输电线路施工测量全解
- 格式:doc
- 大小:1.69 MB
- 文档页数:14
输电线路施工测量工作包括:线路施工复测分坑测量根底的操平找正及杆塔检查架空线弧垂观测交叉跨越测量等一、线路杆塔桩复测线路杆塔桩位置是根据线路断面图、架空线弧垂曲线模型板参照地物、地貌、地质及其他有关技术参数比拟而设计的,经过现场实际校核和测定后确定的。
由于从设计、定桩到施工,相隔了一段较长的时间,可能发生桩位偏移或丧失等情况。
因此在线路施工前,应对杆塔中心桩的位置进行复核。
〔一〕直线杆塔桩位复测直线杆塔桩位复测是以两相邻的直线桩为基准,检查杆塔中心桩位置是否在线路的中心线上。
测量方法可采用正、倒镜法或测量其水平角,假设实测的水平角超过允许的误差值〔 1800±1' 〕时,必须予以纠正。
〔二〕档距和标高的复测线路上杆塔的高度是根据杆塔地面标高及档距间的最大弧垂曲线,利用断面图而确定的。
在线路施工前,应复测两相邻杆塔中心桩间的平距,其偏差不应大于设计档距的1%;复测两杆塔间被跨越物及相邻两杆塔位的标高,其偏差不应大于0.5m 。
〔三〕转角杆塔桩复测转角杆塔桩复测是用一测回法复测转角的水平角度值,其与设计值的偏差不应大于1'30 〃。
在复测中假设发现杆塔桩丧失或移动,应及时进行补桩。
二、分坑测量一条线路上的杆塔类型很多,而杆塔根底的形式又取决于杆塔的类型。
分坑测量依据设计部门编制的线路杆塔明细表进行,明细表注明了每根杆塔根底的型号和洞深,这些数据是分坑测量的主要依据。
分坑测量包括坑口放样数据计算和坑位测量。
〔一〕坑口放样数据计算二〕坑位测量杆塔有铁塔与拉线杆两大类。
因此,杆塔根底有主杆与拉线根底坑之分。
三、架空线弧垂观测输电线路全线杆塔组立完毕,经检查合格之后,在杆塔上要架设导线和避雷线。
在架线工程中包括:放线、紧线、弧垂观测和附件安装等工作。
〔一〕弧垂的概念简单地说,弛度就是架线后架空线的松弛程度。
考虑到热胀冷缩,架空线不可能是直线,而是呈现大小不同的弧形,这个弧形就是弛度的表现,因此弛度亦称弧垂。
测绘技术中的输电线路测量方法近年来,随着电力行业的快速发展,输电线路建设成为了各地电力公司的重要任务。
为了确保输电线路的安全运行和稳定供电,测绘技术在输电线路建设和维护过程中扮演着重要的角色。
本文将介绍一些常用的输电线路测量方法,以及这些方法在保障电力行业发展方面的重要性。
首先,我们来看一种常用的输电线路测量方法——绝对测量法。
绝对测量法通过使用全站仪或者全球定位系统(GPS)等先进设备,测量和记录输电线路的绝对位置和高度。
这种方法可以精确测定导线的走向和高度变化,为输电线路的设计和施工提供依据。
在设计阶段,绝对测量法可以帮助工程师合理规划走线,确保线路的通道畅通无阻。
在施工过程中,绝对测量法可以确保导线的垂直度和水平度,提高线路的稳定性和可靠性。
除了绝对测量法,相对测量法也是一种常用的输电线路测量方法。
相对测量法的核心思想是基于已知控制点附近的导线测量,通过观测和计算来确定输电线路上其他导线的位置。
相对测量法的优势在于快速高效,可以在短时间内测量大量的导线数据。
然而,相对测量法的精确度相对较低,尤其是在较长距离的输电线路上。
因此,在实际应用中,相对测量法通常与绝对测量法结合使用,以提高测量结果的准确性。
此外,近年来,激光测量技术在输电线路测量中得到了广泛应用。
激光测量技术利用激光束的高频振动特性,通过测量反射光束的时间差来计算出测量点与仪器之间的距离。
在输电线路测量中,激光测量技术可以通过测量各个导线之间的距离,来确定导线的张力和垂直度。
激光测量技术不仅测量精度高,而且速度快,对测量人员的要求也不高,因此在实际应用中得到了广泛推广。
除了测量方法的选择,数据处理也是输电线路测量中不可忽视的一环。
测量数据的准确与否将直接影响到线路的设计和施工质量。
因此,在数据处理过程中,传统的测绘技术结合了遥感和地理信息系统(GIS)等先进技术,在提高测量数据精度的同时,实现了数据的可视化呈现和分析。
通过将测量数据与电力系统的地理信息相结合,电力公司可以更好地管理和维护输电线路,提高电网的运行效率和供电可靠性。
1 编制依据1.1 《110~500kV架空电力线路施工及验收规范》(GBJ233-90);1.2 《电力建设安全工作规程(架空电力线路部分)》(DL5009.2-94);1.3 《中华人民共和国安全生产法》;1.4 《110kV~500kV架空电力线路工程施工质量及评定规程》(DL/T 5168-2002)。
2 施工准备2.1 对测量工具的要求施工测量前对用于测量的仪器、工具等进行精度校验,严禁不合格的仪器、工具用于施工测量。
2.1.1 经纬仪施工前应对经纬仪进行以下项目的检查:a) 水准管和垂直竖轴的垂直度;b) 视准轴和水平轴的垂直度;c) 水平轴和竖直轴的垂直度;d) 望远镜十字线、望远镜水准管竖盘游标水准管等。
对于不符合技术要求的仪器应进行校正,即使是新出厂的精密仪器,在使用前也必须进行检定校准后方可使用。
2.1.2 塔尺、钢尺:用于施工测量的塔尺、钢尺应符合要求,对于刻度不清晰的,不符合质量要求的,不得用于施工测量。
3 施工复测3.1 直线杆塔中心桩复测3.1.1 直线杆塔中心桩复测,以直线桩为基准,用正倒镜分中法来复测,复测时以设计勘测钉立的两个相邻的直线桩为基线,其横线路方向偏差见表3-1表3-1 线路路径复测质量要求及检查方法序号检查(检验)项目检验标准(允许偏差)检查方法1 转角桩角度1′30″经纬仪复测2 档距%L 1 经纬仪塔尺复测3 被跨越物高程 m 0.5 经纬仪测量— 1 —序号检查(检验)项目检验标准(允许偏差)检查方法4 杆(塔)位高程 m 0.5 经纬仪测量5 地形凸起点高程 m 0.5 经纬仪测量6 直线桩横线路 mm 50 经纬仪定线、钢尺测量7 被跨越物与邻近杆(塔)位距离%L 1 用经纬仪塔尺复测8 地形凸起点b、风偏危险点与邻近杆(塔)位距离%L′a 1 用经纬仪塔尺复测a. L为档距,L′为被跨越物或地形凸起点、风偏危险点与邻近杆(塔)位的水平距离。
如何进行电力输电线路测量工作电力输电线路测量是电力行业中非常重要的工作之一。
它能够帮助工程师和技术人员了解电力线路的实际工作状态,从而为电力供应和设备维护提供参考。
然而,这项工作并不是一项简单的任务,需要专业的知识和技能。
本文将就如何进行电力输电线路测量工作展开阐述。
首先,进行电力输电线路测量工作之前,必须做好充分的准备工作。
这包括检查测量设备的完好性和准确性,了解被测电力线路的相关参数和拓扑结构,以及清楚测量工作的目的和要求。
只有做好这些准备,才能够确保测量工作的有效性和可靠性。
其次,进行电力输电线路测量工作时,应注意安全措施。
这是因为电力线路通常具有高电压和强电磁场等危险因素,如果不采取适当的安全措施,会对人身安全造成严重威胁。
因此,在测量线路时,应穿戴好防护装备,保持适当的距离,确保安全的工作环境。
接下来,进行电力输电线路测量工作时,需要选择合适的测量方法和仪器。
根据测量的具体要求和线路的特点,可以选择使用数字测量仪、电流互感器、电流电压传感器等测量设备。
同时,还需要掌握不同设备的使用方法和测量技巧,以确保测量结果的准确性和可靠性。
除了上述基本工作外,还可以进行一些进一步的实验和分析。
例如,可以采集电力线路的电流、电压、功率等实时数据,然后通过数据处理和分析,得出线路的负载情况、功率因数、损耗等相关指标。
这些数据和指标对于评估电力线路的运行情况以及优化电力供应具有重要意义。
此外,对于长距离、高压等特殊线路的测量工作,可能需要借助一些专业的辅助工具和方法。
例如,可以使用遥感技术、红外热像仪等设备来进行线路的远程测量和故障检测。
这些技术可以在不接触线路的情况下,实现远程监测和诊断,提高工作效率和安全性。
最后,进行电力输电线路测量工作后,还应该对测量结果进行合理的分析和解读。
这是为了帮助工程师和技术人员了解线路的实际运行情况,从而指导后续的维护和优化工作。
在分析结果时,应特别注意异常数据的处理和故障的定位,以便及时采取措施解决问题。
线路工程施工测量知识点线路工程施工测量是电力、通信、交通等行业中不可或缺的重要环节,它直接影响到工程的质量和进度。
本文将详细介绍线路工程施工测量的相关知识点。
一、施工测量的基本原理施工测量是利用测量仪器和测量方法,对线路工程的设计图纸进行现场标定和验证,确保施工过程中各项工程指标符合设计要求。
其基本原理包括测角、测距和测高差。
1. 测角:通过经纬仪或全站仪等仪器,测定两点之间的角度,用于确定线路的方向和位置。
2. 测距:利用钢尺、测距仪或激光测距仪等工具,测定两点之间的距离,用于确定线路的长度和规模。
3. 测高差:通过水准仪或全站仪等仪器,测定两点之间的高程差,用于确定线路的垂直位置和坡度。
二、施工测量的基本工作线路工程施工测量主要包括以下几个方面的工作:1. 控制测量:建立施工控制网,测定控制点的坐标和高程,为后续的施工测量提供基准。
2. 定位测量:根据设计图纸,测定线路的起点、终点和转折点等关键位置,确保施工过程中线路的正确走向。
3. 放样测量:根据设计图纸,测定线路沿线上的各个施工点位,为施工提供具体的施工位置。
4. 高程控制:测定线路沿线的高程,确保线路的垂直位置和坡度符合设计要求。
三、施工测量的方法与技术要求1. 测量仪器:线路工程施工测量应采用高精度的测量仪器,如全站仪、经纬仪、水准仪等。
2. 测量方法:根据不同的施工要求,采用相应的测量方法,如角度测量、距离测量、高差测量等。
3. 技术要求:线路工程施工测量应满足以下技术要求:(1)测量精度应符合设计要求,一般要求±1mm/m。
(2)测量数据应真实、可靠,不得有误。
(3)测量结果应进行复核和验证,确保测量数据的准确性。
四、施工测量在线路工程中的应用1. 电力线路工程:施工测量在电力线路工程中起到重要作用,可以确保线路杆塔的位置和高程符合设计要求,保证电力线路的安全运行。
2. 通信线路工程:施工测量在通信线路工程中用于确定通信杆塔的位置和高度,确保通信线路的顺畅传输。
输电线路铁塔基础施工测量方法概述及解释说明1. 引言1.1 概述在输电线路建设中,铁塔基础的施工测量是不可忽视的重要环节。
准确的测量数据能够保证铁塔基础施工质量,以及后续建设和运维的顺利进行。
因此,对于输电线路铁塔基础施工测量方法的研究和探索具有重要意义。
本文旨在概述并解释输电线路铁塔基础施工测量方法。
首先,将介绍文章的结构和目录安排,以便读者能够清晰了解全文内容。
接着将描述本文的目的,即阐明为什么需要进行这方面的研究,并指导读者对文章内容有一个整体性和方向性的认识。
1.2 文章结构本文共分为五个部分,每个部分都围绕着输电线路铁塔基础施工测量方法展开详细讨论。
下面将简要介绍各个部分所包含内容:第一部分是引言部分,主要说明了本文的背景、目的以及文章结构。
第二部分将讨论输电线路铁塔基础施工测量方法意义和重要性。
其中,包括线路铁塔基础施工测量的定义和背景、意义和目标,以及相关的影响因素和风险分析。
这部分旨在为读者提供对该领域的整体认识,并明确其重要性。
第三部分将介绍输电线路铁塔基础施工常用测量方法及其原理解释。
具体包括水平测量方法及原理解释、垂直测量方法及原理解释,以及地质勘探测量方法及原理解释。
通过这一部分,读者将了解到不同类型的测量方法以及其背后的科学原理。
第四部分将分享在实践中进行输电线路铁塔基础施工测量时需要注意的事项和技巧。
其中包括测量仪器使用前的校准与检查要点、施工现场环境对测量精度的影响及应对策略,以及基础施工过程中测量数据处理和分析方法。
这一部分将帮助读者更好地应用和运用所学知识。
最后一部分是结论部分,将对全文进行总结,并突出本文的创新点和亮点。
同时还会展望未来的发展并提出相应的建议,以促进该领域的深入研究和发展。
1.3 目的本文旨在概述输电线路铁塔基础施工测量方法,并解释其意义和重要性。
通过对不同测量方法及其原理解释的介绍,读者将能够全面了解该领域的相关知识。
同时,本文还将分享在实践中需要注意的事项和技巧,供读者参考应用。
输电线路施工测量工作包括:线路施工复测分坑测量基础的操平找正及杆塔检查架空线弧垂观测交叉跨越测量等一、线路杆塔桩复测线路杆塔桩位置是根据线路断面图、架空线弧垂曲线模型板参照地物、地貌、地质及其他有关技术参数比较而设计的,经过现场实际校核和测定后确定的。
由于从设计、定桩到施工,相隔了一段较长的时间,可能发生桩位偏移或丢失等情况。
因此在线路施工前,应对杆塔中心桩的位置进行复核。
(一)直线杆塔桩位复测直线杆塔桩位复测是以两相邻的直线桩为基准,检查杆塔中心桩位置是否在线路的中心线上。
测量方法可采用正、倒镜法或测量其水平角,若实测的水平角超过允许的误差值(1800±1')时,必须予以纠正。
(二)档距和标高的复测线路上杆塔的高度是根据杆塔地面标高及档距间的最大弧垂曲线,利用断面图而确定的。
在线路施工前,应复测两相邻杆塔中心桩间的平距,其偏差不应大于设计档距的1%;复测两杆塔间被跨越物及相邻两杆塔位的标高,其偏差不应大于0.5m。
(三)转角杆塔桩复测转角杆塔桩复测是用一测回法复测转角的水平角度值,其与设计值的偏差不应大于1'30〃。
在复测中若发现杆塔桩丢失或移动,应及时进行补桩。
二、分坑测量一条线路上的杆塔类型很多,而杆塔基础的形式又取决于杆塔的类型。
分坑测量依据设计部门编制的线路杆塔明细表进行,明细表注明了每根杆塔基础的型号和洞深,这些数据是分坑测量的主要依据。
分坑测量包括坑口放样数据计算和坑位测量。
(一)坑口放样数据计算二)坑位测量杆塔有铁塔与拉线杆两大类。
因此,杆塔基础有主杆与拉线基础坑之分。
三、架空线弧垂观测输电线路全线杆塔组立完毕,经检查合格之后,在杆塔上要架设导线和避雷线。
在架线工程中包括:放线、紧线、弧垂观测和附件安装等工作。
(一)弧垂的概念简单地说,弛度就是架线后架空线的松弛程度。
考虑到热胀冷缩,架空线不可能是直线,而是呈现大小不同的弧形,这个弧形就是弛度的表现,因此弛度亦称弧垂。
输电线路施工测量工作包括:
线路施工复测
分坑测量
基础的操平找正及杆塔检查
架空线弧垂观测
交叉跨越测量等
一、线路杆塔桩复测
线路杆塔桩位置是根据线路断面图、架空线弧垂曲线模型板参照地物、地貌、地质及其他有关技术参数比较而设计的,经过现场实际校核和测定后确定的。
由于从设计、定桩到施工,相隔了一段较长的时间,可能发生桩位偏移或丢失等情况。
因此在线路施工前,应对杆塔中心桩的位置进行复核。
(一)直线杆塔桩位复测
直线杆塔桩位复测是以两相邻的直线桩为基准,检查杆塔中心桩位置是否在线路的中心线上。
测量方法可采用正、倒镜法或测量其水平角,若实测的水平角超过允许的误差值(1800±1')时,必须予以纠正。
(二)档距和标高的复测
线路上杆塔的高度是根据杆塔地面标高及档距间的最大弧垂曲线,利用断面图而确定的。
在线路施工前,应复测两相邻杆塔中心桩间的平距,其偏差不应大于设计档距的1%;复测两杆塔间被跨越物及相邻两杆塔位的标高,其偏差不应大于0.5m。
(三)转角杆塔桩复测
转角杆塔桩复测是用一测回法复测转角的水平角度值,其与设计值的偏差不应大于1'30〃。
在复测中若发现杆塔桩丢失或移动,应及时进行补桩。
二、分坑测量
一条线路上的杆塔类型很多,而杆塔基础的形式又取决于杆塔的类型。
分坑测量依据设计部门编制的线路杆塔明细表进行,明细表注明了每根杆塔基础的型号和洞深,这些数据是分坑测量的主要依据。
分坑测量包括坑口放样数据计算和坑位测量。
(一)坑口放样数据计算
二)坑位测量
杆塔有铁塔与拉线杆两大类。
因此,杆塔基础有主杆与拉线基础坑之分。
三、架空线弧垂观测
输电线路全线杆塔组立完毕,经检查合格之后,在杆塔上要架设导线和避雷线。
在架线工程中包括:放线、紧线、弧垂观测和附件安装等工作。
(一)弧垂的概念
简单地说,弛度就是架线后架空线的松弛程度。
考虑到热胀冷缩,架空线不可能是直线,而是呈现大小不同的弧形,这个弧形就是弛度的表现,因此弛度亦称弧垂。
因此,设计部门应根据线路所在地区的气象,架空线的比载、应力、弹性系数,档距以及悬挂点高低等条件,通过科学计算,编制出架空线弧垂技术资料,施工单位根据这些设计资料对架空线的弧垂进行精确地观测,才能保证输电线路的安全运行。
在架空线悬挂点A、B等高情况下,弧垂f恰好在档距中点。
通常所说的弧垂,是指平行两悬挂点A、B所作架空线弧垂的切线A1B1与AB直线中点的垂直距离f,也叫中点弧垂。
(二)弧垂观测档的选择和弧垂计算
1、弧垂观测档的选择
输电线路工程的每个耐张段,可由一个档或多个档组成,只有一个档的耐张段称为孤立档;由多个档所组成的耐张段,称为连续档。
为限制倒杆或断线的事故范围,需把线路的直线部分划分为若干耐张段,在耐张段的两侧安装耐张杆。
耐张杆除承受导线重量和侧面风力外,还要承受邻档导线拉力差所引起的沿线路方面的拉力。
为平衡此拉力,通常在其前后方各装一根拉线。
(二)弧垂观测档的选择和弧垂计算
1、弧垂观测档的选择
在连续档中,为了使整个耐张段内各个档的弧垂达到平衡,须根据连续档内的档数多少,而决定弧垂观测档的档数。
对观测档的选择要求如下:
耐张段在5档及以下档数时,需选择靠近中间的一档作为观测档;
耐张段在6档至12档时,靠近耐张段的两端各选一档作为观测档;
耐张段在12档以上时,靠近耐张段两端和中间各选一档作为观测档。
观测档的档数可以增多,但不能减少;
观测档应选在档距较大和悬挂点高差较小的档。
2、观测档的弧垂计算
观测档的弧垂f,是根据线路杆塔明细表中观测档所在耐张段的代表档距、对应于弧垂曲线图中的代表档距弧垂,以及观测档的档距等因素而计算的。
2、观测档的弧垂计算
在计算时,还要考虑观测档内有无耐张绝缘子串、架空线悬挂点的高差大小,以及观测点选择的位置等条件。
观测档内架空线两侧都联耐张绝缘子串的弧垂计算:架空线悬挂点的高差h<10%l时
(三)弧垂观测
弧垂观测前,可以从输电线路平断面图上了解地形、地物以及弧垂的大致情况。
结合地形、地物的实际,选择适当的弧垂观测方法。
弧垂的常用观测方法有:
异长法
平行四边形法
角度法
平视法
弧垂观测,是在观测档内未联有耐张绝缘子串,一侧或两侧联有耐张绝缘子串的情况下进行。
选用某一种弧垂观测方法时,无论观测档内是否联有耐张绝缘子串,其观测方法和步骤都是相同的。
因此,仅介绍观测档内未联有耐张绝缘子串情况下弧垂观测的异长法和角度法。
1、异长法
异长法是一种不用经纬仪观测架空线弧垂的方法。
实际观测时,将两块长约2m、宽约10~15cm红白相的弧垂板上边缘,分别与A1、B1点重合,并水平绑扎在杆塔上。
紧线时调整架空线的张力,观测人员
于A1点用眼睛(或望远镜)视稳定时的架空线与A1B1视线相切,则切点的垂度即为观测档的待测弧垂f值。
用异长法观测弧垂,是根据观测档的弧垂计算值f,选定一个适当的a值,再计算出b值。
而在检查弧垂时,是根据检查档两侧杆塔上的a、b值,反推算出检查档的实际弧垂f值
2、角度法
角度法是用经纬仪竖直观测弧垂的一种方法。
其方法有:档端、档侧任一点、档内、档外等观测方法。
选用哪一种方法要根据地形条件和实际情况而定,档端角度法使用的最多。
交叉跨越测量
新设计的输电架空线与原输配电线路、铁路及主要公路、架空管索道、通航河流,以及其他建筑设施交叉跨越时,都必须测量线路中导线与被跨物交叉点的被跨物标高,以作为线路该档档距和弧垂设计的参考依据。
交叉跨越测量方法可采用绝缘绳直接测量和经纬仪(或全站仪)测量。