解析式y=kx(k≠0)中只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式,因而只需给出一组x,y的值或图象上一点的坐标,代入y=kx(k≠0)中即可求出k的值,从而确定反比例函数的解析式.另外,反比例函数解析式y=kx(k≠0)也可以变形为k=xy(k≠0),所以要求的k值就等于双曲线上任意一点的横坐标与纵坐标之积.进一步理解得到反比例函数解析式y=kx(k≠0)中,比例系数k的几何意义是过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.经典例题1 (2020•安徽滁州模拟)如图,在平面直角坐标系中,反比例函数y=kx(x>0)经过矩形ABOC的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A.2B.4C.6D.8【解析】设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a﹒12b=14ab=14×16=4.【答案】B考点二一次函数与反比例函数的综合方法指导:这类问题常有以下四种主要题型:(1)利用k值与图象的位置关系,综合确定系数符号或图象位置.解题策略:分k>0和k<0两种情况考虑.(2)已知直线与双曲线的表达式求交点坐标.解题策略:联立直线与双曲线的方程组成方程组求解.(3)用待定系数法确定直线与双曲线的表达式.解题策略:待定系数法.(4)应用函数图象的性质比较一次函数值与反比例函数值的大小.解题策略:看图象,以两个图象的交点为界,图象在上方的函数值比图象在下方的要大.经典例题2 (2020•黑龙江大庆模拟)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【解析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=-x +5交y轴于E(0,5),根据S△AOB=S△OBE-S△AOE计算即可.解:(1)∵A(1,n)在直线y=-x+5上,∴n=-1+5=4,∴A(1,4),把A(1,4)代入y=kx得到k=4,∴反比例函数的解析式为y=4x.(2)由45y xy x ⎧=⎪⎨⎪=-+⎩,,解得14x y =⎧⎨=⎩,或41x y =⎧⎨=⎩,, ∴B (4,1),直线y =-x +5交y 轴于E (0,5), ∴S △AOB =S △OBE -S △AOE =12×5×4-12×5×1=7.5.考点三 反比例函数的应用 方法指导:利用反比例函数解决实际问题,我们应抽象概括出反比例函数关系,建立反比例函数模型.根据已知条件写出反比例函数的解析式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际问题.因此,利用反比例函数解决实际问题的关键是建立反比例函数模型,即求出反比例函数解析式.一般地,建立反比例函数模型有以下两种常用方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数解析式为y =kx(k ≠0),然后求出k 的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y )和自变量(x )的方程,进而解出函数,得到函数解析式.经典例题3 (2020·江西模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x (分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x (分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: (1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式; (2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为y=kx+b,依据题意,得2010100 bk b⎧⎨⎩=,+=,解得820kb⎧⎨⎩=,=,故此函数解析式为y=8x+20.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为y=mx,依据题意,得100=10m,即m=1000,故y=1000x,当y=20时,20=1000t,解得t=50.(3)∵57-50=7<10,∴当x=7时,y=8×7+20=76.答:小明散步57分钟回到家时,饮水机内的温度约为76℃.过关演练1.(2020·河南一模)已知点A(2,a),B(-3,b)都在双曲线y=-6x上,则()A.a<b<0B.a<0<b C.b<a<0 D.b<0<a2.(2020•山东德州中考)函数y=kx和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A B C D 3.(2020•贵州黔西南州中考)如图,在菱形ABOC中,AB=2,①A=60°,菱形的一个顶点C在反比例函数y═kx(k≠0)的图象上,则反比例函数的解析式为()A .y =-x B .y =-x C .y =-3xD .y =x4.(2020·湖南长沙模拟)若点A (3,4)是反比例函数y =kx图象上一点,则下列说法正确的是( ) A .图象分別位于二、四象限 B .当x <0时,y 随x 的增大而减小 C .点(2,-6)在函数图象上 D .当y ≤4时,x ≥3 5.(2020·安徽合肥模拟)在同一坐标系中,函数y =kx和y =-kx +3的大致图象可能是( )A B C D6.(2020·安徽合肥一模)如图,若反比例函数y =k x (x <0)的图象经过点(-12,4),点A 为图象上任意一点,点B 在x 轴负半轴上,连接AO ,AB ,当AB =OA 时,①AOB 的面积为( )A .1B .2C .4D .无法确定7. (2020•湖北孝感中考)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R8. (2020•湖南长沙中考)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=610tB.v=106t C.v=6110t2D.v=106t29.(2020·河北一模)已知反比例函数y=mx与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则①ACD的面积为()A.12B.9C.6D.510.(2020·广东广州一模)如图所示,已知A(13,y1),B(3,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(13,0) B.(43,0) C.(23,0) D.(103,0)11.(2020·湖北十堰一模)已知反比例函数y=24kx+(k是常数,且k≠-2)的图象有一支在第二象限,则k的取值范围是.12.(2020•江苏无锡模拟)如果反比例函数y=3ax-(a是常数)的图象在第一、三象限,那么a的取值范围是.13.(2020•山东滨州中考)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.14.(2020•四川甘孜州中考)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2 x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且①ABP的面积是①AOB的面积的2倍,则点P的横坐标为.15.(2020·安徽阜阳模拟)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD①x轴,双曲线y=5 x (x>0)经过A,B两点,则菱形ABCD的面积为.16.(2020•山东青岛)如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=.17.(2020•浙江台州中考)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2y2-y3.18.(2020•山东济宁中考)在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.19.(2020·安徽合肥三模)如图,一次函数y=-x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-3,m),与x轴交于点B(-2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长;(3)根据图象,直接写出不等式-x+b<kx<3的解集.20.(2020·浙江金华模拟)如图,一次函数y1=-x+4的图象与反比例函数y2=kx(k为常数,且k≠0)的图象交于A(1,a),B两点,与y轴和x轴分别交于C,D两点,AM①y轴,BN①x轴,垂足分别为M,N两点,且AM与BN交于点E.(1)求反比例函数的表达式及点B的坐标;(2)直接写出反比例函数图象位于第一象限且y1<y2时自变量x的取值范围;(3)求①OAB与①ABE的面积的比.21.(2020•四川成都中考)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若①AOB的面积为①BOC的面积的2倍,求此直线的函数表达式.22.(2020•山东聊城中考)如图,已知反比例函数y=kx的图象与直线y=ax+b相交于点A(-2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得①P AB的面积为18,求出点P的坐标.23.(2020·江西南昌模拟)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800①,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600①.煅烧时温度y(①)与时间x(min)成一次函数关系;锻造时,温度y(①)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是26①.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400①时,须停止操作,那么锻造的操作时间有多长?参考答案考点梳理考点一 1.kx2. (1)双曲线 (2)坐标轴 坐标轴 (3)减小 增大 中心 过关演练1. B 【解析】①双曲线y =6x,k =-6<0,①双曲线在第二、四象限,①2>0,-3<0,①点A (2,a )在第四象限,点B (-3,b )在第二象限,①a <0<b .2. D 【解析】在函数y =k x 和y =-kx +2(k ≠0)中,当k >0时,函数y =kx的图象在第一、三象限,函数y =-kx +2的图象在第一、二、四象限,故选项A 、B 错误,选项D 正确;当k <0时,函数y =kx的图象在第二、四象限,函数y =-kx +2的图象在第一、二、三象限,故选项C 错误.3. B 【解析】①在菱形ABOC 中,①A =60°,菱形边长为2,①OC =2,①COB =60°,①点C 的坐标为(-1,,①顶点C 在反比例函数y ═k x 的图象上,=1k,得k y =-x .4. B 【解析】①点A (3,4)是反比例函数y =kx图象上一点,①k =xy =3×4=12,①此反比例函数的解析式为y =12x.①k =12>0,①此函数的图象位于一、三象限,故选项A 错误;①k =12>0,①在每一象限内y 随x 的增大而减小,故选项B 正确;①2×(-6)=-12≠12,①点(2,-6)不在此函数的图象上,故选项C 错误;当y ≤4时,即y =12x≤4,解得x <0或x ≥3,故选项D 错误. 5. D 【解析】由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项A 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项B 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k <0,根据一次函数图象可得-k <0,则k >0,故选项C 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k <0,则k >0,故选项D 正确.6. B 【解析】①反比例函数y =k x (x <0)的图象经过点(-12,4),①k =-12×4=-2,过A 点作AC ①OB于点C,①①ACO的面积为12×2=1,①AO=AB,①OC=BC,①S①AOB=2S①AOC=2.7. C 【解析】设I=kR,把(8,6)代入得:k=8×6=48,故这个反比例函数的解析式为I=48R.8. A 【解析】①运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,①106=vt,①v=6 10t.9. D 【解析】①点A(4,1)在反比例函数y=mx上,①m=xy=4×1=4,①y=4x.把B(a,2)代入y=4x得2=4a,①a=2,①B(2,2).①把A(4,1),B(2,2)代入y=kx+b.①1422k bk b⎧⎨⎩=+,=+,解得123kb⎧⎪⎨⎪⎩=-,=,①一次函数的解析式为y=12x+3,①点C在直线y=12x+3上,①当x=0时,y=3,①C(0,3).过A作AE①x轴于点E.①S①ACD=S梯形AEOC-S①COD-S①DEA=(13)42+⨯-12×1×3-12×1×3=5.10. D 【解析】把A(13,y1),B(3,y2)代入反比例函数y=1x得y1=3,y2=13,①A(13,3),B(3,13).连接AB,在①ABP中,由三角形的三边关系定理得:|AP-BP|<AB,①延长AB交x轴于P′,当P在P′点时,P A-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0),把点A,B的坐标代入得133133a ba b⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1103ab⎧⎪⎨⎪⎩=-,=,①直线AB的解析式是y=-x+103,当y=0时,x=103,即P(103,0).11. k<-2 【解析】①反比例函数y=24kx+的图象有一支在第二象限,①2k+4<0,解得k<-2.12. a>3 【解析】∵反比例函数y=3ax-(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.13. y=2x【解析】当y=2时,即y=2x=2,解得x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx,解得k=2,故该反比例函数的解析式为y=2x.14. 2【解析】①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则①ABP的面积是①AOB的面积的2倍,直线AB与x轴交点的坐标为(-1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为y=x+b,将点C的坐标代入上式并解得:b=-1,故直线l的表达式为y=x-1①,而反比例函数的表达式为y=2x①,联立①①并解得x=2或-1(舍去);①当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3①,联立①①并解得x舍去负值).15. 452【解析】连接AC,与BD交于点M,①菱形对角线BD①x轴,①AC①BD,①点A,B横坐标分别为1和4,双曲线y=5x(x>0)经过A,B两点,①AM=5-54=154,BM=4-1=3,①AC=152,BD=6,①菱形ABCD的面积12AC·BD=452.16. -4 【解析】设反比例函数的解析式为y=kx.∵△AOB的面积=△ABP的面积=2,△AOB的面积=12|k|,∴12|k|=2,∴k=±4;又反比例函数的图象的一支位于第二象限,∴k<0.∴k=-4.17. 解:(1)设y与x之间的函数关系式为y=kx,把(3,400)代入y=kx得,400=3k,解得k=1200,①y与x之间的函数关系式为y=1200x;(2)>提示:把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,①y1-y2=200-150=50,y2-y3=150-120=30,①50>30,①y1-y2>y2-y3.18. 解:(1)y=4xx>0 提示:①在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2,①12xy=2,①xy=4,①y关于x的函数关系式是y=4x,x的取值范围为x>0.(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y =-x +3向上平移a (a >0)个单位长度后解析式为y =-x +3+a ,解34y x a y x =-++⎧⎪⎨=⎪⎩,, 整理得,x 2-(3+a )x +4=0,①平移后的直线与上述函数图象有且只有一个交点,①①=(3+a )2-16=0,解得a =1,a =-7(不合题意舍去),故此时a 的值为1.19. 解:(1)由点B (-2,0)在一次函数y =-x +b 上,得b =-2,①一次函数的表达式为y =-x -2;由点A (-3,m )在y =-x -2上,得m =1,①A (-3,1),把A (-3,1)代入数y =kx(x <0)得k =-3,①反比例函数的表达式为y =-3x. (2)y =3,即y C =y D =3,当y C =3时,-x C -2=3,解得x C =-5,当y D =3时,3=-3Dx ,解得x D =-1,①CD =x D -x C =-1-(-5)=4. (3)不等式-x +b <kx<3的解集为-3<x <-1. 20. 解:(1)当x =1时,a =-x +4=3,①点A 的坐标为(1,3).将点A (1,3)代入y =kx中,①k =1×3=3,①反比例函数的表达式为y =3x ,联立34y xy x ⎧⎪⎨⎪⎩=,=-+,解得13x y ⎧⎨⎩=,=,或31x y ⎧⎨⎩=,=, ①B (3,1). (2)反比例函数图象位于第一象限且y 1<y 2时自变量x 的取值范围为0<x <1或x >3. (3)①A (1,3),B (3,1),①E (3,3),AE =2,BE =2,①S ①ABE =12×2×2=2,①S ①OAB =S 四边形ONEM -S ①ABE -S ①AOM -S ①BON =3×3-2-12×3×1-12×3×1=4,①①OAB 与①ABE 的面积的比是4①2=2①1.21. 解:(1)①反比例函数y=mx(x>0)的图象经过点A(3,4),①k=3×4=12,①反比例函数的表达式为y=12x;(2)①直线y=kx+b过点A,①3k+b=4,①过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,①B(-b k ,0),C(0,b),①①AOB的面积为①BOC的面积的2倍,①12×4×|-bk|=2×12×|-bk|×|b|,①b=±2,当b=2时,k=23,当b=-2时,k=2,①直线的函数表达式为y=23x+2,y=2x-2.22. 解:(1)将点A(-2,3)的坐标代入反比例函数表达式y=kx,解得k=-2×3=-6,故反比例函数表达式为y=-6x,将点B的坐标代入上式,解得m=-6,故点B(1,-6),将点A,B的坐标代入一次函数表达式得326=a ba b=-+⎧⎨-+⎩,,解得3=3ab=-⎧⎨-⎩,,故直线的表达式为y=-3x-3;(2)设直线与x轴的交点为E,当y=0时,x=-1,故点E(-1,0),分别过点A,B作x轴的垂线AC,BD,垂足分别为C,D,则S①P AB=12PE•CA+12PE•BD=32PE+62PE=92PE=18,解得PE=4,故点P的坐标为(3,0)或(-5,0).23. 解:(1)材料锻造时,设y=kx(k≠0),由题意得600=8k,解得k=4800,当y=800时,4800x=800,解得x=6,①点B的坐标为(6,800).材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,①材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).4800÷26=184.6,①锻造操作时y与x的函数关系式为y=4800x(6<x<184.6).(2)把y=400代入y=4800x,得x=12,12-6=6(分).答:锻造的操作时间为6分钟.。
全程考点训练11 反比例函数一、选择题1.已知反比例函数y =-2x,下列结论不正确的是(B )A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-22.已知长方形的面积为20 cm 2,设该长方形一边长为y (cm),另一边长为x (cm),则y 与x 之间的函数图象大致是(B )3.若函数y =m +2x的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值X 围是(A )A .m <-2B .m <0C .m >-2D .m >0【解析】 由在每一象限内,y 随x 的增大而增大,可知k =m +2<0,∴m <-2.4.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,且AB ∥x 轴,点C ,D 在x 轴上.若四边形ABCD 为矩形,则它的面积为(B )A .1B .2C .3D .4【解析】 过点A 作AE ⊥y 轴,易得S矩形ODAE=1,S矩形OCBE=3,∴S矩形ABCD=S矩形OCBE-S矩形ODAE=3-1=2.(第4题)(第5题)5.一次函数y 1=kx +b (k ≠0)与反比例函数y 2=m x(m ≠0)在同一平面直角坐标系中的图象如图所示,若y 1>y 2,则x 的取值X 围是(A )A .-2<x <0或x >1B .x <-2或0<x <1C .x >1D .-2<x <1【解析】 y 1>y 2,说明一次函数的图象在反比例函数图象的上方,观察图象得: 当-2<x <0或x >1时符合要求,故选A.6.如图,直线y =mx 与双曲线y =k x交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM .若S △ABM =2,则k 的值是(A )A .2B .m -2C .mD .4【解析】 S △ABM =2S △AOM =2×k2=k =2.(第6题)(第7题)7.如图,已知A ⎝ ⎛⎭⎪⎫12,y 1,B (2,y 2)为反比例函数y =1x 图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差最大时,点P 的坐标是(D )A.⎝ ⎛⎭⎪⎫12,0B .(1,0)C.⎝ ⎛⎭⎪⎫32,0D.⎝ ⎛⎭⎪⎫52,0 【解析】 连结AB .把点A ⎝ ⎛⎭⎪⎫12,y 1,B (2,y 2)的坐标代入反比例函数y =1x ,得y 1=2,y 2=12,∴点A ⎝ ⎛⎭⎪⎫12,2,B ⎝ ⎛⎭⎪⎫2,12.∵在△ABP 中,由三角形的三边关系定理,得||AP -BP <AB ,∴延长AB 交x 轴于点P ′,当点P 在点P ′处时,PA -PB =AB ,即此时线段AP 与线段BP 之差最大.设直线AB 的表达式是y =kx +b ,把点A ,B 的坐标代入可求得直线AB 的表达式是y =-x +52.当y =0时,x =52,即P ⎝ ⎛⎭⎪⎫52,0,故选D. 二、填空题8.已知反比例函数的图象经过点(-1,2),则它的表达式是y =-2x.【解析】 设反比例函数的表达式为y =k x ,将点(-1,2)代入y =k x,得k =-1×2=-2,故函数表达式为y =-2x.9.已知反比例函数y =4x,当函数值y ≥-2时,自变量x 的取值X 围是x ≤-2或x >0.【解析】 易知反比例函数y =4x的图象在第一、三象限,且在每一象限内,y 随x 的增大而减小,显然,当x >0时,y >0;当x <0,y =-2时,-2=4x,解得x =-2.∴当y ≥-2时,x ≤,x ≤-2或x >0.10.直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1),B (x 2,y 2)两点,则4x 1y 2-3x 2y 1=-3.【解析】 点A 和点B 关于原点对称,点A (x 1,y 1),则点B (-x 1,-y 1), ∴4x 1y 2-3x 2y 1=-4x 1y 1+3x 1y 1=-x 1y 1=-3.(第11题)11.如图,四边形OABC 是矩形,ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B ,E 在反比例函数y =k x的图象上,OA =1,OC =6,则正方形ADEF 的边长为__2__.【解析】 ∵OA =1,OC =6,∴点B 的坐标为(1,6), ∴k =1×6=6,∴反比例函数的表达式为y =6x.设AD =t ,则OD =1+t , ∴点E 的坐标为(1+t ,t ),∴(1+t )·t =6,整理,得t 2+t -6=0, 解得t 1=-3(舍去),t 2=2, ∴正方形ADEF 的边长为2.(第12题)12.如图,点A 1,A 2,A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1,A 2,A 3作y 轴的平行线,与反比例函数y =8x(x >0)的图象分别交于点B 1,B 2,B 3,分别过点B 1,B 2,B 3作x 轴的平行线,分别与y 轴交于点C 1,C 2,C 3,连结OB 1,OB 2,OB 3,那么图中阴影部分的面积之和为499.【解析】 从左往右三个阴影部分的面积分别记为S 1,S 2,S 3,则S 1=4,S 2=4×⎝ ⎛⎭⎪⎫122=1,S 3=4×⎝ ⎛⎭⎪⎫132=49,∴S 1+S 2+S 3=4+1+49=499.(第13题)13.如图,等腰直角三角形ABC 的顶点A 在x 轴上,∠BCA =90°,AC =BC =22,反比例函数y =3x (x >0)的图象分别与AB ,BC 交于点D ,E .连结DE ,当△BDE ∽△BCA 时,点E 的坐标为⎝ ⎛⎭⎪⎫322,2.(第13题解)【解析】 如解图.∵∠BCA =90°,AC =BC =22,反比例函数y =3x(x >0)的图象分别与AB ,BC 交于点D ,E ,∴∠BAC =∠ABC =45°.设点E ⎝⎛⎭⎪⎫a ,3a ,D ⎝ ⎛⎭⎪⎫b ,3b ,则点C (a ,0),B (a ,22),A (a -22,0), ∴可知直线AB 的表达式是y =x +22-a . ∵△BDE ∽△BCA ,∴∠BDE =∠BCA =90°,∴直线y =x 与直线DE 垂直,∴点D ,E 关于直线y =x 对称,则a +b 2=3a +3b2,即ab =3.又∵点D 在直线AB 上,∴3b =b +22-a ,即a =3a+22-a ,∴2a 2-22a -3=0,解得a 1=322,a 2=-22(舍去).∴点E 的坐标是⎝ ⎛⎭⎪⎫322,2.三、解答题14.点P (1,a )在反比例函数y =kx的图象上,它关于y 轴的对称点在一次函数y =2x +4的图象上.求此反比例函数的表达式.【解析】 点P (1,a )关于y 轴的对称点是(-1,a ). ∵点(-1,a )在一次函数y =2x +4的图象上, ∴a =2×(-1)+4=2.∵点P (1,2)在反比例函数y =k x的图象上,∴k =2. ∴反比例函数的表达式为y =2x.(第15题)15.如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x交于A ,B 两点.已知点A 的坐标为A (4,n ),BD ⊥x 轴于点D ,且S △BDO A 的一次函数y 3=k 3x +b 与反比例函数的图象交于另一点C ,与x 轴交于点E (5,0).(1)求正比例函数y 1,反比例函数y 2和一次函数y 3的表达式.(2)结合图象,求出当k 3x +b >k 2x>k 1x 时x 的取值X 围. 【解析】 (1)设B (p ,q ),则k 2=pq .由S △BDO =12(-p )(-q )=4,得pq =8,∴k 2=8,∴y 2=8x,∴点A (4,2),∴点B (-4,-2).把点A (4,2)的坐标代入y 1=k 1x 中,得4k 1=2, ∴k 1=12,∴y 1=12x .由⎩⎪⎨⎪⎧4k 3+b =2,5k 3+b =0,得⎩⎪⎨⎪⎧k 3=-2,b =10. ∴y 3=-2x +10.(2)由⎩⎪⎨⎪⎧y 2=8x ,y 3=-2x +10,得点C (1,8).由图象可得,当x <-4或1<x <4时,k 3x +b >k 2x>k 1x .(第16题)16.如图,定义:若双曲线y =k x(k >0)与它的其中一条对称轴y =x 交于A ,B 两点,则线段AB 的长度为双曲线y =k x(k >0)的对径.(1)求双曲线y =1x 的对径.(2)若双曲线y =k x(k >0)的对径是102,求k 的值. (3)仿照上述定义,定义双曲线y =kx(k <0)的对径.【解析】 (1)过点A 作AC ⊥x 轴于点C ,解方程组⎩⎪⎨⎪⎧y =1x ,y =x ,得⎩⎪⎨⎪⎧x 1=1,y 1=1,⎩⎪⎨⎪⎧x 2=-1,y 2=-1.∴点A 的坐标为(1,1),点B 的坐标为(-1,-1),∴OC =AC =1,∴OA =2OC =2, ∴AB =2OA =22,∴双曲线y =1x的对径是2 2.(2)∵双曲线的对径为102,即AB =102, ∴OA =5 2.∵OA =2OC =2AC ,∴OC =AC =5, ∴点A 的坐标为(5,5).把点A (5,5)的坐标代入y =k x(k >0),得k =5×5=25, 即k 的值为25.(3)若双曲线y =k x(k <0)与它的其中一条对称轴y =-x 交于A ,B 两点,则线段AB 的长度为双曲线y =k x(k <0)的对径.。
反比例函数考点一、反比例函数的图象与性质【例1】反比例函数y =m -1x 的图象在第一、三象限,则m 的取值X 围是__________.方法总结 1..由于双曲线自变量的取值X 围是x ≠0的实数,故其性质强调在每个象限内y 随x 的变化而变化的情况2.反比例函数图象的分布取决于k 的符号,当k >0时,图象在第一、三象限,当k <0时,图象在第二、四象限 举一反三在反比例函数y=图象上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m的取值X 围是( )A .m >B .m <C .m ≥D .m ≤ 考点二、反比例函数解析式的确定【例2】如图,在直角坐标系中,有菱形OABC ,A 点的坐标是(10,0),双曲线经过点C ,且OB •AC=160,则k 的值为( )A .40B .48C .64D .80方法总结 反比例函数只有一个基本量k ,故只需一个条件即可确定反比例函数.这个条件可以是图象上一点的坐标,也可以是x ,y 的一对对应值.举一反三如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求不等式的解集(请直接写出答案).考点三、反比例函数的比例系数k 的几何意义 【例3】如图,点A 在双曲线上,点B 在双曲线y=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为.方法总结过双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k|;过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形的面积S =12|k|.举一反三如图,反比例函数y=(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .(1)证明:△OCE 与△OAD 面积相等; (2)若CE :EB=1:2,求BD :BA 的值;(3)若四边形ODBE 面积为6,求反比例函数的解析式.考点四、反比例函数的综合应用【例4】阅读理解:对于任意正实数a,b,∵≥0,∴a﹣+b≥0,∴a+b≥2,只有点a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b 有最小值2.根据上述内容,回答下列问题:(1)若m>0,只有当m=时,m+有最小值;(2)思考验证:①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥,并指出等号成立时的条件;②探索应用:如图2,已知A(﹣3,0),B(0,﹣4)P为双曲线上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.方法总结此题利用了正数中倒数等于它本身的正数只有1解决问题.在后面的问题中注意使用圆中所给线段所在三角形的相似以及特殊四边形的面积的求法.所以在利用反比例函数性质来解决相应问题时也一定要结合已知条件及相似,圆等相关知识点来分析题目。
第11讲反比例函数 2023年中考数学一轮复习专题训练(浙江专用)一、单选题1.(2022·金东模拟)如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(−10,0),对角线AC,BO相交于点D,双曲线y=k x(x<0)经过点D,AD+OD=6√5,AD<OD,k的值为()A.16B.32C.64D.8 2.(2022·桐乡模拟)已知点A(−√2,y1),B(1,y2),C(√3,y3)都在反比例函数y=−2x的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y 3<y13.(2022·路桥模拟)如图,直线y=kx+b(k≠0)和双曲线y=ax(a≠0)相交于点A,B,则关于x的不等式kx+b>ax的解集是()A.x>0.5B.−1<x<0.5C.x>0.5或−1<x<0D.x<−1或0<x<0.5 4.(2022·鹿城模拟)如图,在直角坐标系中,点C(2,0),点A在第一象限(横坐标大于2),AB⊥y 轴于点B,且AC=AB,双曲线y=kx(k>0,x>0)经过AC中点D,并交AB于点E. 若BE=310AB,则k的值为()A.12B.18C.24D.30 5.(2022·龙湾模拟)某气球内充满一定质量的气体,温度不变时,气球内气体的压强p(kPa)与气体的体积V(m3)的关系是如图所示的反比例函数.当气球内气体的压强大于200kPa,气球就会爆炸.为了不让气球爆炸,则气球内气体的体积V需满足的取值范围是()A.V<0.5B.V>0.5C.V≤0.5D.V≥0.56.(2022·杭州模拟)如图,AB⊥OA于点A,AB交反比例函数y=k x(x<0)的图象于点C,且AC:BC=1:3,若S△AOB=4,则k=()A.4B.﹣4C.2D.﹣27.(2022·西湖模拟)如图,是三个反比例函数y1=k1x,y2=k2x,y3=k3x在y轴右侧的图象,则()A.k1>k2>k3B.k2>k1>k3C.k3>k2>k1D.k3> k1>k28.(2022·鄞州模拟)如图,一次函数y1=k1x+b的图象与反比例函数y2=k2x的图象交于点A(1,m),B(4,n).当y1>y2时,x的取值范围是()A.1<x<4B.0<x<1或x>4C.x<0或1<x<4D.x<0或x>4 9.(2022·富阳模拟)若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y 2>y110.(2022·宁波模拟)已知正比例函数y=k1x和反比例函数y=k2x,在同一直角坐标系下的图象如图所示,其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④二、填空题11.(2022·衢州)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=kx(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.12.(2022·湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y= 1x,则图象经过点D的反比例函数的解析式是.13.(2022·江干模拟)某函数满足当x>1时,函数随x的增大而减小,且过点(1,2),写出一个满足条件的函数表达式.14.(2022·舟山)如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y= kx(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k=.15.(2022·乐清模拟)如图,点A ,B 在反比例函数y =k x(k >0,x >0)的图象上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,连接OA ,AB ,若OC =3BD =6,OA =AB ,则k 的值为 .16.(2022·宁波模拟)在平面直角坐标系中, 对于不在坐标轴上的任意一点A(x ,y) , 我们把点 B(1y ,1x ) 称为点 A 的“逆倒数点”.如图, 正方形 OCDE 的顶点 C 为 (4,0) , 顶点 E 在 y 轴正半轴上, 函数 y =kx(x >0) 的图象经过顶点D 和点 A , 连结 OA 交正方形 OCDE 的一边于点 B , 若点 B 是点 A 的 “逆倒数点”, 则点 A 的坐标为 .17.(2022·洞头模拟)如图,在平面直角坐标系中,点A 是反比例函数y =k x图象在第一象限的一点,连结OA 并延长使AB=OA ,过点B 作BC ⊥x 轴,交反比例函数图象交于点D ,连结AD ,且S ΔABD =3,则k 的值为 .18.(2022·瓯海模拟)如图,在平面直角坐标系中,△ABC 为等腰直角三角形,∠ABC=90°,AC∥x轴,经过点B的反比例函数y= kx(k>0)交AC于点D,过点D 作DE⊥x轴于点E,若AD=3CD,DE=6,则k=19.(2022·建德模拟)已知反比例函数的表达式为y=1+2mx,A(x1,y1)和B(x2,y2)是反比例函数图象上两点,若x1<0<x2时,y1<y2,则m的取值范围是.20.(2022·玉环模拟)如图,反比例函数y=k x的图象经过点A(−1,−1),则当函数值y≥1时,自变量x的取值范围为.三、综合题21.(2022·台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y (单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm ,求小孔到蜡烛的距离.22.(2022·宁波)如图,正比例函数y= −23x的图象与反比例函数y= kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.23.(2022·杭州)设函数y1= k1x,函数y2=k2x+b(k1,k2,b是常数,k1≠0,k2≠0).(1)若函数y1和函数y2的图象交于点A(1,m),点B(3,1),①求函数y1,y2的表达式:②当2<x<3时,比较y1与y2的大小(直接写出结果).(2)若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值,24.(2022·温州)已知反比例函数y=k x(k≠0)的图象的一支如图所示,它经过点(3,-2).(1)求这个反比例函数的表达式,并补画该函数图象的另一支.(2)求当y≤5,且y≠0时自变量x的取值范围.25.(2022·桐乡模拟)某校对教室采用药薰法进行灭蚊.根据药品使用说明,药物燃烧时,室内每立方米空气中含药量y(mg/m3)与药物点燃后的时间x(min)成正比例关系,药物燃尽后,y与x成反比例关系(如图).已知药物点燃8min燃尽,此时室内每立方米空气中含药量为6mg.(1)分别求药物燃烧时和药物燃尽后,y与x之间函数的表达式.(2)根据灭蚊药品使用说明,当每立方米空气中含药量低于1.6mg时,对人体是安全的,那么从开始药薰,至少经过多少时间后,学生才能进教室?(3)根据灭蚊药品使用说明,当每立方米空气中含药量不低于3mg且持续时间不低于10min时,才能有效杀灭室内的蚊虫,那么此次灭蚊是否有效?为什么?26.(2022·江干模拟)在一次矿难事件的调查中发现,矿井内一氧化碳浓度y(mg/m3)和时间x(ℎ)的关系如图所示:从零时起,井内空气中一氧化碳浓度达到30mg/m3,此后浓度呈直线增加,在第6小时达到最高值发生爆炸,之后y与x 成反比例关系.请根据题中相关信息回答下列问题:(1)求爆炸前后y与x的函数关系式,并写出相应的自变量取值范围;(2)当空气中浓度上升到60mg/m3时,井下3km深处的矿工接到自动报警信号,若要在爆炸前撤离到地面,问他们的逃生速度至少要多少km/ℎ?(3)矿工需要在空气中一氧化碳浓度下降到30mg/m3及以下时,才能回到矿井开展生产自救,则矿工至少要在爆炸多少小时后才能下井?答案解析部分1.【答案】B【解析】【解答】解:如图,过点D作DE⊥AO于点E,∵四边形ABCO是菱形,A(-10,0),∴AD⊥OD,AO=10,∴AD2+OD2=AO2,∵AD+OD=6√5,∴AD=6√5-OD,∴(6√5-OD)2+OD2=100,∴OD=4√5或OD=2√5,∵AD<OD,∴OD=4√5,AD=2√5,∵S△AOD=12AD·OD=12AO·DE,∴DE=4,∴OE=8,∴D(-8,-4),∵点D在双曲线y=kx上,∴k=32.故答案为:B.【分析】过点D作DE⊥AO于点E,根据菱形的性质得出AD⊥OD,根据勾股定理得出OD=4√5,AD=2√5,从而得出DE=4,OE=8,得出D(-8,-4),再根据点D在双曲线y=kx上,即可得出k=32.2.【答案】D【解析】【解答】解:因为点A(−√2,y1),B(1,y2),C(√3,y3)都在反比例函数y=−2x的图象上,所以可得:y1=−√2=√2;y2=−21=−2;y3=2√3=−2√33,∵√2>−2√33>−2,∴y1>y3>y2.故答案为:D.【分析】分别将x=−√2、x=1、x=√3代入反比例函数解析式中求出y1、y2、y3的值,然后进行比较即可.3.【答案】C【解析】【解答】解:∵直线y=kx+b(k≠0)和双曲线y=ax(a≠0)相交于点A,B两点,点A、B的横坐标分别为-1与0.5,∴不等式kx+b>ax的解集为-1<x<0或x>0.5.故答案为:C.【分析】根据图象,找出一次函数图象在反比例函数图象上方部分所对应的x的范围即可.4.【答案】B【解析】【解答】解:如图,过点D作DH⊥x轴于点H,过点A作AG⊥x轴于点G,∵D为AC中点,∴DH为△ACG的中位线,∴CH=GH,DH∥AG,∴DH:AG=1:2,设CH=GH=a,则CG=2a,∵C (2,0),∴OH=2+a ,OG=2(1+a ),∴AB=AC=2(1+a ),∵BE=310AB ,AB ⊥y 轴于点B , ∴BE=35(1+a ), 又∵双曲线y=k x经过点D ,交AB 于点E , ∴AG=y E =5k 3(1+a ),DH=k 2+a , ∴k 2+a :5k 3(1+a )=1:2, 整理,解得:a=4,∴BE=3,CG=2CH=8,AB=AC=10,∴在Rt △ACG 中,AG=√102−82=6,∴E (3,6),∴k=3×6=18.故答案为:B.【分析】如图,过点D 作DH ⊥x 轴于点H ,过点A 作AG ⊥x 轴于点G ,推出DH 为△ACG 的中位线,得CH=GH ,DH ∥AG ,从而得DH :AG=1:2,设CH=GH=a ,则CG=2a ,进而表示OH=2+a ,OG=2(1+a ),AB=AC=2(1+a ),再由BE=310AB ,AB ⊥y 轴于点B ,可得BE=35(1+a ),从而可表示AG=y E =5k 3(1+a ),DH=k 2+a ,列出k 和a 的比例式求得a=4,得BE=3,CG=2CH=8,AB=AC=10,在Rt △ACG 中,由勾股定理求得AG=6,从而得E (3,6),进而求出k 值即可.5.【答案】D【解析】【解答】解:设P 与V 的函数关系为P=k V, ∵当V=0.8时,P=125,∴k=125×0.8=100,∴P=100V, ∴当P=200时V=0.5,∴当P≤200时,V≤0.5.故答案为:D.【分析】设P与V的函数关系为P=kV,把V=0.8,P=125代入解析式,求出k=100,再把P=200代入解析式求出V=0.5,根据反比例函数图象的性质即可得出答案.6.【答案】D【解析】【解答】解:∵AC:BC=1:3,设AC=m(m>0),BC=3m,则AB=4m,∵S△AOB=12OA×AB=12×OA×4m=4,解得OA=2m,∴C(-2m,m),∴k=xy=m×(-2m)=-2.故答案为:D.【分析】根据AC:BC=1:3,设AC=m(m>0),BC=3m,得出AB=4m,然后根据S△AOB=4列等式表示出OA,从而求出C点坐标,代入反比例函数式求解即可. 7.【答案】C【解析】【解答】解:∵反比例函数y2=k2x和y3=k3x部分图象在第一象限,且y3=k3x离原点更远,∴k3>k2>0,∵y1=k1x的部分图象在第四象限,∴k1<0 ,∴k3>k2>k1.故答案为:C.【分析】根据k>0时,k越大,则反比例函数图象越远离原点,可判断k3>k2>0,再根据y1=k1x的部分图象在第四象限,则k<0,即可得出k3>k2>k1.8.【答案】C【解析】【解答】解:当y1>y2时,一次函数的图象在反比例函数的图象上方,由图可知x的取值范围为x<0或1<x<4.故答案为:C.【分析】由于A(1,m),B(4,m),观察图象可知当x<0或1<x<4时,一次函数的图象在反比例函数的图象上方,据此即得结论.9.【答案】C【解析】【解答】解:∵点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x 的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,∵−3<−2<6,∴y1>y3>y2.故答案为:C.【分析】分别将x=-1、x=2、x=3代入反比例函数解析式中求出y1、y2、y3的值,然后进行比较即可.10.【答案】B【解析】【解答】解:①∵k1>0,k2>0,∴k1·k2>0,∴①符合题意;②∵k1<0,k2>0,∴k1·k2<0,∴②不符合题意;③∵k1>0,k2<0,∴k1·k2<0,∴③不符合题意;④∵k1<0,k2<0,∴k1·k2>0,∴④符合题意,∴符合k1·k2>0的是:①④.故答案为:B.【分析】根据各个小题中的函数图象,可以得到k1和k2的正负情况,从而可以判断k 1·k 2的正负情况,即可得出符合题意的答案.11.【答案】125【解析】【解答】解:过点C 作CM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,∵点C 在反比例函数图象上,设点C (m ,k m ) ∴MO =m ,CM =k m , ∵CM ∥DN ∥OE ,AE=CE ,CD=2BD ,∴OA OM =AE EC =1,BN BM =DN CM =BD CB =13, ∴OA=OM=m ,DN =k 3m, ∴k 3m =k x解之:x=3m ,∴ON=3m ,MN=3m-m=2m ,∴BN=m ,∴AB=m+m+2m+m=5m ,∵S △ABC =6=12×5m ×k m解之:k =125. 故答案为:125. 【分析】过点C 作CM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,设点C (m ,k m ),可得到OM ,CM 的长;再利用CM ∥DN ∥OE ,AE=CE ,CD=2BD ,利用平行线分线段成比例定理可表示出OA ,DN 的长,由此可得到关于x 的方程,解方程表示出x ,即可表示出ON ,MN ,BN ,AB 的长,然后利用△ABC 的面积为6,可求出k 的值.12.【答案】y= −3x【解析】【解答】解:如图,过点C 作CE ⊥y 轴交于点E ,过点D 作DF ⊥x 轴交于点F ,∵tan ∠ABO=3,∴AO=3OB ,设OB=a ,则AO=3a ,∵∠ABC=90°,∴∠ABO+∠OAB=∠ABO+∠CBE ,∴∠OAB=∠CBE ,又∵AB=BC ,∠AOB=∠BCE=90°,∴Rt △AOB ≌Rt △BCE (AAS ),∴CE=OB=a ,BE=AO=3a ,∴OE=BE-BO=3a-a=2a ,∴点C (a ,2a ),∵点C 在反比例函数y=1x 图象上, ∴2a 2=1,解得a 1=√22,a 2=-√22(舍去), ∴CE=OB=√22,BE=AO=3√22, 同理可证:Rt △AFD ≌Rt △AOB (AAS ),∴DF=AO=3√22,AF=BO=√22, ∴FO=√2,∴D (-√2,3√22),设经过D 点的反比例函数解析式为y=d x(d≠0), ∴d=-√2×3√22=-3, ∴y=-3x. 【分析】如图,过点C 作CE ⊥y 轴交于点E ,过点D 作DF ⊥x 轴交于点F ,由tan ∠ABO=3得AO=3OB ,设OB=a ,则AO=3a ,由“AAS”定理证出Rt △AOB ≌Rt △BCE ,从而得CE=OB=a ,BE=AO=3a ,进而得OE=2a ,即点C (a ,2a ),由点C 在反比例函数y=1x 图象上,列出关于a 的方程,解之得CE=OB=√22,BE=AO=3√22,同理可证:Rt △AFD ≌Rt △AOB (AAS ),从而得DF=AO=3√22,AF=BO=√22,FO=√2,即D (-√2,3√22),设经过D 点的反比例函数解析式为y=d x (d≠0),代入点D 坐标求解即可. 13.【答案】y =2x【解析】【解答】解: y =2x,当 x =1 时, y =2 且函数y 的值始终随自变量x 的增大而减小,故答案为: y =2x. 【分析】对于y=k x,当k>0时,图象位于一、三象限,且在每一象限内,y 随x 的增大而减小,将(1,2)代入求出k 的值,据此可得函数表达式.14.【答案】32【解析】【解答】解:∵AB ∥y 轴,B (4,3),点A 在反比例函数y=k x(k>0,x>0)的图象上,∴点A (4,k 4), ∵△ABC 的顶点C 与原点O 重合,∴BC=OB=√42+32=5,∵AB=BC ,∴5=k 4-3, ∴k=32.故答案为:32.【分析】由AB ∥y 轴,B (4,3),点A 在反比例函数y=k x(k>0,x>0)的图象上,得点A (4,k 4),再由勾股定理求得OB 的长,结合AB=BC ,从而得5=k 4-3,解之即可确定k 的值.15.【答案】4√15【解析】【解答】解:∵OC =3BD =6,∴BD =2,∵点A ,B 在y =k x上, ∴A (6,k 6),B (2,k 2), ∵OA=OB ,∴OA 2=OB 2,∴(6−0)2+(k 6−0)2=(6−2)2+(k 6−k 2)2, 整理得,k 212=20, 解得:k 1=4√15,k 2=−4√15,∵k >0,∴k =4√15,故答案为:4√15.【分析】由已知条件可得BD=2,设A (6,k 6),B (2,k 2),根据OA=OB 可得OA 2=OB 2,结合两点间距离公式可得k 的值,由反比例函数图象所在的象限可得k>0,据此解答.16.【答案】(64,14) 或 (14,64) 【解析】【解答】解:∵正方形OCDE ,C (4,0)∴D (4,4),将点(4,4)代入到y =k x得k=16 ∴y =16x , 令A (a ,16a) ∵点B 是点A 的 “逆倒数点”∴B(a16,1 a)当B在ED上时,1a=4,得a=14;当B在CD上时,a16=4,得a=64;∴综上所述,A的坐标为(64,14)或(14,64).【分析】先通过正方形上C点的坐标,可得D(4,4),代入反比例函数,求得K的值,从而求出反比例函数的解析式,先假设A点坐标,即可得B点坐标,若B在ED 上,那么B的纵坐标为4,若B在CD上,那么B的横坐标为4,据此即可求解. 17.【答案】4【解析】【解答】解:连接OD,作AE∥OC.∵OA=AB,∴S△OAD=S△ABD=3,∵S△ODC=12OC⋅DC=12D x⋅D y=12|k|,∵反比例函数图象在第一象限,∴k>0,∴S△ODC=12k,∵AE∥OC且OA=AB,∴AE是△OBC的中位线,∴OC=2AE,BC=2EC,∴S△OBC=12⋅OC⋅BC=12⋅2AE⋅2EC=2⋅A x⋅A y=2k,∵S△OBC=S△ABD+S△OAD+S△ODC,∴3+3+12k=2k,解得:k =4.故答案为:k =4.【分析】连接OD ,作AE ∥OC ,根据OA=AB 可得S △OAD =S △ABD =3,根据反比例函数k 的几何意义可得S △ODC =k 2,易得AE 是△OBC 的中位线,则OC=2AE ,BC=2EC ,根据三角形的面积公式可S △OBC =2k ,然后根据S △OBC =S △ABO +S △OAD +S △ODC 就可求出k 的值.18.【答案】27【解析】【解答】解:如图,过B 作BF ⊥x 轴于点F ,交AC 于点H ,设CD=m ,∴AD=3CD=3m ,AC=4m ,∵AC ∥x 轴, DE=6,∴D (3m ,6),∵△ABC 为等腰直角三角形,∴AB=BC ,∠ABC=90°,∴AH=CH=HB=2m ,∴B (2m ,2m+6),∵点B ,D 在双曲线y=k x上, ∴k=18m=2m (2m+6),∴m=32, ∴k=27.故答案为:27.【分析】过B作BF⊥x轴于点F,交AC于点H,设CD=m,根据题意得出D(3m,6),B(2m,2m+6),再根据点B,D在双曲线y=kx上,得出k=18m=2m(2m+6),求出m的值,即可得出k的值.19.【答案】m>−1 2【解析】【解答】解:∵点A(x1,y1),B(x2,y2)为反比例函数y=1+2mx图象上两点,当x1<0<x2时,y1<y2,∴该反比例函数的图象的两个分支分别在第一、第三象限∴1+2m>0,解得m>−1 2,故m的取值范围是m>−1 2 .故答案为:m>−1 2 .【分析】根据题意可得:反比例函数的图象的两个分支分别在第一、第三象限,则1+2m>0,求解可得m的范围.20.【答案】0<x≤1【解析】【解答】解:∵反比例函数y=kx的图象经过点A(-1,-1),∴k=-1×(-1)=1>0,图象也经过点(1,1),∴在第一、三象限内y随x的增大而减小,∴当y≥1时,0<x≤1.故答案为:0<x≤1.【分析】先由反比例函数y=kx的图象经过点A(-1,-1),求得k值及关于原点对称的点(1,1),由y≥1,结合反比例函数性质可得0<x≤1,即可求解. 21.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=k x,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12 x(2)∵y=12 x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm ,小孔到蜡烛的距离为4cm.【解析】【分析】(1)利用y是关于x的反比例函数,因此y与x之间的函数解析式为y=k x,将x=6,y=2代入函数解析式求出k的值,可得到反比例函数解析式.(2)将y=3代入函数解析式求出对应的x的值,即可求解.22.【答案】(1)解:把A(a,2)的坐标代入y= −23x,得2= −23a,解得a=-3,∴A (-3,2),把A (-3,2)的坐标代入y= kx,得2= k−3,解得k=-6,∴反比例函数的表达式为y= −6 x;(2)n的范围为n>2或n<-2.【解析】【解答】解:(2)∵点P(m,n)在反比例函数图象上,且它到y轴距离小于3,∴-3<m<0或0<m<3,当m=-3时,n=−6−3=2,当m=3时,n=−63=-2,∴若点P (m,n)在该反比例函数图象上,且它到y轴距离小于3,n的范围为n>2或n<-2.【分析】(1)把A(a,2)代入正比例函数式求出A点坐标,然后利用待定系数法求反比例函数式即可;(2)观察图象先确定出m的范围,再结合函数关系式和图象确定出n的取值范围即可. 23.【答案】(1)解:①由题意,得k1=3×1=3,∴函数y1= 3x∵函数y1的图象过点A(1,m),∴m=3,由题意,得{3=k2+b,1=3k2+b,解得{k2=−1,b=4,∴y2=-x+4.②y1<y2.(2)解:由题意,得点D的坐标为(-2,n-2),∴-2(n-2)=2n,解得n=1.【解析】【分析】(1)①将点B的坐标代入反比例函数解析式,可求出k1的值;再求出m的值,可得到点A的坐标;将点A,B的坐标代入一次函数解析式,建立关于k,b的方程组,解方程组求出k,b的值,可得到两函数解析式;②利用反比例函数和一次函数的性质,可得到2<x<3时,比较y1与y2的大小.(2)利用点的坐标平移规律:上加下减,左减右加,可得到点D的坐标,再将点D 代入函数y1的解析式,可得到关于n的方程,解方程求出n的值.24.【答案】(1)解:把点(3,−2)代入表达式y=k x(k≠0),得−2=k3,∴k=−6,∴反比例函数的表达式是y=−6 x.反比例函数图象的另一支如图所示.(2)解:当y=5时,5=−6 x,解得x=−65.由图象可知,当y≤5,且y≠0时,自变量x的取值范围是x≤−65或x>0.【解析】【分析】(1)将点(3,-2)代入反比例函数解析式求出k的值,可得到反比例函数解析式;再利用描点法画出反比例函数的另一支图象.(2)将y=5代入函数解析式求出对应的x的值;观察函数图象可得到当y≤5且y≠0时的x的取值范围.25.【答案】(1)解:设药物燃烧时y关于x的函数关系式是y=kx(k≠0),将点(8,6)代入,得k=3 4,所以药物燃烧时y关于x的函数关系式是y=34x,自变量x的取值范围是0≤x≤8;设药物燃烧后y关于x的函数关系式是y= m x,把(8,6)代入得:m=48,所以药物燃烧后y与x的函数关系式为y=48 x,(2)解:当y=1.6时,代入y=48 x,得x=30,那么从药薰开始,至少需要经过30分钟后,学生才能回到教室;(3)解:此次灭蚊有效,将y=3分别代入y=34x,y=48x,得,x=4和x=16,那么持续时间是16−4=12(min)>10min,所以能有效杀灭室内的蚊虫.【解析】【分析】(1)设药物燃烧时y关于x的函数关系式是y=kx,将(8,6)代入求出k的值,据此可得对应的函数关系式;设药物燃烧后y关于x的函数关系式是y=mx,将(8,6)代入求出m的值,据此可得对应的函数表达式;(2)将y=1.6代入反比例函数解析式中求出x的值即可;(3)将y=3代入(1)中的关系式中求出x的值,然后作差,再与10进行比较即可判断.26.【答案】(1)解:∵爆炸前浓度呈直线型增加,∴可设y与x的函数关系式为y=k1x+b(k1≠0),由图象知y=k1x+b过点(0,30),(6,75),∴{30=b75=6k1+b,解得{k1=152b=30∴y=152x+30,此时自变量x的取值范围是0≤x≤6,∵爆炸后浓度成反比例下降,∴可设y与x的函数关系式为y=k2x(k2≠0).由图象知y=k2x过点(6,75),∴k26=75,∴k2=450,∴y=450x,此时自变量x的取值范围是x>6;(2)解:当y=60时,由y=152x+30得:152x+30=60,解得x=4,∴撤离的最长时间为6−4=2(小时).∴撤离的最小速度为3÷2=1.5(km/ℎ);(3)解:当y=30时,由y=450x得,x=15,15−6=9(小时).∴矿工至少在爆炸后9小时才能下井.【解析】【分析】(1)由图象可得:爆炸前浓度呈直线型增加,设y=k1x+b,将(0,30)、(6,75)代入求出k1、b的值,据此可得函数关系式;爆炸后浓度成反比例下降,设y=k2x,将(6,75)代入求出k2的值,据此可得对应的函数关系式;(2)令爆炸前对应的函数关系式中的y=60,求出x的值,然后求出撤离的时间,进而可得撤离的最小速度;(3)令爆炸后对应的函数关系式中的y=30,求出x的值,据此求解。
第11讲 反比例函数
一、反比
例函数的概念
一般地,形如y =k x
(k 是常数,k ≠0)的函数叫做反比例函数. 1.反比例函数y =k x 中的k x 是一个分式,所以自变量x ≠0,函数与x 轴、y 轴无交点. 2.反比例函数解析式可以写成xy =k(k ≠0),它表明在反比例函数中自变量x 与其对应函数值y 之积,总等于已知常数k.
二、反比例函数的图象与性质
1.图象
反比例函数的图象是双曲线. 2.性质
(1)当k >0时,双曲线的两支分别在一、三象限,在每一个象限内,y 随x 的增大而减小;当k <0时,双曲线的两支分别在二、四象限,在每一个象限内,y 随x 的增大而增大.注意双曲线的两支和坐标轴无限靠近,但永远不能相交.(2)双曲线是轴对称图形,直线y =x 或y =-x 是它的对称轴;双曲线也是中心对称图形,对称中心是坐标原点.
三、反比例函数的应用
1.利用待定系数法确定反比例函数解析式
由于反比例函数y =k x
中只有一个待定系数,因此只要一对对应的x ,y 值,或已知其图象上一个点的坐标即可求出k ,进而确定反比例函数的解析式.
2.反比例函数的实际应用
解决反比例函数应用问题时,首先要找出存在反比例关系的两个变量,然后建立反比例函数模
型,进而利用反比例函数的有关知识加以解决.
1.关于x 的函数y=k (x+1)和y=(k ≠0)在同一坐标系中的图象大致是( )
A .
B .
C .
D .
2.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b 与反比例函数y=的图象有2个公共点,则b 的取值范围是( )
A .b >2
B .﹣2<b <2
C .b >2或b <﹣2
D .b <﹣2
3.若点A(1,y 1),B(2,y 2)是双曲线y =3x
上的点,则y 1 y 2(填“>”“<”或“=”). 4.如图,在函数y 1=(x <0)和y 2=(x >0)的图象上,分别有A 、B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,S △AOC =,S △BOC =,则线段AB 的长度= .
5.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x 轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为.
6.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;
(2)根据图象直接写出使kx+b<成立的x的取值范围;
(3)求△AOB的面积.
答案
1. D
2. C
3. >
4.
解:∵S△AOC=,S△BOC=,
∴|k1|=,|k2|=,
∴k1=﹣1,k2=9,
∴两反比例解析式为y=﹣,y=,
设B点坐标为(,t)(t>0),
∵AB∥x轴,
∴A点的纵坐标为t,
把y=t代入y=﹣得x=﹣,
∴A点坐标为(﹣,t),
∵OA⊥OB,
∴∠AOC=∠OBC,
∴Rt△AOC∽Rt△OBC,
∴OC:BC=AC:OC,即t:=:t,
∴t=,
∴A点坐标为(﹣,),B点坐标为(3,),∴线段AB的长度=3﹣(﹣)=.
故答案为.
5.1
解:由于P点在y=上,则S□PCOD=2,A、B两点在y=上,则S△DBO=S△ACO=×1=.
∴S四边形PAOB=S□PCOD﹣S△DBO﹣S△ACO=2﹣﹣=1.
∴四边形PAOB的面积为1.
故答案为:1.
6.
解:(1)∵点A(m,6),B(3,n)两点在反比例函数y=(x>0)的图象上,
∴m=1,n=2,
即A(1,6),B(3,2).
又∵点A(m,6),B(3,n)两点在一次函数y=kx+b的图象上,
∴.
解得,
则该一次函数的解析式为:y=﹣2x+8;
(2)根据图象可知使kx+b<成立的x的取值范围是0<x<1或x>3;
(3)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.令﹣2x+8=0,得x=4,即D(4,0).
∵A(1,6),B(3,2),
∴AE=6,BC=2,
∴S△AOB=S△AOD﹣S△BOD=×4×6﹣×4×2=8.。